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Abstract: The paper presents an attempt to implement the classification method for linear model of faults in alternator 

diagnostic. Method basis on the signal feature extractions, with the use of frequency methods, with reduction of the variables basis 
on Principal Component Analysis (PCA) and linear discrimination analysis (LDA). The consideration has been carried out on the 
grounds of the faults of a bridge-rectifier. Comparison with other classification methods was presented. 
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INTRODUCTION 

The topic of the alternator diagnostics is a subject of 
many books and publications devoted to the automotive 
industry. The method most common in practice is a so-
called “oscilloscope method” that consists in comparing 
the sample patterns to the ones obtained for the 
considered alternator.  

The present work presents the method of 
classification of the defects of a motor-car alternator, 
based on the analysis of a reduced dataset in the 
frequency domain, with the use of the method of multi-
dimensional data analysis.  

The use of the frequency analysis for diagnostic 
purposes is described in [1]. The items [2,3] indicate the 
meaning of the analysis in the sphere of alternator 
diagnostics, although usefulness of the method was 
noticed already in 1979 [4]. At that time a diode defect 
was detected with the help of a surveying filter by 
appearance of a definite frequency component.   

1 THE DEFECTS 

While developing the classification method it was 
proposed to join the approach to the diagnostic task 
performed in the manner characteristic for a typical 
electric machine, with the approach appropriate for the 
electric equipment of a vehicle. Consideration of the 
percent share of particular defects of an electric machine 
(Fig. 1a) and alternator (Fig. 1b) [5] indicates that the 
most frequent defects are related to bearings. Another 
common alternator defect concern the bridge-rectifier. 

The present paper verifies the proposed method with 
regard to the defect of the bridge-rectifier. 
 

 
 
 
 
 
 
 

      a)              b) 

Fig.1:  The defects of: a) electric machines, b) 
alternators 

2 THE FFT-PCA-LDA CLASSIFIER  

Let us consider a set of N samples in n-dimensional 
space and assume that each of the pictures belongs to one 
of K classes {C1, C2, …, CK}. Let us assume too that in 
the class Cj, ∑ ∈=

jCxjj Nu )/1( x is an average 

picture of the Cj class, ∑ ∑= ∈=
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being an average picture of all the samples. Then, the 
within-class scatter matrix is defined as: 
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The between-class scatter matrix is defined as: 
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The total-class scatter matrix is defined as: 
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In case the Sw matrix is not singular, the LDA attempts to 
find a Wopt=(w1, w2,…., wL) projection that meets the 
Fisher’s criterion: 

(4) 
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where: w1, w2, …, wL are the eigenvectors of Sw
-1Sb 

corresponding to L (≤K-1) largest eigenvalues λ1, λ2,…, 
λL. 

In case the matrix Sw is singular and its inverse 
matrix does not exist, the PCA method may be used in 
order to project the vector of variables on the space of 
smaller size, thus avoiding the singularity. 

Analysis of principal components assists searching a 
large number of the data that are correlated each with 
other, thus reducing dimension of the variables and 
allowing for more efficient interpretation of the 
measurement results. This, in turn, enables developing the 
models of damage location directly based on the 
measurement data, making no allowance for the object 
inputs and outputs [6,7]. Once the vector of x random 
variables p is given, the aim of the PCA analysis consists 
in rearranging the correlated to uncorrelated variables, 
with the use of covariance matrices or correlation 
matrices. The first stage of the procedure consists in 
finding a linear function x'

1α from the x elements of 

maximal variation, where 1α is a vector of p constants 

p11211 ,...,, ααα , and a‘ is for such a transposition that:  
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Then a linear function x'
2α of maximal variance, 

uncorrelated with x'
1α is sought, up to the 

xk
'α element [8]. 
Proposed method was realized in 2 stages: training 

model and inference. In described method complies states 
generating base on real measurements. The classifier is 
referred to as linear taking into account the methods of 
describing the relationships between the variables, 
making use of linear functions (PCA and LDA). The 
trend of defects found in result of the analysis based on 
the covariance matrix is of linear   character too.  

