
 

 

WAVELET ANALYSIS OF STRONGLY 
NONLINEAR SYSTEMS 

DAVID PÁNEK 
 
Abstract: The paper deals with a particular method for analysis strongly nonlinear systems. The main emphasis is placed on 
differentiation of chaotic behavior of systems from other types of behavior like periodical, quasi-periodical or stochastic behavior. 
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INTRODUCTION 

The chaotic systems investigation was developed 
mainly in the last two decades. At the present time there 
is a broad theoretical background developed and chaos 
theory is used in many practical applications. However it 
is impossible to say that all related problems have been 
already solved. One of the problems which investigation 
is still in progress is a differentiation between main types 
of behavior of dynamical systems. Nowadays many of 
created methods are based on reconstruction of the 
trajectory of dynamical system in the state space. Usually 
some variations of the time delay methods are used. 
However reconstruction of trajectory doesn’t give any 
additional information and in fact it is only the way how 
to see data from different point of view.      

1 CHAOTIC BEHAVIOR 
Chaotic behavior can be, without an effort of 

mathematical accuracy, described like a no periodical, 
irregular, unflagging switching of intervals stability and 
instability of dynamical systems.   

Consider autonomous dynamical system described by 
system representation in the form 
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Assume that it is not possible to observe (or measure) 
the state vector x directly. The only information we have 
about the system behavior is the vector or scalar 
signal y . In fact the problem of reconstruction of the 
trajectory in the state space could be seen as a state 
reconstruction – common problem in control systems 
theory.  

2 CHAOTIC SYSTEM STATE RECONSTRUCTION 
In the most general (and the most complicated) case 

we are only able to observe the output signal y . The goal 
of state reconstruction is to estimate order, structure and 
parameterization of the system which generated observed 
(or measured) signal.  

As a simple example could be mentioned Fourier 
decomposition of signal generated by autonomous linear 
dynamical system. If this system is conservative and has 
a finite order, it is obvious fact that the signal y has to be 
periodical and therefore it is possible to express it as a 
sum of harmonic component. Each harmonic component 
can be generated by a second-order linear dynamical 
system. So the Fourier decomposition of signal can be 
understood as a simple example of signal generating 
system estimation. It should be said that, Fourier 
decomposition itself does not give any information about 
structure of system representation but it enables, for 
chosen system representation, find an appropriate 
parameterization.  

Similarly it is possible reconstruct dissipative linear 
dynamical system using any time-frequency analysis 
method like Short-time Fourier transform, Floating 
Fourier transform or Wavelet analysis.                 

 
In the most general case, if it is necessary to 

reconstruct order, structure and parameterization of 
system representation described by equation (1.1) from 
output signal only, the situation is much more 
complicated. At the present time are used methods 
focused mainly on reconstruction of trajectory of the 
system and then on calculation of fractal dimension of the 
obtained set [2,3].  



 
It is important to say that on the basis of fractal 

dimension it is possible to estimate complexity of system 
and consequently the order of the given system [4].        

3 CONTINUOUS WAVELET TRANSFORM 
Continuous wavelet transformation is an integral 

transformation where the kernel of transformation is a 
general base functionψ [1] defined by equation 

 ,( , ) ( ) ( ) d , ,s tF s t f s tτ ψ τ τ
∞

−∞

= ∈∫ R,  (1.2) 

where ( , )F s t  is an image of function ( )f t in wavelet 
transformation, , ( )s tψ τ is a particular wave with scale s 
and time-shift τ. 

The inverse wavelet transformation is defined by the 
equation 
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where function ˆ ( )ψ ω is a Fourier transform of the 
base function.  

4  WAVELET TRANSFORMATION OF CHAOTIC 
SYSTEMS 

Wavelets derived from base wavelet have self-
similarity property. This is an important liaison between 
wavelet transformation and the theory of fractals. By a 
proper choice of base wavelet it is possible to decompose 
chaotic signals. On the base of such decomposition we 
can calculate an estimate of signal generating system 
order.  

Wavelet analysis of the signal generated by the well-
known Lorenz system is depicted at the picture Fig. 1. 
For wavelet analysis the Morlet base wavelet was used.  
The shape of the Morlet base wavelet is shown in the 
picture Fig. 2. 

It is important to say that results of continuous 
wavelet transformation strongly depend of used base 
wavelet.  

The evolution of state variables of the Lorenz system 
is depicted in the picture Fig. 3. 

 

 
Fig. 1:  Wavelet analysis of the signal generated by the 

Lorenz system (used base wavelet Morlet)  

 

 
Fig. 2:  Shape of the Morlet Wavelet 

 

 
Fig. 3:  Evolution of states variables of Lorenz system 

5 CONCLUSIONS  
The paper deals with possibilities of wavelet analysis 

of chaotic systems. There are present methods of chaotic 
system order and fractal dimension estimation discussed 
at the paper. It is shown that signal generated by chaotic 
system can be decomposed using wavelet transformation 
with properly chosen base wavelet. The choice of base 
wavelet is a crucial point. The results obtained using 
different base wavelets can be very different.   
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