

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

J-Sim – A Java-based Tool for Discrete
Simulations

���������	�
��

Technical Report No. DCSE/TR-2001-05
September, 2001

Distribution: public

Technical Report No. DCSE/TR-2001-05
September 2001

J-Sim – A Java-based Tool for Discrete
Simulations

���������	�
��

Abstract
This paper describes J-Sim v. 0.1.1, an object-oriented library using the method
of pseudoparallel execution for simulation of discrete processes. Being written
in Java, J-Sim is a fully portable successor to C-Sim, an already existing C-
based library. The concepts used in both libraries are inherited from the Simula
language. In this paper, the theoretical background as well as the basic
principles of implementation in Java are presented.

This work was supported by the grant of the Czech Grant Agency "Developing
SW Components for Distributed Environments", no. 201/99/0244.

Copies of this report are available on
������������	
���
�����
��	���	����
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Copyright © 2001 University of West Bohemia in Pilsen, Czech Republic

1. Introduction

A simulation model can contain a various number of independent processes. Every
process has its own pre-programmed life which can be divided into number of parts. All
processes within the simulation model share the same time, called simulation time. At the
beginning of the simulation process, its value is equal to zero and can only be increased.
One part of a process' life is executed at one exact point of simulation time which does not
change during the execution. Within the simulation model, all parts of all processes' lifes
are merged together and arranged according to the value of the simulation time.

The execution of the simulation model is divided into steps. One step corresponds to the
execution of one selected process' part. The simulation time changes discretely between
two consequent simulation steps, according to the difference of simulation time between
their corresponding life parts. The execution is fully under control of the currently
executed process, i.e. no other process can interrupt or postpone the execution.

All processes share a calendar where events are stored. An event is an object holding
information about a process' life part; this information contains the process' identification
and a value of simulation time at which the life part is scheduled.

In order to divide their lifes into parts, processes use reactivation routines which are able
to establish reactivation points in the code of their lifes. Two kinds of reactivation
routines and reactivation points can be distinguished:
1. A passivating routine terminates the current simulation step. It does not add any new

event to the calendar; therefore, the process will not be activated anymore unless
another process activates it explicitely. If it does so, this process will be re-run from
the point where the routine was used. The name of the routine is passivate.

2. A temporarily passivating routine terminates the current simulation step and adds a
new event to the calendar. This causes that the process will be automatically re-run in
the future, after the amount of simulation time which is passes as the only argument of
this routine. The name of the routine is hold.

2. Presentation of the Most Important Classes

All classes described below are parts of the package "cz.zcu.fav.kiv.jsim". It is
necessary to import them at the beginning of every program using J-Sim. Although J-Sim
consist of 21 classes put into 15 source files, only the most important of them will be
presented here.

2.1 The JSimSimulation Class

JSimSimulation is a one of the fundamental J-Sim classes. Its instances represent
theoretical simulation models where various number of processes and queues can be
inserted. All processes and queues are registered and adopted by a simulation object upon
their creation, they cannot be standalone. This is due to the simulation time which is
shared by all processes and which is updated when a simulation step is executed.

A calendar (instance of JSimCalendar) is owned by every simulation object, where
events created by simulation's processes are inserted. When the simulation object is asked
by the user to execute one simulation step, the first event is taken from the head of the
calendar and the simulation object tries to interpret it -- the simulation time must be
changed and the process corresponding to the event must be activated and let running.
After the interpretation is finished (the selected process returns control back to the
simulation object), the event is taken out of the calendar and destroyed.

All processes present in the model have their description stored in a single-ended queue,
called infoQueue. When a new process appears (is created by the user or by another
process), the queue is updated, as well as in the case of a process' termination.

Two synchronization locks (instances of Object) are used: one for switching between
processes and the simulation object -- globalLock, one for suspension of execution
when the user asks to run the simulation in graphics mode and a graphics AWT window is
open -- graphicLock.

To the user, the simulation object offers the possibility to execute one simulation step by
providing the step() method. During the execution, the thread calling this method is
suspended and it is reactivated when the step finishes. Therefore, there is always one
running thread only, never more.

To use all possibilities of the Java language, the execution of simulations is not limited to
the console mode only. Using the runGUI() method, the simulation object can redirect
output and input to a graphics window which is automatically created. Then, the user can
interactively influence simulation's progress by entering limit values of simulation time or
number of steps to be executed.

2.2 The JSimProcess Class

The JSimProcess class is a "template" for user processes. Since it is a subclass of
java.lang.Thread, its run() method's code has the possibility to be executed
concurrently to other instances of this class. However, it is not this method which
represents process' life. Instead, a new one, called life(), is introduced in
JSimProcess. This method is initially empty and should be overwritten in user's
subclasses.

There are four principal methods which can be used for process scheduling and switching:
passivate(), hold(), activate(), and cancel().

