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Abstract: The paper has dealt with approach to electromagnetic field analysis for spherical electromechanical converters taking 
into account its magnetic anisotropy analytically. The electromagnetic field is evaluated analytically using the separation method 
proposed for the magnetic vector potential. Subsequently, electromagnetic torque and power losses are calculated analytically for an 
exemplary spherical induction motor. 
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INTRODUCTION 
The paper deals with the problem of electromagnetic field 
analysis for spherical electromechanical converter taking 
into account magnetic anisotropy in analytical way. The 
electromagnetic field is evaluated analytically with the 
help of proposed separation method for magnetic vector 
potential. Power balance and electromagnetic torque for 
electromagnetic field is presented and checked up. The 
results obtained can be used as test task for 
electromagnetic field analysis and can support design for 
electromechanical converter. 

1 MAIN EQUATIONS 
The analytical approach to electromagnetic torque 
constitutes the basis for further calculations either 
analytical or numerical. Moreover, analytical approach 
gives wide-range insight into the influence of 
electromagnetic circuit parameters on the 
electromechanical converters work. On the other hand, 
the analytical solution (that is given by one or more 
closed formulas) requires simplifications of the real 
electromechanical converter geometry, usually. The 
fewer the number of the simplifying assumptions the 
more general solution is obtained. One of the most 
commonly used analytical methods is the separation of 
variables [1], [2], [3]. The separation method proposed in 
this paper leads to the analytical solution for the 
spherically symmetric field problem considering 

magnetic anisotropy features. The aim of this 
contribution is to present an analytical solution for a 
spherical induction motor with magnetically anisotropic 
conductive rotor that could be treated as a benchmark 
task for numerical analyses.  
 

 
 
                     Fig.1: Spherical rotor - view 
 
The electromagnetic field could be evaluated analytically 
with the help of separation method for spherical co-
ordinate system [5, 11, 1 2]. The separation method 
proposed in the paper leads to the analytical solution for 
spherical symmetry problem considering magnetic 
anisotropy. For electromechanical converter with 
magnetic field dominance the magnetic flux density can 



 
be calculation by means of magnetic vector potential as 
follows  
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Let us consider an induction motor with spherical rotor 
(see Fig.1). The stator currents constitute the 
magnetomotive force ),,t(s θϕΘ , that can be expressed in 
form of complex form as follows 

( )∑ +ϕωθΘ=θϕΘ
h

hhshs )constiphtiexp()(),,t( � ,    (2) 

where shΘ  denotes the magnitude of the hth harmonic of 
stator mmf, ωh is angular speed for  hth rotating field 
harmonic, p is number of pair pole, ϕ is the longitude of 
given point. The mmf magnitudes could depend on 
colatitude θ due to the fact that the colatitudinal currents 
flow across decreasing surfaces out of equator (see 
Fig.2). The stator mmf is exerted by the stator currents 
placed on the inner surface of the stator at r=R+g (R is 
rotor outer surface radius, g denotes air-gap width, see  
Fig.2). 

 
Fig.2: Stator currents lines   

2 SOLUTION OF GOVERNING EQUATIONS 
The Eqn (2) leads to the following relation in a spherical 
co-ordinate system 
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where θϕ 1,1,1r
���

 denote the unit vectors that satisfy the 

relation θϕ =× 111r
���

. 
For an induction motor with spherical rotor [4], [5], [6] 
the magnetic field is directed so as to enable turning 
around a fixed axis i.e. z-axis. The magnetomotive force 
(mmf) exerts the magnetic field that has got components 
in “r” and “φ” only. The magnetic vector potential in a 
spherical coordinate system can be given in the form of  

         θθθθ === iAiAAA
����

,                                   (4) 
for describing magnetic flux density. 
According to Eqn (4) the magnetic flux density is as 
follows 
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      0B =θ .                                                             (6) 
Both Amper’s law  
       j)H(curl
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= ,                                                     (7) 
and the constitutive relation for an anisotropic magnetic 
medium as follows 
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lead to the following equation for colatitudinal direction, 
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where γ stands for the electric conductivity of rotor layer, 
and γ=0 for air-gap. 
 
