University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8

30614 Pilsen

Czech Republic

Fault Tolerace Support for SOFA

PhD Report

Jan Rovner

Technical Report No. DCSE/TR-2001-03
November, 2001

Distribution: public



Technical Report No. DCSE/TR~2001-03
November 2001

Fault Tolerace Support for SOFA

Jan Rovner

Abstract

Several approaches for software fault tolerance in component oriented systems
have been proposed, with varying level of reliability. This paper gives a proposal
to enhance SOFA framework with replication based fault tolerance. With added
fault tolerance support, SOFA framework allows to create reliable, non-stop
running applications without needs to modify source code of components.
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1 Introduction

The main goal of the article is to research and provide sketch to enhance SOFA [1] com-
ponent framework with fault tolerance support that it currently lacks. The designed
extensions of SOFA allow to the developers of SOFA components to create applica-
tions that require a high level of reliability. The fault tolerance support is provided
transparently by SOFA runtime, i.e without needs to modify the source code of SOFA
components.

Additional features in SOFA framework appear together with the added fault tolerance
support - automated component’s state saving/restoring, the possibility of component
activity tracing, and the possibility of runtime component determinism checking.

2 SOFA framework

2.1 General overview of SOFA

The SOFA framework is based on the concept of component oriented programming.
SOFA application is composed of many items called software components cooperating
together to achieve the application’s functionality. Each software component provides
to the other ones sets of services, and to make theses services available, usually also
requires the services of other components. SOFA’s components can be nested. In these
aspects, SOFA is similar to the well-known middleware systems like OMG’s CORBA,
Sun’s Enterprise JavaBeans and Microsoft’s COM.

The innovative SOFA DCUP (Dynamic Component Updating) [1] architecture gives the
component providers the possibility of updating their components at runtime without
manual intervention on the enduser side.

2.2 SOFA component model

In analogy with the classical concepts of an object as an instance of a class, SOFA
introduce a software component as an instance of a component template.

Basically, a component template is a framework which contains definitions of imple-
mentation objects and nested components. The component interfaces are named sets
of method signatures, possibly with an attached specification of semantics (behavior).

SOFA template defines two views of a software component. The black box view called
component frame defines the set of component’s provided and required interfaces plus
its behavior. The gray-box view is called component architecture and shows the orga-
nization of the first level of components’ nested subcomponents.

Every component template is determined by its interface (set of services either provided
and/or required), and by the definitions and bindings of implementation objects and



nested components.

For the specification of a component’s interfaces and its architecture (in terms of nested
components and their interconnections), a language called SOFA Component Descrip-
tion Language (CDL) [2] is used.

3 Fault tolerance in component oriented sys-
tems

In component oriented fault tolerant systems, fault tolerance is dependent on compo-
nent redundancy, fault detection and recovery. The redundancy is achieved by repli-
cation of components onto different machines (processors), the replicated components
are called replicas.

Replication-based fault tolerant systems replicate each component of the application.
If an component or its hosting processor fails, another instance of the component is
available on another processor that is ready to provide services. There are basically
two basic kinds of component replication - active and passive [9, 4, 10].

3.1 Active replication

With active replication, all of the component replicas execute the methods invoked on
the replicated component simultaneously.

Fault tolerance infrastructure must ensure that each replica receives the same sequence
of method invocations in the same order and executes those invocations in the same
order (totally ordered invocations) and exactly once. Thus, it maintains the consistency
of the state of the replicas.

To enable active replication, replication mechanism multicast the invocation (response)
from every client (server) replica to the server (client) component group. This invoca-
tion is usually performed via reliable totally ordered multicast protocol to ensure that
the states of both the client and the server replicas are consistent at the end of the
operation.

3.2 Passive replication

With passive replication, only one of the replicas, called the primary replica, executes
the invoked methods. All other replicas do not perform any operation.

Fault tolerance infrastructure must ensure that the method invocations and responses
are not delivered to the backup replicas but, instead of execution, they are logged at
the backup replicas. The system periodically captures the state of the primary replica
and logs that state as a checkpoint at the backup replicas.
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Figure 1: Active replication

If the primary replica fails, fault tolerance infrastructure chooses a backup replica to
replace the failed primary, retrieves the most recent checkpoint from the log and loads
it into the backup replica. The backup replica then processes subsequent invocations
from the log to repeat the work that the replica did before it failed.

The requirements (total ordering) for the multicast mechanism are the same as for
active replication.

There exist different styles of passive replication that differ in the degree to which the
states of the backup replicas lag behind the state of the primary replica.

3.2.1 Cold passive replication

In the case of a cold passively replicated components, the backup replicas are not even
loaded into memory, and thus do not come into existence until the primary replica fails.

In the event that the primary replica fails, one of the cold backup replicas is loaded
into memory, and assumes the role of the new primary replica. The state of the new
primary replica is recovered using the checkpoint information and invoking methods
that were logged after the previous checkpoint.

3.2.2 Warm passive replication

Unlike cold passive replication, the warm passive backup replicas are loaded into mem-
ory and are running.

