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Abstract: Since strong electric field is used now in many areas, simple methods for exact calculation of electric field should be 

found. For the apparatus, where the strong electric field is produced by thin straight conductor over conducting body, several 

approximating formulae (that use conducting plane instead of the body) were derived. Using the formulae, the field strength has been 

calculated in detail and typical results are presented. The comparison of all the methods shows that in the area near the conductor 

(near zone) any of the formulae can be used. In the vicinity of the conductor a difference exists. 
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INTRODUCTION 

At the present time a strong electric field is used in 
many applications in science, design, industry etc - from 
dust separators or electrostatic industrial painting 
systems, through nano-fibres production in textile science 
[1, 8], to highly sophisticated devices in particle physics.  
Therefore, the task of the electrostatic field modeling is 
very important. 

From the all possible sources it is clear, that this part 
of physics is unjustly neglected. The possible reason may 
be the difficulties both in theoretical and experimental 
research. It is a shame, because it could lead to many 
practical applications of this effect. 

There is an active research at Technical University in 
Liberec in the field of the asymmetrical capacitors - e.g. 
thin wire over a metal plate electrode. To find a formula 
describing the force on the asymmetrical capacitor [2, 3, 
4] connected to high voltage (tens of kilovolts) we need 
to obtain a description of the electrostatic field. In this 
particular configuration the exact 3D description of this 
electrostatic field is not possible without using the finite 
element method (FEM), but for our research the 
approximate description would be sufficient – the 
geometry is simple enough and the application of basic 
equations of electrostatic theory leads to acceptable 
results. This paper deals with several methods of strong 
electrostatic field approximation.  

 

1 THEORY 

The problem can be formulated like this: Over a 
conductive orthogonal plane of negligible thickness 
(length a, width b) and in distance d there is a wire of the 
same length a and radius R suspended in a parallel way to 
the plane. The wire is connected to DC voltage U0, the 
plane is grounded. The wire radius R is very small 
compared to the distance d. Our task is to find a formula 
describing the strength of the electric field on the axis 
perpendicular to the plane and passing through the middle 
of the wire. From the theoretical point of view the 
problem can be described as electrostatic field of charged 
conductors. It is possible to solve this problem using 
potential φ, which can be in turn used to find the electric 
field strength: 
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Potential has to fulfill the following conditions: 

1. The Laplace equation is fulfilled around the 
conductor 

 
 0=∆ϕ . (2) 

 
2. The potential in the infinity equals zero. 
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3. The potential has unknown but constant value φ0 on 
the surface of the conductor. 

4. The normal component of the electric field strength 
on the surface of the conductor is equal to surface 
charge density, which can be written in integral form 
thus: 
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where Q is charge on the conductor and the S symbol 
shows us, that we are integrating over the surface of the 
conductor.  

So the following rules must apply to electric field 
strength:  
1. Inside the conductor it equals zero  
2. On the surface of the conductor its tangent 

component is equal to zero (otherwise there would be 
a strong current flow inside and on the surface of the 
conductor) 

3. On the surface there is only a normal component of 
the field strength – see formula (4) 

Formulated this way the problem cannot be solved 
analytically. Typically this problem could be 
approximately solved using finite element method 
(FEM). In simplified form the FEM is applied on the 
Laplace equation (2). The boundary conditions are the 
specified values of potential φ0 on conductors. But there 
is a problem with the zero value of the potential in 
infinity. The last condition – the total charge of the 
system of conductors is equal to zero - can be used to 
verify the results. But because we need the formula as a 
starting point for further derivations, it is better to solve 
the problem analytically, though only with approximate 
results – that is, by using simplified but sufficient models. 

The problem can be analytically solved only if we 
assume that the plane could be substituted by infinite 
conductive surface. Another simplification uses the fact, 
that the wire radius is very small, so we can replace it 
with charged line segment. Linear charge density is 
considered to be constant. 

So for the analytical solution we can use these four 
gradually more accurate models: 
1. Infinite single wire 
2. Infinite wire and conductive plane 
3. Finite length single wire 
4. Finite length wire and conductive plane 

Orthogonal system of coordinates is orientated so, 
that its zero is in the middle of the wire axis, X-axis is 
parallel to the wire axis and it is orientated from left to 
right and Z-axis is perpendicular to the charged plane. If 
we are to use cylindrical symmetry we will be using the 
radial distance r instead of coordinate z. Following 
formulae are valid only for the field on the plane crossing 
the wire axis and perpendicular to the plane – that is in 
the XZ plane. Then the system of coordinates is shown 
on Fig. 1. It is possible to derive the analytical formulae 
for the 3D field, but they are much more complicated.  