Taking into account (5) and (9) it can be written 
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Now, a non-standard separation variable is defined in the 
form given below  
    FR)(F),r(R),,r(AA ⋅=ϕθ=θϕ= θ .               (11) 
When using complex notation for field vector 
components the time derivative can be replaced by its 
multiplication by iω (i is the imaginary unit, ω is the 
angular pulsation of field in rotor). Thus (10) takes the 
following form 
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for θ∈ (0,π) and subsequently 
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For the function F(ϕ) it is assumed that the separation 
constant equals to p2 for the first mmf space harmonic h = 
1 i.e. 
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and for mmf higher space harmonics p is replaced by ph. 
The angular field frequency ω in Eqn (13) is determined 
for each mmf harmonic at the synchronous rotatory speed  
±2πf1/ph.  
The Eqn (14) has got the general solution in the form of 
    )ipexp(D)ipexp(C)(FF ϕ−+ϕ=ϕ= .               (15) 
The Eqns (14) and (15) are adequate for rotating 
magnetic field generated by the stator mmf. The solution 
(15) for a unidirectional rotating field (constant C = 0,  



 
D = 1) leads to equation in the form of 
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with the following analytical solution for an anisotropic 
region [7] ( p. 363 Eqn B110(3), or it could be checked 
by putting in): 
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The solution in the form of (17) confirms that the 
proposed non-standard separation (11) is correct. The 
Eqn (13) for the non-conductive region (e.g. the air-gap 
γ=0, νrϕ=νϕr=0) takes the simple form of 
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where  
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and νrδ, νϕδ the mean radial and latitudinal reluctivities 
for the air-gap (they can be different form vacuum 
reluctivity [4]). The solution of (19) is as follows 
        )()( 21 rbra),r(RR θκ

δ
θκ

δ +=θ= .                   (21) 
The analytical solution for the spherical motor can be 
presented in terms of separated functions R(r,θ) and F(ϕ) 
occurred due to separation defined by Eqn (11) - see 
Table 1. The general solutions presented should be 
combined with the boundary conditions for particular 
geometry conditions.  
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Fig.1:  Solutions for differential equations for vector magnetic potential and magnetic flux density 

 
3 BOUNDARY CONDITIONS 

 
There are four conditions defined for the electromagnetic 
field vectors. They enable to calculate the four unknown 
constants aa, ba, aδ, bδ shown in Table 1. The boundary 
conditions result from physical principles [8], [9].  
a) The magnetic field strength disappears at the inner 
layer surface (r=R-a) 
    0BBH rr =ν+ν= ϕϕϕϕϕ ,                             (22) 

as a consequence of the fact that magnetic reluctivity of 
the rotor core is assumed to be zero.  
b) The continuity of the normal (radial) magnetic flux 
density (r=R) 
    rar BB =δ ,                                                      (23) 
and  
    c) the longitudinal (tangential) component of the 
magnetic field strength (r=R) 
     rara BBB ϕϕϕϕϕδϕδ ν+ν=ν .                           (24) 



 
    d) The magnetomotive force of the electromechanical 
converter stator currents leads to the following condition 
for the longitudinal (tangential) component of magnetic 
field strength at the stator surface (r=R+g) 
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derived under the assumption that the magnetic field 
strength vanishes on the outer side of the winding surface 

(stator frame iron is infinitely permeable) [10], [11], [12], 
[13].  The Table 2 presents constant values of aa, ba, aδ, bδ 
for the first space harmonic of the stator mmf. 
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Tab.2: The boundary conditions for magnetic field 

 
 

4 EXAMPLE – SPHERICAL INDUCTION MOTOR 
Exemplary, analytical calculations are provided for the 
spherical induction motor which parameters are presented 

in Table 3. The mmf space harmonics can be chosen 
arbitrary so as they can describe both one-phase and 
three-phase induction motors.  