As long as the primary replica is running, the only messages that the replication mech-
anisms deliver to the backup replicas are the messages that contain the state of the
primary replica. If the primary replica fails, a new primary replica is chosen from the
backup replicas. The lag in the state of the new primary replica (formerly a backup
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replica) and the old primary replica depends on the frequency of state transfer.

3.2.3 Hot passive replication

Hot passive replication is a variant of warm passive replication, with the state transfer
occurring at the end of every operation on the primary replica. Thus, while the states
of the backup and primary replicas may differ while the primary replica performs an
operation, their states are consistent at the end of each state transfer.

3.3 Current state of the art

Most of currently specified/designed component oriented fault tolerant systems lack
simplicity and transparentness for software developers. Almost all of them do not
still provide fault tolerance support transparently in the design time stage of software
development process. Software designers and developers must be familiar with the fault
tolerant support provided by given systems and must explicitly provide some ”plugging
points” to allow the fault tolerant subsystems to communicate with the components
during component replication or fault recovery. Implementing such ”plugging points”
always requires additional knowledge and component’s source code modifications[9, 4,
10].

These ” plugging points” can be provided very differently, but most common techniques
require the developer to either implement some vendor specific interface(s) or to inherit
the class definition (in case of object oriented systems, of course) from some well-known
superclass that itself partially implements fault tolerance.

Supporting such ”plugging points” at all events leads to the needs of system redesign
and reimplementation. This makes complicated and time consuming to add fault toler-



ant support to already designed and implemented systems with the possibility to infect
modified system with new potential bugs.

3.3.1 Describing component’s state

The very primary task of replication mechanisms is the ability to obtain the compo-
nent’s state, which (in case of today’s common OO development) reside in member
variables of implementation objects. However, not all member variables contain the
information that is critical for correct operation of a component, e.g. private variables
used for temporary results, etc.

In most cases, the code added by developer for fault tolerance support must manually
implement some method of transformation of actual component state to a form that
can be understood by fault tolerant system - and this is usually a code for bidirectional
transfer of the object’s state from/to member variables.

In addition to problem of providing the state can arise the problem of determining
whether actual component’s state is ”stable”, because the request for state providing
can appear asynchronously during the component execution.

4 Fault tolerance for SOFA

As a solution of the issues discussed above, aim of this work is to enhance SOFA frame-
work to support fault tolerance mechanisms. The source code of SOFA components
will not have to be modified to take advantages of fault tolerant support. This will
enable possibility to run ”truly 24x7” applications using existing DCUP infrastructure
for component updating and possibility to stop SOFANode[l] for cases of hardware
upgrades and repairs.

4.1 Basic concepts

SOFA framework will provide fault tolerant support and recovery using entity repli-
cation pattern. SOFA runtime will manage replicating running component instances,
and distributing these replicas across different SOFANodes over the SOFANet[1].

4.1.1 Describing component via CDL

SOFA components, their bindings and other properties are described using CDL. The
CDL is a ideal facility to declaratively describe component’s state as well. The purpose
of the CDL compiler in case of DCUP and replication operations is to automatically
generate code that reads and writes complete component state from/to its member
variables.



This problem could be solved introducing new section to CDL, starting with keyword
state. State keyword should declare state variables and should appear at interface
level, following method declarations.

The task of CDL compiler is then to produce appropriate source code for:

e member variable declarations in class implementing an interface

e state transfer from/to these member variables

However, several constraints must be put to the data types of member variables, de-
pending on the target programming language which is produced by CDL compiler. The
only restricting condition is the ability of the particular language to handle assignments
with these data types in means of actual content copying, not only copying variable’s
reference. In case of most common languages - like C, Java, Pascal etc. assignment
operator would restrict component’s state only to the primitive data types.

As a solution, CDL compiler should have knowledge of assignment semantics for dif-
ferent data types, i.e. how to generate code for proper data assignments. In case of
most object oriented environments, some special support must be provided by CDL
compiler for non primitive data types of a particular language. For example - in case of
object references in Java, Java’s native serialization mechanism can be used to achieve
desired state transfer.

4.1.2 DCUP reuse for replication

To save developers from state transfer issues and to create a really transparent frame-
work SOFA’s DCUP principles will be reused. The basic idea is that the state of
a SOFA component is also transferred during DCUP operation and the mechanisms
introduced in DCUP will be used to implement component replication [9].

Unfortunately, DCUP itself does not solve the problem of state definition, which is
needed to achieve transparent state transfers. In fact, up to current version of SOFA,
the artifacts of component state were undefined and the state transferred was left on
developer.

5 Component replication framework in SOFA

5.1 SOFA architecture modifications

One of the most important goals in developing every fault tolerant system is to eliminate
single point of system failures. To make SOFA fault tolerant, SOFA subsystems residing
only on a single SOFANode must be made fault tolerant as well - the solution is to
make these services distributed over the SOFANet.



5.1.1 Template repository

The task of current Template repository is to provide binary images of components.
The task of new, distributed version, is to replicate Template repository to SOFANodes
participating on fault tolerant framework and ensure that local copies of Template
repository are replicated, consistent and properly synchronized.

