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Abstract Using the analytical method, based on Laplace’s and Helmholtz’s equations for the electromagnetic field, the 

distribution of the magnetic field around flat high-current gas-isolated three-phase enclosed busducts is determined, with regard to 

skin and proximity effects.    
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I. INTRODUCTION 

Each single-phase unit of the flat high-current gas-

isolated busduct (GIL), shown in Fig. 1, consists of a 

grounded aluminum enclosure tube containing a 

concentric tubular aluminum alloy conductor arranged in 

a coaxial configuration [1].  
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Fig. 1. Flat three-phase high current busduct 

 

The nominal current values in GILs are high meaning 

that a precise knowledge of magnetic field values outside 

the aluminium enclosing tubes is necessary due to EMC 

considerations.  

There are several papers dealing with the numerical 

solution of magnetic field in GILs [2], [3]. In this paper 

analytic formulae are proposed. 
  

II. MAGNETIC FIELD IN A SYSTEM OF TWO PARALLEL 

TUBULAR CONDUCTORS 
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Fig. 2. Tubular conductor in non-uniform magnetic field of current 
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In the external area of the 1
st 

conductor (Fig. 2) the 

resultant magnetic field 
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where 
w

H  is the harmonic electromagnetic field forced 

by the current 
2

I  and 
rr

H  is the reverse reaction 

magnetic field due to eddy currents induced in the 1
st 

conductor by the same current. 

The electric field strength  accompanying the magnetic 

field ),( Θr
rr

H  fulfills the scalar Laplace’s equation 
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In the 1
st
 conductor ( 43 RrR ≤≤ ) eddy current density 

fulfills the scalar Helmholtz’s equation 
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where Γ  is the complex propagation constant of the 1
st
  

conductor. Inside the considered conductor, i.e. for 

30 Rr ≤≤ , the electric field ),(
int

ΘrE  has one component 

fulfilling the scalar Laplace’s equation the kind of (2). 

After solving the above set of equations with 

appropriate boundary conditions, we have [4] the 

magnetic field outside the 1
st 

conductor as follows 
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where its components are  
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The functions cns  and  cnd  are expressed by modified 

Bessel’s functions and are given in [4].  

III. MAGNETIC FIELD IN A THREE-PHASE FLAT GIL 

WITH ISOLATED ENCLOSURES 

Outside the screen L1 the total magnetic field 
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where  
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H  is given by (4). The field ),(
13

Θr
ext

H  is 

given by (4) after replacing d in (4) with 2d and 
2

I  with 

3I . 



In the same way we determine the magnetic field 

outside the phase L2 and L3 – Fig. 3. The phase currents 

are assumed to be symmetrical. 
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Fig. 3. Distribution of the magnetic flux density outside three-phase flat 

GIL ELPE-36/15 with isolated enclosures; R4 = 0.645 m; 
a – r = R4; b -  r = R4+0.1; c – r = R4+0.5; IN =15 kA 

IV. MAGNETIC FIELD IN A THREE-PHASE FLAT GIL 

WITH BONDED ENCLOSURES 

In order to reduce considerably the magnetic field 

outside the GIL its enclosures are bonded with each other. 

In this case induced reverse enclosure currents appear. 

These current flowing through enclosures have almost the 

same values as the corresponding currents in the phase 

conductors but generally they are in the revers of the 

original phase currents. The negative superposition of 

phase current and induced reverse current in the enclosure 

results in a small magnetic field. The reverse currents are 

calculated by solving equivalent circuit consisting of self 

impedances of phase conductors and enclosures as well as 

mutual impedances between them [5].  

In the case of the GIL ELPE-36/1, 4/ Rd=λ ,  

43 / RR=β , 2/4 ωµγα  R=  and with the phase currents 
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3
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after determing all impedances, we calculated the reverse 

enclsure currents as follows: [ ]0

1
174.67 j-Exp16873 =

e
I , 

[ ]0

2
62.31 jExp19038 =

e
I  and [ ]0

3
62.52 j-Exp17237 =

e
I . 

In this case the formula (4) is used replacing in it the 

current 
2

I  with the sum 
2

I +
2e

I and then the magnetic 

field is shown in Fig.4. 
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Fig. 4. Distribution of the magnetic flux density outside three-phase flat 

GIL ELPE-36/15 with bonded enclosures; R4 = 0.645 m; 

a – r = R4; b -  r = R4+0.1; c – r = R4+0.5; IN =15 kA 

V. CONCLUSION 

Taking into account the so-called reverse reaction of 

eddy current induced in enclosures of GIL allows 

(together with application of the Laplace and Helmholtz 

equations) to calculate the magnetic field around it in the 

form of analytical formulas expressed by Bessel functions. 

In this case they refer to tubular enclosures with any 

electrical and geometrical parameters, including the 

thickness of their walls. 
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