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Abstract: The paper proposes a new approach to image reconstruction problems to improve results applying the level set technique 
during a reconstruction process, which is based on electrical impedance tomography (EIT). The recently described methods are 
often based on deterministic or stochastic approach to solve EIT inverse problem, which is nonlinear and highly ill-posed. The 
suggested approach combines advantages of nowadays used deterministic methods as there is Tikhonov regularization method with 
advantages of the Level Set method. The new way is applied to the tissue conductivity reconstruction. Numerical results of an image 
reconstruction based on the proposed new technique are presented and compared with previous results. 
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INTRODUCTION 

The image reconstruction problem based on electrical 
impedance tomography is still a widely investigated 
problem with many applications in physical and 
biological sciences. Although the back image 
reconstruction based on EIT is highly ill-posed inverse 
problem the medical imaging is non-invasive technique 
and can be used primarily for the detection of pulmonary 
emboli, non-invasive monitoring of a heart function and a 
blood flow, or for the breast cancer detection.  

The basic theory behind EIT is that by applying 
current across a material the voltage distribution resulting 
on the surface will reflect the internal resistivity (or 
conductivity) distribution. However, intuitively one will 
understand that multiple resistivity distributions can 
produce the same voltage distribution at the surface. 
Therefore the system is stimulated in multiple manners to 
constrain the possible resistivity distributions.  

The EIT system comprises three main areas of 
development; electrode configuration and connection, 
data acquisition, and data processing. In this paper we 
would like to find some new way to improve the quality 
of the last area. There are two different types of EIT 
image reconstructions, static and dynamic EIT. In static 
EIT, only the absolute conductivity in each element is 
computed and a picture of the internal organs of different 
conductivity is imaged. In dynamic EIT, temporal 

variations in conductivity are computed. Both types can 
be very useful especially in medical applications. 

So, the main goal of worthy image reconstructions is 
to find the very accurate distribution of an unknown 
conductivity (generally impedivity) inside the region of 
an investigated object from the currents and voltages 
measured on the electrodes attached to the surface of this 
object [1]. There is necessary to use an appropriate 
regularization and some prior information constraint. 
Various numerical techniques with different advantages 
have been developed to solve this problem; the main aim 
is to find such techniques which offer stable, accurate and 
no too much time-consuming reconstruction process.  

 

1 THEORETICAL  BACKGROUND 
There is very well known that the EIT inverse 

problem searches for parameters in a high-dimensional 
space. The deterministic approach is based on the Least 
Squares method. Due to the ill-posed nature of this 
nonlinear problem, regularization has to be used. First the 
standard Tikhonov Regularization method (TRM) was 
applied to solve the inverse EIT problem. So we have to 
minimize the objective function Ψ(σ)  
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Here σ is the unknown conductivity distribution vector in 
the object, UM is the vector of measured voltages on the 
object boundary, UFEM(σ) is the vector of computed 
peripheral voltages with respect to σ which can be 
obtained using the FEM, α is a regularization parameter 
and L is a regularization matrix connecting adjacent 
elements of the different conductivity values. For the 
solution of (1) was applied a Newton-Raphson method 
and after the linearization was used the iteration 
procedure  
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here i is the i-th iteration and J is the Jacobian for forward 
operator UFEM(σ) and it can be calculated very 
effectively. Additional details are described in [2]. This 
procedure is commonly used in the EIT inverse problem 
for its fast convergence and good reconstruction quality. 
However, it is likely to be trapped in local minima and so 
additional regularization must be taken into account to 
obtain the demanded solution. The stability of the TRM 
algorithm is a bit sensitive to the setting of a starting 
value of conductivity and to an optimal choice of the 
parameter α provides balance between the accuracy and 
the stability of the solution. The value of the parameter α 
can be adaptively changed during this iteration process. 
In this way we can obtain the stable solution with 
required higher accuracy of the reconstruction results. 

In recent years is very often used the Level Set 
method (LSM) to identify regions with different image or 
material properties [3 - 6]. The distribution of unknown 
conductivity (or resistivity) σ can be described in terms 
of level set function F depending on the position of the 
point r with respect to the boundary Γ between regions 
with different values of σ  
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To improve the stability and the accuracy of EIT image 
reconstructions new algorithm was created. This 
algorithm uses both of mentioned methods TRM and 
LSM. During iteration process based on minimizing 
objective function Ψ(σ) the boundary Γ is searched in 
accordance with request that the σ (r) minimizes the 
Ψ(σ), too. New algorithm was applied to the several 
image reconstructions, with different type of constrains. 
Further are presented results of conductivity 
reconstruction for those examples, which were obtained 
during the reconstruction process. 
 

