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ABSTRACT 

This paper deals with possible algorithms, which may ensure numerical stability of Newton-Raphson 
method in load flow analysis. Although the Newton-Raphson method is frequently used, it may have 
difficulties to obtain convergence. Oscillations, divergence or even convergence to unfeasible 
solutions may appear using traditional procedures. Therefore, various techniques (such as update 
truncation, factor relaxation, etc.) can be broadly employed to increase the reliability of the results 
obtained. The aim of this paper is to find the best available stability algorithm providing solutions 
with minimum number of iterations and lowest CPU time requirements. 
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1. INTRODUCTION 

For decades, traditional numerical methods have been used for load flow analysis of electric 
power systems. From the historical point of view, first numerical algorithm employed was the Gauss-
Seidel method successfully solving the system of nonlinear algebraic equations with complex 
coefficients due to fair convergence properties. Although the CPU time per iteration was relatively 
small, strong dependency of network size on total number of iterations excluded the Gauss-Seidel 
method from simulations of larger power systems. 

Currently, the Newton-Raphson method is frequently used especially for large-scale strongly 
nonlinear problems for its quadratic rate of convergence. Although the CPU time per iteration is 
higher than for the Gauss-Seidel method, solutions can be mostly obtained in 2 to 7 iterations with 
intended accuracy and without the reference to the problem size. Unfortunately, this behaviour can be 
expected only when initial values are chosen near the physical solution. Otherwise, because of 
nonlinear nature of a problem, divergence or convergence to non-physical solutions can often appear. 
Beside high sensitivity on starting values, update instability also belongs to its most severe 
weaknesses. 

In literature (e.g. in [4], [5] and [6]), the Newton-Raphson method is well described and fully 
understood. However, not enough space is given to handle the numerical instability. Several different 
approaches can be applied to improve its numerical behaviour. Possible algorithms to find suboptimal 
value of a relaxation factor for state variable update are introduced in [1] and [2] by Heckmann et al. 
and by Koh, Ryu and Fujiwara, respectively. Tate in [9] calls attention to fractal behaviour of the load 
flow analysis using the Newton-Raphson method and gives detailed advices, such as r/x ratio 
modifications, state update truncations and one-shot fast-decoupled method, to avoid possible 
divergence or convergence to non-physical load flow solutions. Several different procedures using 
second Taylor series expansion, Jacobian adjustments and Levenberg-Marquardt method are 
introduced in [3]. Schmidt in [8] offers several changes in input data files of tested power systems, 
which may lead to better numerical stability and convergence. 
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This paper is organized as follows. Section 2 describes negative numerical properties of the 
Newton-Raphson algorithm in more detailed way. In Section 3, each possible stability approach is 
fully introduced. Testing of stability algorithms is provided in Section 4 comparing the flexibility of 
individual procedures, reliability of obtained results, total number of iterations, total CPU time, level 
of robustness and complexity to the original Newton-Raphson code. In Section 5, some concluding 
remarks close the paper with the best-evaluated stability algorithm obtained.   

2. NUMERICAL INSTABILITY OF THE NEWTON-RAPHSON METHOD 

Convergence problems can appear when solving the networks, which are kept “on the edge” of 
their operating conditions. These networks, referred to as ill-conditioned power systems, are very 
sensitive to small changes of state variables (V,θ). Non-convergent behaviour is strongly connected to 
the reactive power problem of examined power systems. Excessively high loadings, moving final 
voltage values far away from the initial guess, can cause numerical divergence. Often used PQ loads, 
i.e. constant voltage-independent loads, have only approximate values, which are higher than real 
demands in the system. When reaching critical loading values, the network is close to the voltage 
collapse and cannot be solved due to singularity of the Jacobian matrix.  