 

Fig.1:  Geometry of the experimental arrangement. 

Using the Gauss law from electrostatics [5], [6] we 
can derive the following formula for potential of a single 
line with the linear charge density η: 
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where ε0 is permittivity of vacuum and r is the distance 
from the line, where the field is calculated. Constant A 
could be written like this: 
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where the new constant rn must fulfill the following 
condition: rn > 0. When we apply (6) on (5) we get a 
physically more illustrative general formula for potential: 

 
 

r

r
rr nln

2
rln

2
ln

2
)(

0
n

00 πε

η

πε

η

πε

η
ϕ =+−= . (7) 

 
Constant rn represents the distance of the point, where 

the potential is equal to zero. More precisely, it is the 
radius of a coaxial grounded conductive cylindrical 
surface. Applying a standard procedure based on the 
formula for the potential of the point charge and 
superposition principle [7] we get formula (7). 

If we replace the charged line with the infinite 
charged wire of a circular cross-section and radius R, due 
to cylindrical symmetry the electrostatic field will remain 
the same. On the wire surface there will be constant 
potential φ(R). Between this wire and the cylindrical 
conductive surface in the distance rn there will be the 
voltage U0, which can be, using formula (7), defined as: 
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As the linear charge density η is difficult to define, we 

can replace it, using (8), with voltage U0 between 
electrodes or conductors: 
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where dimensionless constant K is 
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It gives the relation between the geometrical 

properties defining the electrical field. The roughest 



 

approximation of electric field resides in our replacing 
the outer cylindrical conductive surface with zero 
potential with conductive plane in the distance d. That is 
rn = d. After using (9) on (7) we get a practical 
approximative formula for potential: 
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For the approximative electric field strength of single 
infinite wire in the distance r from its axis we can use the 
Gauss law to get a similar formula: 
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When we apply the mirror method, which replaces the 

infinite conductive plane, after twice applying (12) we get 
a following formula for strength: 
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Axial component of the electric field strength (in 

direction of X-axis) is due to the symmetry (caused by 
the infinite wire length and infinite conductive surface) in 
both cases equal to zero. This also warrants the 
fulfillment of the boundary condition on the conductive 

surface, which requires the tangent component of the 
electric field to be equal to zero. 

 For the single wire of finite length (assuming the 
linear charge density on the wire is constant) we can 
derive the following formula for the radial component of 
the electric field strength: 
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where the constant 
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represents half of the wire length and constant K was 
defined above (10). 

The centre of the system of coordinates (zero value) is 
in the middle of the wire axis, the x coordinate represents 
the position on the wire axis and r represents the distance 
from the wire axis. So the field strength now depends on 
both coordinates. 

If we consider a wire of finite length suspended in a 
parallel way above a conductive plane, the formula (14) 
for radial component of the electric field strength changes 
to: 
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In the case of finite length wire there also exists an 

axial component of the electric field strength – in the 
direction of wire axis (or the X-axis) in the examined 
plane XZ, see Fig. 1. For the single wire we can derive 
the following formula for the axial component of 
strength: 
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The x coordinate represents the position on wire axis; 
the centre of the system of coordinates (zero value) is in 
the middle of the wire. It is clear, that the tangent 
component of the strength is equal to zero only in the 
point x = 0, that is in the centre of the wire axis 
projection.  

For the finite length wire above the conductive plane 
the following formula for the axial component of the 
strength can be derived: 
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Also in this case the tangent component of the 

strength is equal to zero only in the point x = 0, that is in 
the centre of the wire axis projection. 

These simple models of electric field were derived to 
compute the weak dynamic force on asymmetrical 
capacitor with air dielectric. Positive ions are accelerated 
by strong electric filed in the vicinity of the wire. Because 
of the conservation of momentum law the accelerated 
particles exert a force on the wire. As the field is due to 
the conducting plane strongly asymmetrical, the 
individual forces are not nullified. (Free electrons move 
in the opposite direction.) In the present time we are 
preparing the theory of the force originating on the 

asymmetrical capacitor and the electrical field description 
will be its main part. 

2 EXPERIMENTS 

Measuring the electric field strength is one of the 
most complicated measurements, so it is really difficult to 
verify our theoretical results. There are several types of 
measuring probes, but they are all at least 20 x 20 mm in 
size, so they do not measure the point values, but only 
average value over certain area. That is why for our 
geometry those probes are simply too big and useless. 