2 EXAMPLES AND RESULTS 
In this part we restrict a range of tasks to the objects 

with a biological tissue only. The basic model of the 
simple 2D arrangement of original conductivity 

distribution you can see in Fig. 1. The conductivity of 
homogenous region is 0.333 S/m (represents tissue), the 
conductivity of one region is 0.1 S/m (dark blue color, 
represents lungs) and finally the conductivity of the 
second is 0.667 S/m (brown color, represents heart).  

During the reconstruction process the TRM was used 
to identify the locations and to specify exactly the 
conductivity values of non-homogenous regions. In the 
case of an unexpected finishing of iteration process 
because of non-stability was applied the LSM to specify 
the locations of non-homogenous regions. 
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Fig.1: Basic model and original values of conductivity 
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Fig.2: Conductivity distribution after using TRM, LSM 
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Fig.3: Final conductivity distribution 



 
Finally, the TRM was applied again to specify the 

conductivity values, but only inside limited regions with 
non-homogeneity.  

Now, let as suppose unknown locations of non-
homogeneities, first with unknown values of 
conductivity. The results after both above mentioned 
steps are the same, it means after using TRM and after 
using LSM, you can see them at Fig. 2. 
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Fig.4:  Conductivity distribution after using TRM 
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Fig.5: Conductivity distribution after using LSM  
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Fig.6: Final conductivity distribution 

When we suppose the knowledge of conductivities 
of all components inside the investigated object (tissue, 

heart and lungs), the image reconstruction passes to 
simpler case and it is possible to obtain better results, 
which are shown in Fig. 4 to Fig. 6. The conductivity 
distribution after the first step (using TRM) is shown in 
Fig. 4, the conductivity distribution after the second step 
(using LSM) is shown in Fig. 5, final results of image 
reconstruction are shown in Fig. 6. There is evident, that 
the algorithm works very well in this case, because we 
obtained the identical distribution as the original.  
 
2.1 Looking for conductivity changes 

The following aim is to find all local non-
homogeneities inside the lungs region or inside the heart 
region. We suppose the lungs, tissue and heart 
conductivities knowledge, the location and conductivity 
value of possible non-homogeneity are unknown. 

First we consider the case of non-homogeneities 
detection inside lung region. New algorithm has to find 
the sub regions with conductivity different of lungs 
conductivity. The original conductivity distribution is 
shown in Fig. 7, three sub regions have 80% conductivity 
of lungs. 
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Fig.7: Original (final) values of conductivity 

The conductivity distribution after using TRM is 
shown in Fig. 8, the conductivity distribution after using 
LSM is shown in Fig. 9, and final conductivity 
distribution is the same as the original (see Fig. 7)  
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Fig.8:  Conductivity distribution after using TRM 
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Fig.9: Conductivity distribution after using LSM  

In the Figs. 10, 11 and 12 you can see the results of 
image reconstruction, if the conductivity value of the 
same non-homogenous sub regions is 120% of lungs 
conductivity.  
 

0.1

0.2

0.3

0.4

0.5

0.6

 
Fig.10:  Original (final) conductivity distribution 
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Fig.11:  Conductivity distribution after using TRM 
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Fig.12:  Conductivity distribution after using LSM 

The last example represents the non-homogeneities 
detection inside the heart region. Let as consider again 
the detection of non-homogenous sub regions with 
conductivity 80% of heart conductivity. The original 
conductivity distribution is shown in Fig. 13. 
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Fig.13:  Original conductivity distribution 

The conductivity distribution after using TRM is 
shown in Fig. 14, the conductivity distribution after using 
LSM is shown in Fig. 15, and final conductivity 
distribution is in Fig. 16.  
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Fig.14: Conductivity distribution after using TRM  
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Fig.15: Conductivity distribution after using LSM 
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Fig.16:  Final conductivity distribution 

 

3 CONCLUSION 
There is presented an improved approach to the EIT 

image reconstruction, which combines advantages of the 
level set algorithm and Tikhonov regularization method. 
This new way of an optimization process was used for the 
acquirement of more accurate reconstruction results in the 
specific cases. The new approach was tested on different 
shapes and sizes of non-homogenous regions. Based on 
appreciable number of realized numerical tests we can 
summarize, that the proposed algorithm ensures good 
stability and very often the highest accuracy of 
reconstruction process in comparison with the algorithm 
which was based on the TRM only.  
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