1. The passivate() method suspends the calling process without creating a new

event for it. If the process is not activated later by another process, it will stay passive
forever. A process can invoke this method on itself only, not on another process. This
method terminates the current simulation step, i.e. it separates different life parts of
the process.

2. The hold() method temporarily suspends the calling process and reactivates it after
the time specified as method's parameter. In fact, it adds a new event to the calendar
and then passivates the process. Again, this method can be invoked on the calling
process only and it terminates the current simulation step.

3. The activate() method inserts a new event into simulation's calendar. The new
event belongs to the process whose method is invoked, not to the process which
invokes it during its life. The method takes one parameter: absolute (simulation) time
of activation. The method can be called by any process or even from outside of any
process.

4. The cancel() method deletes all process' events from the calendar. If the process is
passive, it will not be woken up anymore unless activated again by another process. A
process can invoke this method on itself as well as on any other process.

A newly created process is automatically inserted into a simulation object's context which
guarantees that the process will use simulation's shared lock for process switching -- it
stores a reference to the lock upon its creation and synchronizes some pieces of code
where switching takes place (passivate(), hold()) with this lock.

2.3 The JSimHead and JSimLink Classes

The JSimHead class is an equivalent of Simula's HEAD. It represents a head of a queue
where objects of various types can be inserted. However, the class does not provide any
methods for insertion or removal of data elements. Instead, the data to be inserted into a
queue must be wrapped by an instance of JSimLink, JSim's equivalent of LINK, which
is able to insert/remove itself into/from a queue. In fact, a JSimHead object just
encapsulates a double-ended bidirectional queue of JSimLink elements, adding some
useful functions:
1. The empty() method returns a logical value saying whether the queue is empty or

not.
2. The cardinal() method returns the number of elements currently present in the

queue.

3. The first() method returns the element being at the beginning of the queue. It
returns a reference to JSimLink; therefore, the user must use other functions to get
the real data.

4. The last() method returns the element being at the end of the queue. Again, not the
real data but a reference to JSimLink is returned.

5. The clear() method removes all elements from the queue and sets queue statistics
to their initial values. After being removed from the queue, the elements may be
disposed automatically by JVM if there exists no other link to them.

The JSimHead class provides two statistics functions: getLw(), returning the average
length of the queue, and getTw(), returning the average waiting time that elements have
spent in the queue.

An instance of the JSimLink class can be inserted at most into one queue, using one of
the following methods: into(), follow(), and precede(). The first one takes a
queue as its argument while the others use another element, already present in a queue, to
insert the caller in the same queue, either before or after the argument.

3. Main Principles of Process Switching

The process switching in J-Sim is based on thread suspension and reactivation inside
synchronized blocks of code. The principles are as follows:
1. A block of code is marked as synchronized. The synchronization uses an explicit lock

which is shared by all processes and the simulation object.
2. Inside a synchronized block, the wait() method of the lock can be invoked. This

causes the currently running thread to become passive.
3. Inside another block, synchronized with the same (shared) lock, the notifyAll()

method of the lock is invoked. This causes all threads suspended using wait() (see
point 2) to wake up and run. As soon as a woken-up thread leaves the synchronized
block of code, another woken-up thread enters it (leaves the wait() method).

The switching takes place in the following methods:
1. In the JSimSimulation.step() method when the simulation object has selected

a process to run in this step -- the simulation object must passivate the thread invoking
step() and acivate the process.

2. In the JSimProcess.getReady() method when a newly created and started
process must passivate itself not to execute commands that follow in the run(),
respectively life(), method -- these commands can be executed only upon a
request from the simulation object. No thread has to be activated here.

3. In the JSimProcess.passivate() method when the currently running process
(the only running process) must passivate itself and activate the thread which invoked
the step() method of the simulation object.

4. In the JSimProcess.hold() method. There is no difference between
passivate() and hold(), concerning the switching.

Within the simulation model, every process is given an unique identification number --
myNumber. When the simulation object is asked to execute one simulation step, it stores
the number of the selected process (process having an event at the beginning of the
simulation's calendar) to the variable runningProcessNum, holding the identification
number of the currently running process. Then, it send a signal to all processes which are
passivated. When they are woken up, they compare the value of runningProcessNum
with their identification number (myNumber) and either passivate themselves again or
leave the synchronized block of code and continue running. Only one of them chooses the
second possibility, the process intended to run.

When it decides to terminate the current step and the passivate() or hold() method
is invoked, all threads, including the thread which invoked the step() method of the
simulation object, are woken up by a signal from the currently running process. Before
doing it, the process must set runningProcessNum to NOBODY which means that no
process is intended to run. Therefore, all of them are passivated, only the thread invoking
the step() method continues running and exits the method. The thread invoking the
step() method is usually the main thread, i.e. the thread created automatically by JVM
when it is given the name of a class having a method called main().