5.1.2 Interface wrappers

Interface wrappers are generated modules acting as a component’s interface proxies,
bringing to SOFA a layer of indirection that is required for DCUP architecture. The
most radical changes must be made here, because interface wrappers are the key points
for the component replication technology. The very primary idea of whole concept -
component replication - will be in fact executed here.

The task of modified interface wrappers is to enable multi-point component connection
(I instead of 1:1).

In case of replicated server objects, incoming calls to interface wrappers will be multi-
casted via multiple method calls to all server replicas and vice versa - incoming results
from method calls will be delivered to replicated client objects.

Another very important change to interface wrappers is to change the moment of target
object’s method invocation, depending on chosen replication method. In case of active
replication, the method is executed immediately as usual. However, in case of passive
replication, the method call is not invoked at all. Instead of invocation, the incoming
call is stored in a log.

5.2 Application components
5.2.1 Component determinism issues

In the interests of strong replica consistency, it is necessary to ensure deterministic
behavior of components.

An example of non-deterministic component’s behavior is using date/time API func-
tions in component’s code. When these API functions are called by a replicated object,
different replicas may obtain different results, depending on a value of real-time clock
on a machine where a replicated component runs.

Unfortunately, the replicated component may use this information to update its inter-
nal state, and also to invoke other replicated objects in the system. The condition for
determinism must be fulfilled in all possible replication strategies (active and passive
replication). There is no simple way how to generally detect nondeterminism in com-
ponent’s code and how to force developers to create deterministic code. But at least
some partial checking can be done by the SOFA runtime services.



The first choice is comparing component’s internal state after finishing operation
against state on all other replicas. The second possibility is logging all outgoing invo-
cations (with method parameters and return values) and after the operation is finished,
comparing created log against logs on all other replicas. Both these methods should
be implemented as efficient as possible - for example using hash values, etc.

One can expect that introduced determinism checking mechanism will be most probably
very resource consuming and should be turned on only in case of application testing
and debugging.

5.2.2 State transfer - backup

It is not always easy to decide, where the component’s state is stable; i.e. whether the
component after restore captured state will perform its functions properly.

This naturally determines the only moment, where we can implicitly consider that
component’s state is stable. It’s the time, when the component is passive - and this
is generally only after the return from an executed method, i.e. when no thread is
executing component’s code.

To satisfy the condition of determinism, the component must not internally execute
any threads that could nondeterministically manipulate its state. Secondly, only one
client (thread) must use the component at a time (parallel method’s invocations are
prohibited). This condition may be satisfied either by simple - instance per thread
(client) threading model or by some kind of serialization mechanism.

5.2.3 State transfer - restore

The component’s recovery is divided into two key parts - first one is the re-instantiation
of the component followed by loading the component’s state. The second phase is the
restoring of failed component’s bindings - references to other components. The problem
is, that the state of referenced (or owned) components must be considered as the part
of failed component’s state. So to properly recover failed components, the state of
referenced components must be set to satisfy ”parent’s” component expectations.

This operation will cause flood effect on the all levels of component’s reference tree.
Fortunately, at least some kind of optimization for this case may be done. We can
check, whether the component’s state have been modified (the case the component was
used by its ”owner” before the ”owner” died and its state has changed) and restore the
component only in positive case.

5.3 Method invocations

In the current, not fault-tolerant version of SOFA, method invocations are delivered
via standard Java RMI mechanism. Because the implementation of reliable and totally
ordered multicast protocol is a difficult task and is not subject of the research, single



(1:1) RMI calls can be replaced by multithreaded unicasting or by using third-party
software, e.g. by FilterFresh for Java [4]

5.4 Fault detection

Fault detection will be based on the concept of Java exceptions. Therefore, any ”un-
wanted” exception is considered to be a signal of some failure. Thus, any fault will be
detected by standard Java exception handling mechanism using try-catch block.

This approach, in general, allows detection of all kinds faults. Most Java API classes
raise exceptions when some kind of fatal error occur. Among these fatal errors belongs
all network, memory or CPU related faults.

Other faults that do not cause exception rising - such application faults as when different
function results occur on different replicas or when a replica state differ from the state
of other replicas - will be detected and the proper exception will be created and raised
and then passed to the standard mechanism of the fault detection.

6 Summary

The article describes a proposal to enhance SOFA component framework with fault
tolerance support. The designed extensions of SOFA should allow the developers to
create applications that require a high level of reliability with transparently provided
fault tolerance support, without needs to modify the source code of SOFA components.
All required information for the fault tolerant subsystem will be provided purely declar-
atively, via CDL.

Together with the fault tolerant support, several new interesting features coming from
fault tolerance technology reuse appear.

Automated State Transfer for DCUP - the code required for DCUP operation
can be automatically generated from the state information declared in CDL.
This allows real usage of DCUP, which is not implemented in SOFA yet.

Component Activity Tracing - the log files gained in the during the passive repli-
cation can be used for component activity tracing and analysis.

Component Determinism Checking - in case of active replication, not only the
methods’ return values will be checked, but components internal state as well.
When the internal state of two replicas differ, it is the sign of nondeterminism in
a component.
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