Analyses of the system and methodological solutions 
give evidence that the codes inform only of several defect 
types (Table 1). Taking into account that the systems of 
on-board diagnostics are not provided in proper hardware 
and software solutions that would allow explicit detection 
of the alternator defect type, an attempt was made aimed 
at finding a new approach to alternator diagnostics to be 
used for purposes of the on-board vehicle diagnostics. Its 
main assumptions are as follows:  
− the use of signal frequency analysis; 
− diagnosis based on the voltage or current signal of 

alternator; 

− construction of a statistical model with the use of 
multi-dimensional data analysis in order to reduce 
the dimensions of the variables and to recognize the 
fault patterns; 

− minimization of the number of signal acquisition 
points (so as to avoid invasion into the alternator 
structure). 
 

Code Defect description System 
1117 The load signal coming 

from the DF alternator 
terminal 

VAG 

1209 Rotational velocity signal – 
alternator terminal 

VAG 

Tab. 1: Codes of alternator defects 

Another important element consists in distinguishing 
various kinds of bridge-rectifier defects based on the 
input signals – current or voltage. Formerly such a 
distinction was impossible in the oscilloscope method 
(Fig. 2). For this purpose voltage of the stator zero-point 
had to be taken into account necessarily. 

 

 
 

Fig.2:  Time patterns in case of the defects: A(+), 
A(-),B(+),B(-), the defect in one diode 

 

Similarly, the sole FFT analysis used in order to 
make comparisons, gives no expected results (Fig. 3). 

 



 

 
Fig.3:  The FFT analysis of the defects: A(+), 

A(-),B(+),B(-) the defect in one diode 

3 MEASUREMENTS AND VERIFICATION RESULTS 

In order to verify the classifier the tests have been 
carried out, by simulation of the bridge-rectifier defect, 
for one and two diodes. The defect patterns for 4000 
samples have been collected from a time-window, and the 
FFT analysis was performed on 250 points. The samples 
were collected for 800 and 1000 r.p.m. 

The defects were divided into the sets, with learning 
patterns selected for:  
− the defects in particular phases; 
− the defects of positive and negative diodes; 
− the defects for particular phases and polarity. 

 
3.1 Defect discrimination of one diode at the 

polarity level, for the velocity of 800 r.p.m. 
Results of the defect analysis of the alternator bridge-

rectifier taking into account only the polarity for the 
velocity of 800 r.p.m. are shown below. Fig. 4 presents 
projection of the main components on 3D space. It may 
be noticed that particular samples are arranged along the 
lines. 

 
Wykres skategoryzowany 3W (Arkusz w Skoroszyt2.stw 4v*70c)

Zmn4: OK
Zmn4: Fault_Minus
Zmn4: Fault_Plus

  

Fig.4:  Categorized 3D plot of main components 

 

Status Percent 
OK 100,00 

Fault_Minus 66,67 
Fault_Plus 90,00 

Total 81,43 
Tab. 2: Percent classification quality  

For the case of the considered sample the 
classification gave 81.43%. Table 2 shows that only the 
faultless samples have been properly classified. The 
samples of negative polarity gave the smallest rate of 
correct classifications. 

 
3.2 Defect discrimination of one diode at the 

phase level, for the velocity of 800 r.p.m. 
Results of classification of the samples collected for 

the velocity of 800 r.p.m. are shown below. They were 
divided into faultless and faulty samples, the last ones 
with discriminated phases where the defect occurred. 

 
Wykres skategoryzowany 3W (Arkusz5 4v*70c)

Zmn4: OK
Zmn4: Fault_A
Zmn4: Fault_B
Zmn4: Fault_C

 

Fig.5: Categorized 3D plot of main components 
 

Status Percent 
OK 100,00 

Fault_A 90,00 
Fault_B 50,00 
Fault_C 90,00 

Total 80,00 
Tab. 3:  Percent classification quality 

Similarly like for the previous analysis, correct 
results are obtained only in case of the faultless samples. 

 

3.3 Defect discrimination of one diode at the 
polarity and phase levels, for the velocity of 
800 r.p.m. 
 

Another analysis trial was related to the samples 
referring to the bridge defects both for the phases and 



 

polarity. They were recorded for the velocity of 800 
r.p.m. 

