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ABSTRACT
Shadows are one of the most important effects to create realism in rendering. Most real-time applications use some
sort of image based technique like shadow mapping. While these techniques are quite fast, they often struggle at
rendering realistic and accurate shadows of area lights. To produce correct shadows it is therefore often necessary
to use ray tracing with some sort of acceleration method, nowadays mostly GPU based BVH which have their
downsides in real-time rendering. We present a novel approach in calculating approximated but fast shadows using
the line space as precomputed data structure for visibility information. With that it is possible to skip intersection
tests with scene geometry and completely rely on the line space data structure for the shadow computations of area
lights. Our approach is therefore almost scene-independent and is able to produce accurate shadows with better
performance in comparison to typical ray tracing data structures.

Keywords
Visualization, Computer Graphics, Ray Tracing, Data Structures, Visibility Algorithms

1 INTRODUCTION

Computing shadows is one of the most important ways
to enhance realism in a scene. Shadows increase the
spatial perception and with that the overall appearance
of realistic rendering results. A simple way to compute
shadows is to compute the distance of the foremost ob-
jects to a point light source first and store those in a
shadow map. This map can then be used to differenti-
ate occluded from lighted objects. This approach can
be applied in combination with typical rendering and is
therefore useful for exploitation of the parallel nature of
the graphics processing unit (GPU). With that it is fast
and gives realistic results for point light sources. But
in most cases area lights are favoured because of better
quality in realistic scenes and shadow mapping tech-
niques fail to produce fast shadows of those with good
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Figure 1: Soft Shadow computation by using 49
Shadow rays for a static scene. The scene is rendered
with typical forward rendering while the shadows are
computed with our ray tracer using early line space ter-
mination. The usage of the line space grants better per-
formance compared to an equivalent BVH-based ray
tracer with similar quality.

quality. Therefore in most approaches some sort of ray
tracing method is used to approximate the surface of
the area light source with multiple samples. While the
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results of these techniques have a good and physically
plausible quality, the computation needs quite a lot of
time even with good acceleration data structures.

We propose a novel approach to compute approximate
shadows using the line space as acceleration data struc-
ture. By using the line space it is possible to pre-
compute visibilities which are used in our method for
blocker calculation. With this we do not need to test the
actual scene geometry for intersection, but we use ap-
proximate occlusions based on the shaft informations
of the line space. This increases the rendering per-
formance and allows us to only store the line space
data structure in GPU memory with no need of storing
any geometry information at all. One downside of our
method is that the produced shadows are not precise be-
cause of the approximations with shafts. By using the
line space for area lights we are able to show that these
inaccuracies are negligible. Our results demonstrate
that the use of the line space leads to a faster method
compared to other ray tracing data structures and better
quality compared to typical image based techniques.

Our main contributions are:

• An approximate technique for shadow computation
using the line space as termination criterion.

• An acceleration for rendering approximate soft
shadows of static scenes in real-time on modern
GPUs.

• An analysis and comparison of the benefits of our
technique.

2 RELATED WORK
Shadow Methods Rendering of shadows is a well re-
searched topic and we will only give a brief overview
of recent and relevant work. For further information we
refer the reader to [Eis11] and [Has03].

Many methods exist for the task of rendering shadows.
Starting with the work by [Wil78] there have been many
approaches to image based methods. There, the occlud-
ing objects are stored in a so called shadow map first.
In a second pass it is possible to determine with only
one texture lookup of the shadow map which objects
are visible from the light source. Lighting therefore has
to be computed for exactly these objects, while all non-
visible objects from the light source have to be shaded.
This standard process of shadow mapping is fast but
tends to have visible aliasing artifacts if the resolution
of the shadow map is not big enough. In this form, it is
only possible to produce hard shadows, where the light
source has no volume at all but is only represented by a
single point in space.

Percentage closer filtering [Ree87] is one possibility to
reduce the problem with aliasing through blurring of

the shadow edges. It works by taking not only one but
multiple nearby texture lookups of the shadow map and
using this to calculate the percentage of visibility from
the light source. With adjustments to this it is possi-
ble to approximate soft shadows from area light sources
[Fer05]. There, the size of the filter kernel is adjusted
according to the distance of the occluder. With this ap-
proximation the shadow is not physically accurate but
the results are sufficient in many cases.