When a simulation step is being executed, just one process is active -- the process selected
by the simulation object. Outside any simulation step, all user processes are passivated in
their hold() or passivate() methods.

4. Killing Processes

At the end of every simulation program, there is usually a number of processes passivated
in their hold() and passivate() methods. To prevent the program from "hanging
up" after the main thread finishes, they must be all destroyed before the end of the
main() method is reached. A way how to do it is offered by the JSimSimulation
class: the shutdown() method.

Every thread can be interrupted by another thread using its interrupt() method.
When the thread to be interrupted is passivated in wait() and the interrupt signal is
received, an instance of InterruptedException is thrown out from the method. In
J-Sim, this exception is caught immediately and instead of it, a new exception, instance of
JSimProcessDeath, is thrown out. JSimProcessDeath is a subclass of
RuntimeException and thus need not be caught explicitely.

After being thrown out, it is propagated to an upper level, which is usually the life()
method. Being not caught here (the life() method is programmed by the user), it
continues to the run() method where it is finally caught in an exception handler. After
that, the finish() method is called, which deregistres the process from the simulation
model in the usual way.

A little summary of JSimProcessDeath's spreading follows. It contains a list of all
possible paths through which this exception can spread:
 getReady() > exception handler in run()
 hold() > life() > exception handler in run()
 passivate() > life() > exception handler in run()

It should be noted that processes can also terminate their life by reaching the end of the
life() method, as it is usual for finite processes. Then, no exception is thrown out, after
leaving the life() method, the finish() method is called, deregistering the process
from the simulation model, and the process dies right after that by reaching the end of
run().

5. An Example of Use

A little piece of code will be shown in this chapter to show the ease of using J-Sim. First,
a new class (subclass of JSimProcess) is created, named PeriodicProcess.
Instances of this class periodically print out a character which is passed to their
constructor as parameter. Note that only the constructor and the life() method are
rewritten, nothing more. Parts of their life are divided by the hold() method whose
parameter is a randomly generated number having exponential distribution. The class
must be put in a file called PeriodicProcess.java and then compiled.

import cz.zcu.fav.kiv.jsim.*;
public class PeriodicProcess extends JSimProcess
{
 private char charToPrint;
 public PeriodicProcess(JSimSimulation simulation, char c, String name) throws
JSimSimulationAlreadyTerminatedException, JSimInvalidParametersException,
JSimTooManyProcessesException
 {
 super(name, simulation);
 charToPrint = c;
 } // constructor

 protected void life()
 {
 try
 {
 double time;
 while (true)
 {
 time = myParent.getCurrentTime();
 message(getProcessName() + " at " + time + " : " + charToPrint);
 hold(JSimSystem.negExp(1.0));
 } // while
 } // try
 catch (JSimSecurityException e)
 {
 e.printStackTrace();
 e.printComment(System.err);
 }
 } // life
} // class PeriodicProcess

In the main program, two processes are created and activated. Then, the step() method
of the simulation object is invoked repeatedly until the simulation time reaches or
overpasses 10.0. The code must be placed in a text file which is named
SimpleSwitchingExample.java, compiled and then run.

import cz.zcu.fav.kiv.jsim.*;
public class SimpleSwitchingExample
{
 public static void main(String[] args)
 {
 PeriodicProcess a, b;
 JSimSimulation simulation = null;

 try
 {
 simulation = new JSimSimulation("Simple Switching Example");
 a = new PeriodicProcess(simulation, 'A', "Process A");
 b = new PeriodicProcess(simulation, 'B', "Process B");
 a.activate(0.02);
 b.activate(0.03);

 while ((simulation.getCurrentTime() < 10.0) && (simulation.step() == true))
 ;
 } // try
 catch (JSimException exc)
 {
 exc.printStackTrace();
 exc.printComment(System.err);
 }
 finally
 {
 simulation.shutdown();
 }
 } // main
} // class SimpleSwitchingExample

Conclusions

In this article, some basic facts about J-Sim have been presented, including the theoretical
background on which it is based. Being written in Java, a popular and easy-to-learn
language, J-Sim should become at least as spread as C-Sim, its predecessor. Since J-Sim
and C-Sim are tightly related to each other, a possible migration to J-Sim should be a
matter of hours. In the distribution package, source texts, compiled classes, detailed API
documentation and many ready-to-run examples are included. Today, J-Sim is a fully
functional library which has been tested on the examples included in the package.
J-Sim is available for free at http://home.zcu.cz/~jkacer/jsim.

References

[1] ��������	: J-Sim -- A Java-based Tool for Discrete Simulations, Diploma Thesis,

May 2001, University of West Bohemia, Pilsen, Czech Republic
[2] http://home.zcu.cz/~jkacer/jsim
[3] http://www.c-sim.zcu.cz

Acknowledgement

This research was supported by the grant of the Czech Grant Agency "Developing SW
Components for Distributed Environments", no. 201/99/0244.