Because of the size of the probes we would have to 
use the experimental setup at least ten times bigger and 



 

maybe higher voltage too. Even in this case we would 
have to consider the size of the probe, eliminate other 
parasitic effects and maybe consider the conductive probe 
changing the shape of the field. We did not succeed to get 
a suitable probe, but we plan a direct experimental 
verification for the near future.  

As was mentioned above our research is concerned 
with forces on asymmetrical capacitors. To find a formula 
describing relation between the force originating thereon 
and the electrical strength around the electrodes, we first 
needed a method of describing the electrical field. The 
above mentioned formulae were used for that purpose. 
We used them to theoretically compute the force on the 
asymmetrical capacitor (wire diameter 0.1 mm, larger 
electrode: 100 x 50 x 10 mm, wire distance 30 mm, see 
Fig. 2) and we compared this value with the one we 
experimentally measured. Measuring of this weak force is 
very complicated. However to decide between the 
individual models - not only for dynamic description of 
the force, but also for the electric field models - we need 
to reach high accuracy of measurement. 

   

 

Fig.2: Model of Asymmetrical capacitor. 

3 RESULTS 

The calculations were made on the model for 
conductor with diameter of 0.1 mm, total length of 100 
mm and distance from conducting plane of 30 mm. The 
applied voltage was 2 kV. The field was calculated only 
in the area containing the wire axis and normal to the 
conducting plane, since the key information is contained 
in this area. Standard graphs are used for field component 
description in the direction normal to the conducting 
plane and parallel to it. Logarithmic scales are often used, 
since the distance and field strength varies by several 
orders. Only graphs of physical or technical importance, 
or graphs with typical or illustrative contents are 
presented here, no systematic presentation of a lot of 
calculations is chosen.  

The effect of conducting plane in the case of infinite 
length wire is in Fig. 3. The radial component changes 
only near the plane, but the change is very fast. Near the 
wire, the radial component of field strength decreases 
according to the law 1/r, where r is the distance from 
wire axis.  

 

 

Fig.3: Effect of conducting plane on the field of infinite 

length wire.  

The conductive plane removes the axial symmetry of 
the field and makes the field strongly asymmetric. It is 
confirmed in Fig. 4 that presents the radial component of 
the field strength on opposite wire sides. The curve 
“Down” shows the radial component between conductor 
and plane. The curve “Up” is for the radial field strength 
component on the opposite side of conductor, from 
conductor to empty space. In the opposite side the field 
strength decreases approximately according to the law 
1/r.  

  
Fig.4: Comparison of radial  fields on opposite 

conductor sides. 

Effect of conducting plane is really very strong in the 
zone near the conductor. The difference is almost 3 
orders at the conductor surface. This is very important to 
explain the workings of some special devices (e.g. 
asymmetrical capacitor).  

In the case of infinite wire only a single coordinate, 
the distance r from wire axis, is used in the basic 
investigated area, see Fig. 1. The description of the field 
strength of finite length wire requires two coordinates, the 
distance r from wire axis in vertical direction and the 
distance x from wire centre in horizontal direction. A 
popular approach is to use surface graphs. Unfortunately, 
they exhibit only qualitative information. Therefore we 
prefer graphs with several parametric curves. For the field 
strength function in radial direction the relative distance 
of vertical line from wire centre is used. At the wire 



 

centre the relative position is 0 and at the wire end this 
parameters achieves value 1.   

Typical results for the case of finite length conductor   
are in Fig. 5. The difference is only at the wire edge and 
in the zone near the conductive plane. 

 

Fig.5: Radial component of single finite length 

conductor. 

Comparison of the field of single infinite and finite 
length conductors is in Fig. 6. The fields are compared 
fields at the conductor edge. The extended radial distance 
is used in order to show differences.  

 

Fig.6: Comparison of radial field of finite and infinite 

length single conductor  

It is evident from Fig. 6 that the slope of radial field 
strength for finite length conductor is different at 
different distances. The distance from conductor centre 
can be divided into three zones: 
1. Near zone, in which the slope is the same and 

constant. 
2. Middle zone, where the slope of field strength of 

finite length wire varies. 
3. Far zone with constant slope but of value different 

from each other.   
According to Fig. 6 the middle zone starts 

approximately at position r = 30 mm and stops at r = 200 
mm.  

Comparison of fields in the experimental equipment 
in Fig. 7 shows that in the experiment there is the near 
zone only. Therefore the definition of middle zone is 
acceptable. The single conductors are compared in Fig. 7.     