Sparse network topology (e.g. radial systems) and small number of interconnections between 
individual areas of the system can also cause rather poor convergence due to insufficient reactive 
power distribution in the network. Too narrowed operation limits, such as var constraints for PV buses 
and ranges of tap-changing transformers, along with incorrectly chosen slack bus, negative line 
reactances (i.e. series capacitors) and long lines are the most common reasons of the numerical 
instability. Especially, lightly loaded long lines may consume significant volume of transmitted 
reactive power.   

To avoid these problems, it is recommended to primarily switch PQ-loads to Z-loads, replace PV-
generators by PQ-generators (with relaxed var limits), disconnect long lines, add additional shunt 
compensators, release tap ratio limits of LTC transformers, change the slack bus position and divide 
the network into smaller areas which can be solved separately. 

In the industry, several modifications of the network topology are performed during the day. Due 
to above mentioned factors, the Newton-Raphson method may not be able to perform the load flow 
analysis of such networks previously successfully solved. Therefore, robust stability algorithms are 
essential for simulations of majority of load flow cases by the Newton-Raphson method.  

3. STABILITY ALGORITHMS FOR NEWTON-RAPHSON METHOD 

3.1. Start Point Estimation Methods 
High sensitivity of the Newton-Raphson method on starting values has been already introduced in 

Section 2. In load flow analysis, usually chosen voltage start (flat) point is 1.0 for all PQ buses with 
zero angles ensuring the numerical stability for majority of well-conditioned load flow cases. 

Probably the most powerful approaches for better estimations of initial values are One-Shot Fast-
Decoupled and One-Shot Gauss-Seidel methods. These procedures, often located in pre-processing 
part of the Newton-Raphson method, improve the start points to better values which may be closer to 
the final solution. Unfortunately due to their linear simplifications, networks with high R/X ratios can 
significantly influence the convergence. Possible approach lies in the use of special technique 
presented in [9] to slightly amend high R/X rates to avoid divergence. Currently, the One-Iteration 
Fast-Decoupled algorithm is also used in commercial software package PowerWorld Simulator [7].  

3.2. State Update Methods 

Serious difficulties may also appear when updating state variables V and θ in the Newton-
Raphson code. Therefore, the following approaches can be broadly used to avoid non-convergent 
scenarios:   

I. Power mismatch minimization using relaxation factor α 
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This method, similarly as in [1] and [2], offers better values of α for updating voltage magnitudes 
and angles (Eqn. 1). In some cases, usually used unity value of α may either increase the number of 
iterations for the convergence or even cause divergence behaviour.  
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To find optimal factor value, mean mismatches (Eqn. 2) from actual (α = 1) and previous (α = 0) 

iteration have to be compared. 
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Quadratic relation between mismatches M and relaxation factors α is employed to find optimal 

value of relaxation factor. When M1 is smaller than a half of M0, relaxation factor value is unity. 
Otherwise, new α is calculated and used for the updating process. 

Possible convergence improvements can be achieved for majority of networks. In ill-conditioned 
load flow cases, value of α can be pushed close to zero producing only an approximate solution, which 
may be far from the physical one. Nevertheless, these solutions can be also applied as new start values 
for following simulations of power systems. 

 
II. Jacobian modifications 
In order to reduce nonlinear dependence of the Jacobian, the rows related to reactive power 

mismatches can be divided by particular bus voltage magnitudes. This approach, recommended by [5] 
and [9], is broadly applied in professional load flow programs.   

Another approach, presented in [3], includes also the second order Taylor series expansion of 
objective function F(x) for numerically more reliable correction vectors Δθ and ΔV. Unfortunately, 
updating of Hessian matrix is relatively time demanding, especially with no sparsity techniques 
employed.  