 
Data for Value 

stator mmf harmonics 
Θ1 
Θ5 
Θ7 
Θ11 

p = 1 
250 A  (h=1) 
50  A  (h=5) 
35  A  (h=7) 

  23   A  (h=11) 
rotor radius R 0.05 m 

solid rotor (conductive) layer width  a 0.005 m 
radial reluctivity νrr = νr ν0/20 

tangential (longitudinal) reluctivity νϕϕ   = νϕ ν0/10, ν0/20, ν0/30 
solid rotor conductivity γ 5·106 S/m 

gap width g 0.001 m 
air-gap reluctivity νϕδ  = νϕr  = ν0 ν0 

angles interval of stator mmf 
longitudinal width   θ1 ÷ θ2 

 
π/4 ÷ 3π/4 

Tab.3: Spherical three-phase induction motor parameters 



 
The mmf harmonics of stator windings for three phase motor are presented in Fig.3. 
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Fig.3: MMF harmonics for one separated phase of stator windings (p=1) 
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Fig.6: Torque calculated by means of both Maxwell and co-energy methods 

 

5 ELECTROMAGNETIC TORQUE 
CALCULATIONS – MAXWELL, COENERGY 
AND LORENTZ METHODS EFERENCES 

Based on the magnetic field vector potential distribution, 
the magnetic flux density components and the 
electromagnetic torque can be evaluated analytically, 
subsequently. The Maxwell stress tensor leads to the total 
electromagnetic torque by means of the well-known 
surface integral   
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where r is the radius of the surface (over it follows the 
integration) placed in the air gap  
r ∈  [R, R+g]. Based on the magnetic field vector 

components presented in Table 1 for the air-gap region, 
the electromagnetic torque can be given as follows 
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The total torque can be also by means of the coenergy 
method ([14], [15]) as follows 
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where WC stands for magnetic coenergy of anisotropic 
rotor. For the rotor region the volume integral can be 
presented as follows    
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The both values given by Eqn (27a,b) and Eqn (28a,b) 
should be the same and describe the total torque value (no 
specific indexes). 
Exemplary, calculations for both methods: Maxwell and 
co-energy are derived for the exemplary data (Table 3) 
and are presented in Fig.4.  
The electromagnetic torque can be evaluated with the 
help of the Lorentz force density as well 
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Applying the magnetic field vector components presented 
in Table 1 for the rotor layer, the Lorentz torque can be 
rewritten in the form of  
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The torques evaluated with the help of Maxwell, co-
energy and Lorentz method should be equal 
      eLe TT = ,                                                         (30) 
for either magnetically isotropic or normally anisotropic 
(νϕr = νrϕ) rotor. As an example, torque-speed curves for 
both torques calculations are presented in Fig.5 (SI units). 
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Fig.5: Torque-speed curves for first mmf space harmonic only - solid line, 

and for all considered mmf harmonics - dash-doted line,  (SI units) 
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Fig.6: Power losses in conductive layer vs. rotor speed (SI units) 
for first mmf harmonic (solid line); total losses (dash-dotted line)   



 

 
 

6 POWER LOSSES CALCULATIONS 
 
The power losses constitute an important parameter from 
the thermal point of view [16], [17], [18], [19]. Power 
losses caused by the induced currents are 
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They are shown in Fig. 8 (SI units) (h is order number of 
the hth harmonic of stator mmf). The electromagnetic 
torque calculated with the help of the Lorentz formula is 
equal to 
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where the electromagnetic torque previously calculated 
values appear. The power losses for first harmonic and all 
harmonics of stator mmf are shown in Fig.6. 

7 CONCLUSIONS 
 
       The electromagnetic field Maxwell equations in a 
spherical co-ordinate system are solved analytically. The 
mathematical form of the non-standard separation is 
given by Eqn (11). The analytical solution has been 
obtained for a magnetically anisotropic and conductive 
region (rotor layer).  
      For electromechanical converter with spherical rotor 
and polyharmonic stator magnetomotive force the 
presented model has been applied for presenting the 
analytical solution provided. 
     The electromagnetic torque calculations are derived 
with the help of the Maxwell, co-energy and Lorentz 
methods.  
Moreover, the power losses have been evaluated with the 
help of the analytical solutions obtained. 
     The presented solutions for electromagnetic field, 
electromagnetic torque and power losses can be treated as 
benchmark task [3], [19]. 
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