 
Wykres skategoryzowany 3W (Arkusz9 4v*70c)

Zmn4: OK
Zmn4: Fault_AMinus
Zmn4: Fault_APlus
Zmn4: Fault_BMinus
Zmn4: Fault_BPlus
Zmn4: Fault_CMinus
Zmn4: Fault_CPlus

 

Fig.6: Categorized 3D plot of main components 

 

Status Percent 
OK 100,00 

Fault_AMinus 100,00 
Fault_APlus 70,00 

Fault_BMinus 100,00 
Fault_BPlus 90,00 

Fault_CMinus 100,00 
Fault_CPlus 100,00 

Total 94,28 
Tab. 4: Percent classification quality 

Similarly like for previous analyses, the faultless 
samples have been correctly classified. On the other 
hand, in case of the A and B phases and positive polarity 
the classification gave 70 and 90 percent, respectively. 
Nevertheless, the final result amounting to 94.28 of all 
the samples was satisfying. 

 

3.4 Defect discrimination of two diodes for 
the same phase, for the velocity of 800 
r.p.m. 

 
Results of the samples collected for the velocity of 

800 r.p.m. with simulated defect of 2 diodes are shown 
below. 

 

Wykres skategoryzowany 3W (Arkusz12 4v*40c)

Zmn4: OK
Zmn4: Fault_A
Zmn4: Fault_B
Zmn4: Fault_C

  

Fig.7: Categorized 3D plot of main components 

 

Status Percent 
OK 100,00 

Fault_A 100,00 
Fault_B 100,00 
Fault_C 100,00 
Total 100,00 

Tab. 5: Percent classification quality 

All the samples have been correctly classified in 
spite of the fact that projections of the main components 
in the samples A and B on the 3D plane (Fig. 7) are 
located very near each to other. 

 

3.5 Defect discrimination of one diode at the 
polarity level, for the velocity of 1000 r.p.m. 
In order to check operation of the classifier for 

various velocities of rotation the analysis for the case of 
1000 r.p.m. has been performed. 

 
Wykres skategoryzowany 3W (Arkusz2 4v*70c)

Zmn4: OK
Zmn4: Fault_Minus
Zmn4: Fault_Plus

  

Fig.8: Categorized 3D plot of main components 
 



 

Status Percent 
OK 100,00 

Fault_Minus 66,67 
Fault_Plus 66,67 

Total 71,43 
Tab. 6: Percent classification quality 

The classifier operates similarly like for 800 r.p.m. 
Only in case of positive polarity the result was worse. 

 
3.6 Defect discrimination of one diode at the 

phase level, for the velocity of 1000 r.p.m. 
 

Wykres skategoryzowany 3W (Arkusz5 4v*70c)

Zmn4: OK
Zmn4: Fault_A
Zmn4: Fault_B
Zmn4: Fault_C

 

Fig.9: Categorized 3D plot of main components 
 

Status Percent 
OK 100,00 

Fault_A 70,00 
Fault_B 30,00 
Fault_C 55,00 

Total 58,57 
Tab. 7: Percent classification quality 

The result is worse than for 800 r.p.m. (80 percent of 
correctly classified ones). Only the faultless samples have 
been correctly classified. 

 
3.7 Defect discrimination of one diode at the 

polarity and phase levels, for the velocity of 
1000 r.p.m. 

Wykres skategoryzowany 3W (Arkusz8 4v*70c)

Zmn4: OK
Zmn4: Fault_AMinus
Zmn4: Fault_APlus
Zmn4: Fault_BMinus
Zmn4: Fault_BPlus
Zmn4: Fault_CMinus
Zmn4: Fault_CPlus

 

Fig.10: Categorized 3D plot of main components 

Status Percent 
OK 100,00 

Fault_AMinus 100,00 
Fault_APlus 100,00 

Fault_BMinus 100,00 
Fault_BPlus 100,00 

Fault_CMinus 100,00 
Fault_CPlus 100,00 

Total 100,00 
Tab. 8: Percent classification quality 

The result is equal to the one obtained for 800 r.p.m. 
All the samples have been correctly distinguished. 

 

3.8 Defect discrimination of two diodes for 
the same phase, for the velocity of 1000 
r.p.m. 

 

Wykres skategoryzowany 3W (Arkusz12 4v*40c)

Zmn4: OK
Zmn4: Fault_AMinusPlus
Zmn4: Fault_BMinusPlus
Zmn4: Fault_CMinusPlus

  

Fig.11: Categorized 3D plot of main components 

 

 

 
 



 

Status Percent 
OK 100,00 

Fault_A 100,00 
Fault_B 100,00 
Fault_C 100,00 

Total 100,00 
Tab. 9: Percent classification quality 

Also for the case of the data dividing the samples 
into faultless and faulty ones correct results have been 
obtained in all the groups. 