 

Fig.7: Effect of single wire length at the edge. 

The comparison of field in the near zone and 
conductor centre is in Fig. 8. In this case the finite length 
has practically no effect. 

 

Fig.8: Effect of single wire length at the centre. 

The effect of conducting plane of the finite length 
wire is very similar to that on infinite wire shown in Fig. 
3. Therefore we omit the details here. 

Comparison of all the approximations in the line 
going through conductor centre is in Fig. 9. The only 
different one among them is the approximation, 
representing the conducting plane of the finite wire 
length.  

The same case for the wire end is in Fig. 10. The 
effect of wire length is in the entire near zone and the 
effect of conducting plane is only near its vicinity.  



 

 

Fig.9: Comparison of all approximating methods for 

conductor centre.  

 

 

Fig.10: Comparison of all approximating methods for 

conductor centre.  

In previous graphs (Fig. 3 to 10) the dependence of 
electric field strength on radius was shown and the 
distance x from conductor centre was the parameter. In 
order to get full information in next graphs the field 
strength on lines parallel to conductor axis will be 
presented and the distance from conductor axis will be 
the parameter.  

Several curves exhibiting the field strength of finite 
length single wire are in Fig. 11. Very close to the 
conductor axis the field radial component is uniform 
along almost all the conductor length and then decreases 
rapidly. At large distances the field component is not 
uniform. 

In Fig. 12 there is the comparison of single infinite 
and finite length conductor at relatively large distance 
from the conductor axis and near to the conducting plane. 
At large distance from conductor axis the effect of finite 
length is very large.  

 

Fig. 11: Field strength of single wire of finite length. 

 

Fig. 12: Comparison of the field of single wire of finite 

and infinite length. 

The radial field component in the presence of 
conducting plane is in Fig. 13. In comparison with Fig. 
11 the field is more uniform and its decrease is more 
rapid.  

 
 

Fig. 13: Field strength of single wire of finite length 

parallel to the conducting plane. 

The effect of conducting plane for finite length 
conductor is shown in Fig. 14. The field strength 
decreases, but the field is more uniform.   



 

 
Fig. 14. The effect of conducting plane. 

Comparison of all the approximations very near to the 
conductor is in Fig.15. Along the wire the difference is 
very small.  

 

Fig. 15: Comparison of all the approximations near the 

conductor  

Comparison of all the approximations relatively near 
the conducting plane is in Fig.16. In this case the 
differences are clearly evident.  

 
Fig. 16: Comparison of all the approximations far from 

the conductor  

The finite length wire produces also the undesirable 
field with axial component. Axial (or tangential) 

component of the field strength along the radius is in Fig. 
17 for the case of single conductor. Its value is very low 
near the conductor centre and achieves high value at its 
end.   

 

Fig. 16: Axial field strength component of single 

conductor along the radius.   

The effect of conducting plane on the axial 
component is in Fig, 17. The change is visible only very 
near to the plane.  

 

Fig. 17: Axial field strength component of conductor and 

plane along the radius.   

The behavior of axial component on lines parallel to 
conductor axis is in next two Figures. In Fig. 18 there is 
the axial component of single conductor. The component 
is large only at wire ends.   



 

 

Fig. 18: Axial field strength component of single 

conductor on lines parallel to conductor axis.   

The effect of conducting plane on the axial 
component is in Fig. 19. The only small change is for the 
curve very close to conducting plane.   

 

Fig. 19: Axial field strength component of conductor and 

plane on lines parallel to conductor axis.  

4 DISCUSSION  

During the study basic simple analytical formulae 
were derived. All of them are only approximate formulae 
and were obtained by the use of several simplifications. 
The most important neglecting is in the consideration of 
the infinite conducting plane instead of real box of small 
finite dimensions. The second important neglecting is the 
constant linear density of charge on the finite length 
conductor. At the conductor end the charge density is in 
reality not uniform. The third neglecting is the 
replacement of the circular cross section conductor by the 
charged line. The finite diameter of conductor and 
presence of conducting plane leads to different surface 
charge density on the side near to plane and the opposite 
one. We must say that the models that allow analytical 
solution are the simplest first order models.  

More accurate solution can be obtained by two ways. 
The simple way is the use of Finite Element Method. 
However, there are two disadvantages at least as it has 
been already mentioned in the part devoted to the theory. 
The first complication is in the difficult formulation of 
boundary conditions. The second difficulty is in the 

analysis of the results. To get graphs similar to the ones 
presented above needs a detailed knowledge of the FEM 
system.   