Other concepts to create shadows are geometry based
methods based on the generation of shadow volumes
that enclose the shadowed space [Cro77]. It is possi-
ble to create correct shadows for point lights with hard
shadow edges but it also needs some adjustments to cre-
ate soft shadows with this idea [Ass03] [Lai05]. In gen-
eral, image based methods using some kind of shadow
mapping algorithm are more popular in comparison to
geometry based methods. This is due to performance
reasons and a greater versatility and applicability of
shadow mapping algorithms, but both approaches can
benefit from rasterization and are therefore fast.

Ray Tracing Methods A different approach to
compute shadows is usually done with some kind of
ray tracing algorithm. For each point that has to be
tested for lighting a ray is constructed starting in that
point and ending in the light source. If the ray is
not intersecting scene geometry on this path then the
point is lit, otherwise it is shadowed. This approach
is more versatile in comparison to the previous ideas
but the calculation of the intersection between rays
and scene geometry is rather slow. Among the most
popular and effective acceleration data structures for
this are bounding volume hierarchies (BVHs) because
of good performance [Sti09][Ail09]. Recently, there
have been approaches to efficiently build good BVHs
on the GPU [Kar12][Kar13]. Construction can be
parallelized for example with SAH binned methods
[Wal07][Wal12] or by using linear BVHs [Lau09].
This way it is possible to produce interactive results
for construction and traversal of the data structure
on GPUs. Extensions like multi bounding volume
hierarchies are further exploiting the parallelization to
get better performance by storing more subnodes per
node than usual [Ern08][Wal08][Áfr14].

While all previous approaches use the scene geometry
to test for intersections, there are algorithms that avoid
that. Among the most popular are sparse voxel oc-
trees (SVOs) where far away nodes are used to compute
shadow occlusions [Gob05]. Efficient SVOs where pro-
posed that use contours in order to decide whether the
subdivision of a node can stop [Lai11]. With this it is
possible save memory. Compression methods for SVOs
were introduced in [Käm13], which can be precom-
puted [Sin14]. It was shown that the construction and
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the traversal speed are fast enough to be used in real
time applications [Cra11].

Visibility Precomputation Moreover, there have been
approaches that precompute visibilities for example in
radiosity calculations. Line space computations were
used by [Dre97], where they compute shafts between
two arbitrary surface elements. Those shafts represent
all possible rays between the corresponding surface ele-
ments and thereby visibilities can be precomputed. This
approach was recently applied to the N-Tree [Keu16],
which is a variation of recursive grids [Jev88]. In this
attempt every subdivided node has the line space in-
formation as well, which summarizes every possible
shaft in this node and shows which shafts are empty
or non-empty. This information is used during traver-
sal. Precomputed visibilities for urban scenes were pro-
posed by [Bit01] and [Ley03]. They also use the term
”line space” but in a different meaning compared to ap-
proaches mentioned above.

3 LINE SPACE INFORMATION
Our goal is to compute shadows without testing the
scene geometry for intersection. For this, we create
a data structure with the help of the scene geometry
which does not need the geometry afterwards. In that
our data structure is similar to sparse voxel octrees as
they are for example used in voxel cone tracing [Cra11].
In contrast to octress we do not store leaf-nodes con-
taining scene geometry at all. Instead we store a line
space in every subdivided (= non-leaf) node and ignore
the deepest level of the tree as proposed by [Keu16].
We therefore have approximated shadows comparable
to those of sparse voxel octrees. By using the direction
based data of the line space and its early termination
criterion (which is explained later on) we are able to
accelerate the shadow computation even further.

A line space contains the visibility information for ev-
ery possible shaft within the corresponding node. A
shaft is expressed through a given start and end side
from the nodes surface. In the N-Tree every node is
axis aligned and can be represented with an axis aligned
bounding box (AABB). Every subdivided node has pre-
cisely N×N×N subnodes, so the surface of each side
of the AABB is subdivided in N×N subsides. Those
subsides serve as the start and end sides for the shafts.
A shaft therefore is able to group all rays starting and
ending at specific subsides of the AABB of the node.