4 CLASSIFICATION RESULTS OBTAINED WITH OTHER 
METHODS 

4.1 Artificial neural networks 
In order to compare the proposed classifier with 

other methods the classifications have been made with 
the method of artificial neural networks for several net 
types: a linear, PNN, RBN, three-layered perceptron, and 
four-layered perceptron ones. The trials have been carried 
out for 20 network types in various configurations and for 
the cases of the sets with non-reduced and reduced 
variables. The tables contain the results sorted starting 
from the networks characterized with the best results.  

For the non-reduced set of 250 variables, the case of 
a defect of one diode at the polarity and phase levels, the 
best result was obtained for the linear network 248:248-
7:1. The learning quality: 1.000000; validation quality 
0.705882, testing quality 0.823529; the learning error: 
0.000000; validation error 2.254002, testing error 
2.254002. Diagram of the best network is shown in Fig. 
20. 

 
Typ : Liniowa 248:248-7:1 ,  Ind. = 1

Jakość ucz. = 1,000000 ,  Jakość wal. = 0,705882 ,  Jakość test. = 0,823529

  

Fig.12: Diagram of the linear network 

For the case of a reduced set, having 3 variables (the 
main components) the case of a defect of one diode at the 
polarity and phase levels, the best result was obtained for 
the MLP network 3:3-9-9-7:1. The learning quality: 
1.000000; validation quality 0.941176, testing quality 
1.000000; the learning error: 0.042153; validation error 
2.763365, testing error 0.048920. Diagram of the best 
network is shown in Fig. 21. 

Typ : MLP 3:3-9-9-7:1 ,  Ind. = 1
Jakość ucz. = 1,000000 ,  Jakość wal. = 0,941176 ,  Jakość test. = 1,000000

  
FIG.13: Diagram of the MLP network 

 
For the case of a reduced set, having 3 variables (the 

main components) the case of a defect of one diode at the 
phase level, the best result was obtained for the RFB 
network 3:3-7-4:1. The learning quality: 0.888889; 
validation quality 0.823529, testing quality 0. 823529; the 
learning error: 0.232214; validation error 2.030926, 
testing error 5.351756. Diagram of the best network is 
shown in Fig. 22. 

Typ : RBF 3:3-7-4:1 ,  Ind. = 1
Jakość ucz. = 0,888889 ,  Jakość wal. = 0,823529 ,  Jakość test. = 0,823529

 

Fig.14: Diagram of the RBF network 

 

4.2 Grouping with the method of k-averages  
The classification has been performed for a reduced 

set of variables – having 3 variables (the main 
components). For 70 cases particular trials were 
interconnected with method of k-averages. Missing data 
have been completed with the cases. Seven 
concentrations have been selected, the solution was found 
upon 2 iterations. The results are presented in the Table. 

 
 
 
 
 
 



 

Concentration 
number 

Number of the 
cases 

1 20 
2 3 
3 10 
4 2 
5 20 
6 8 
7 7 

Tab. 10: Results of the assignment 

5 SUMMARY 

At present most of the diagnostic systems, not only 
of vehicle type, are based on artificial neural networks 
that very reliably cope with the regression and 
classification problems. The paper presents the FFT-
PCA-LDA classifier that has shown good discrimination 
ability in the case of the defects of linear trend, having 
considerably simpler tuning process. The classifier allows 
for reduction of the number of variables to 3, maintaining 
correct operation. The classifier has shown the highest 
number of erroneously classified data for generalized 
defects in groups (e.g. the defects occurring in particular 
phases). Nevertheless, in case of all the defects the data 
have been correctly assigned to proper classes. The 
results so obtained enable further analysis. The test shall 
be repeated for a complete alternator, as for purposes of 
the present tests the alternator had no voltage controller. 
The classifier should be necessarily verified for various 
values of rotational velocity and load. The work shall be 
aimed at taking into account correlation of mechanical 
and electric signals of the alternator.  
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