 
III. State update truncation approaches  
Possible technique to avoid convergence problems is to set upper limits for correction vector 

values. It is obvious, that if the corrections are too great, convergence to non-physical solution or even 
divergence can occur. Probably, when using continuous approach limiting correction vectors 
according to their actual values, as suggested in [9], better numerical performance can be observed. 
Suggested procedure applies state update truncation function (defined by Eqn. 3) to obtain new 
(truncated) correction vectors. Relation between computed Δx and truncated ΔxT values is as follows. 
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Due to my personal experience, values 0.2 and 0.3 have been selected for correction vectors ΔV 

and Δθ in the testing part of this paper, respectively. 
 
 
 

4. NUMERICAL RESULTS 
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Following stability algorithms have been investigated and compared to the original Newton-
Raphson code (marked as No. 1). No. 2 contains the truncation algorithm with modified DXT limit 
values. One-Shot Fast-Decoupled procedure with V updates only is included in No. 3. One-Shot Fast-
Decoupled and One-Shot Gauss-Seidel techniques (V updates only) combined with the truncation 
method are implemented in No. 4 and No. 5, respectively. Power mismatch minimization approach 
with α relaxation factors is realized in No. 6.    

For evaluation of presented stability algorithms, following networks with convergence difficulties 
have been prepared (see Tab. 1). For transparency reasons, they are labelled with capital letters A – F.  

 
Table 1 – Overview of analyzed test power systems 

Networks Description 
A Reduced Mato Grosso System (11-bus) 
B Simplified Czech Transmission System (56-bus) 
C Simplified 14-Gen SE Australian System (59-bus)  
D South England Power System (61-bus) 
E Power System of Iowa (145-bus) 
F Simplified Scottish System (629-bus)  

 
Main emphasis of the evaluation process is placed on degree of numerical stability obtained, 

reduction of total number of iterations, CPU time minimization and computational burden of 
individual stability techniques. For each load flow case and numerical approach applied, total number 
of iterations and total CPU time are presented in Tab. 2 and Tab. 3, respectively.  

  
Table 2 – Total number of iterations for individual load flow cases 
    Examined stability algorithms 

Networks No. 1. No. 2 No. 3 No. 4 No. 5 No. 6 
A      5* 6 5 7 8   7* 
B  11 6 5 5 5 6 
C     50** 30* 18* 9 6 8 
D      50**   50** 5 5 5 5 
E      50** 8   50** 8 8      10 
F      8* 7 4 4 7      10 

* convergence to non-physical solutions ** divergence 
 

Table 3 – Total CPU time per iteration [in ms] 
    Examined stability algorithms 
Networks No. 1. No. 4 No. 5 No. 6 

A 14.6 13.4 11.7 19.4 
B 71.5 89.5 86.4 95.4 
C 73.2 84.5 90.4 102.9 
D 75.1 101.1 98.9 118.7 
E 425.2 480.5 472.6 592.2 
F 9791.6 11653.6 10114.6 12753.1 

Note: No sparsity techniques applied. 
 

It can be seen from results above, that the most reliable stability algorithms are procedures No. 4 
and 5. Subsequent testings of various 42 real test power systems have been accomplished preferring 
approach No. 4 for smallest number of iterations needed. Algorithm No. 6 has been evaluated as 
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relatively reliable. Unfortunately, in some cases it can converge to non-physical solutions and increase 
total number of iterations.  

The lowest CPU requirements have been observed in approach No. 5 (+11.8%) when compared to 
approaches No. 4 and No. 6 with increase of 16.5% and 39.0%, respectively.   

5. CONCLUSIONS 
In this paper, introductory analysis of different stability algorithms for Newton-Raphson method 

has been performed. Finally, the One-Shot Fast-Decoupled and One-Shot Gauss-Seidel approaches 
with V updates only in combination with the truncation algorithm have been found the most reliable in 
terms of convergence to physical solutions, total number of iterations, CPU time and modification 
level of the original Newton-Raphson code. 

However, the R/X modifications and Jacobian adjustments (e.g. Hessian inclusion) have not been 
considered. Therefore, future research of this problem is intended to find more reliable techniques, 
which would show better convergence properties also for ill-conditioned load flow cases. 
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