The second improvement is to change the surface 
charge density on both the conductor surface and the 
finite dimension plane to get more exact solution. 
Unfortunately, due to finite dimensions of plane and the 
non-uniform charge density, the solution must be made 
only numerically, using the numerical integration. 
Numerical integration can be programmed relatively 
easily (e.g. in MATLAB) and the computing is very fast 
on modern computers. So this is not a problem. But the 
problem lies in the fact, that there is no straightforward 
way how to find the correct charge density.   

Irrespective of approximate solution, the achieved 
results are interesting and important both from the 
physical and practical point of view. For praxis the results 
presented in the form of graphs help the better 
understanding the function of real devices.  

The above mentioned formulae derived for all types 
of models revealed that especially for the area close to the 
wire the results are practically the same. Therefore the 
simplest model of single wire is fully sufficient and thus 
the formula (7) or (8) can be used. The model can be used 
with reasonable accuracy in other cases too.  

The results obtained from the models in region close 
to the conducting plane are not in perfect agreement with 
reality, if we focus to the axial component of electric 
field. This component must be zero on the conducing 
plane. Fig. 19 shows that there is small but nonzero axial 
component at distance of 30 mm, e.g. at the conducting 
plane. It is due the model simplicity. Further 
improvements require more correct charge distribution, 
which is very difficult to make. The numerical integration 
is necessary in this case.  

Very important fact for the praxis is the strong 
asymmetry of radial component on opposite sides of the 
wire, as it follows from Fig. 4. The field strength on the 
area between wire and plane is higher by several orders. 
The arrangement realizes the asymmetrical capacitor. If 
we consider the force due to the acceleration of ions, the 
force acting on the wire is much higher in the area 
between wire and plane. The weight of the capacitor 
decreases. The force was measurable in our experiments.   

Graphs on the Fig. 6 are important from the physical 
point of view. It was already mentioned that three zones 
of the field of finite length conductor exist. In near zone 
very close to the conductor the field decreases by the first 
negative power of distance, 1/r, which is the field of 
infinite length wire. Really, in the near zone the 
conductor can be treated as an infinite one. In the far zone 
the radial component of the field decreases by the second 
negative power of distance, 1/r

2. It corresponds to the 
field of point charge. At large distance from the finite 
length wire its dimensions are negligible and it acts as a 
point charge. In the middle zone no approximation is 
valid. 

The boundary of zones depends on the wire length. 
Fig. 6 gives distances for the used arrangement. In our 
experiment only near zone is to be considered.  

It has been already mentioned that in special cases 
(computing the intensity near the ends of the wire) we 
have to turn to more complicated models. But as there is 



 

always some parasitic effect present in the application of 
electrostatic field, it is hardly ever decidable whether the 
deviations are due to the parasitic effect or the model. 

There are at least two reasons, why the experimental 
confirmation of the theory is difficult. Many disturbing 
effects make the measurement accuracy low. The size of 
the electrostatic field probe is relatively big; therefore, the 
measurement on actual arrangement is not possible. At 
least 10 times larger experimental setup should be made 
in order to perform reliable measurement in principle. 
Even after the dimension increase of the experimental 
model the integrating effect of the probe should be 
considered. The experimental arrangement is now in the 
design stage but there is a complication to get a proper 
probe for the relatively accurate electrostatic field 
measurement.  

5 CONLUSIONS 

Several very simple analytical models were prepared 
for the modeling of experimental device. Simple 
formulae derived from the models allowed illustrative 
and detailed description of the field. The qualitative 
agreement with reality is perfect and in important areas 
also a good quantitative agreement exists especially in the 
area very close to the conductor. Since experimental 
verification is difficult, further refinement of the models 
is not necessary in present time. 

Analytical formulae were used in the derivation of the 
simple approximated formula for the force acting on the 
wire in asymmetric capacitor. The formula was verified 
by preliminary experiments.     

We were unable to directly verify the formulae 
experimentally, but we have found an agreement between 
the theoretically computed force and experimentally 
measured force on the asymmetrical capacitor. Thus we 
have a reason to believe that the above derived formulae 
are correct and they can be used in formulae for the 
experimental device. Our next work is heading to 
complete the simple but sufficient model of dynamic 
force on the asymmetrical capacitor and to find more 
precise experimental methods of measuring the force. 
This in turn can be used to verify the dynamic force 
model and also electric field models.  
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