It can be precomputed which subnodes of the current
node are intersected by a certain shaft. If all intersected
subnodes are empty, so they do not contain any ge-
ometry of the scene geometry at all, it is possible to
conclude that all possible rays within this shaft are un-
able to intersect scene geometry within this node and
all potentially intersected subnodes. For this, a shaft
only needs the information if all intersected subnodes
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(a) Shaft starting from 6 and ending in 14
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(b) All non-empty shafts starting from start side 6

Figure 2: Illustration of the the N-Tree and part of the
according line space in 2D. In the upper images one
non-empty shaft and the associated entry in the line
space are shown. In the lower images all non-empty
shafts starting from one specific start side are shown.
The light blue entries in the line space represent shafts
that start and end on the same sides of the bounding
box, while the dark blue entries are symmetric infor-
mation and therefore unnecessary. Note that every red
node in the N-Tree may be subdivided as well and
would therefore contain line spaces on their own.

are empty or if there is at least one non-empty subnode
intersecting the shaft. This can be expressed in one bit
of information. The line space contains this informa-
tion for all possible shafts of one node and can be rep-
resented as a 2D array or texture where the first dimen-
sion stands for the start side and the second dimension
for the end side of a shaft.

Figure 2 shows an example of the line space informa-
tion, where it is shown that the entries of this array are
symmetrical around the diagonal because of the inver-
sion of start and end sides of the shafts. Shafts that
start and end on the same side of the AABB do not con-
tain any volume at all and are therefore always empty
which is observable in the empty squares around the di-
agonal. Keeping this in mind, the necessary size of the
line space can be reduced to less than a half.

As with other data structures finding the correct set-
tings is important. The line space has two essential pa-
rameters: the maximum depth and the branching factor
of the underlying N-Tree. The maximum depth lim-
its the maximum number of nodes. Only subdivided
nodes contain a line space. So in our case the deep-
est level in the tree is not needed after the initialization
anymore. According to [Keu16] the branching factor
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Figure 3: Management of the GPU data structure. The
entries of the tree pool are clustered in children groups
of nodes. Each entry of this pool is either set to a default
value or refers to a subdivided node (stored in the node
pool) and its corresponding line space (stored in the line
space pool). Each node in the node pool contains the
necessary data for its traversal and therefore a reference
to its children group which can be traversed recursively.

N has a significant impact on the shape of the shafts
and therefore on the traversal speed. A high branching
factor leads to long and slim shafts which are good for
skipping many subnodes during traversal at once. On
the other hand the number of entries within the 3D line
space is 15×N4, so a high value for the branching fac-
tor results in a huge memory consumption. For good
traversal results it was stated that the optimal value for
the branching factor is between 6 and 10 and for the
depth is either 3 or 4.

3.1 GPU Data Structure
Adapting the idea of [Cra11] we implement our data
structure in data pools. We use three different pools,
which are stored in linear buffers on the GPU. In the
first data pool (the tree pool) we store the tree informa-
tion of the N-Tree where all node relations are ordered
in groups of subnodes. In the second data pool (the
node pool) the information for all subdivided nodes is
stored. This information is used to compute the traver-
sal of the subnodes of one node. The third data pool (the
line space pool) is used for all line space information
of the subdivided nodes. This concept is illustrated in
figure 3. We implemented our approach with OpenGL
Compute Shaders and therefore optimized all storage
units for this.

The data structure is used in a way to only rely on subdi-
vided nodes for traversal. Leaf nodes containing scene
geometry are not needed and therefore not stored within
the data pools. The tree pool consists of all possible
pointers that are needed to represent the hierarchy. The
order of the pointers is based on groups of children of
subdivided nodes. All children of one node are clus-
tered to one children group. They have a specific inter-

Figure 4: Illustration of the structure of one N-Tree
node. It consists of different attributes which are used
for the traversal of the tree. All subdivided nodes have a
reference to the children group index of this node. The
reference is used in combination with this nodes posi-
tion and additional information like its resolution for
the traversal of its subnodes. If it has no subdivided
children then the reference is set to a default value, in-
dicating that this node can be skipped during traversal.

nal order, which is the same for all children groups and
dependant on the local position within the parent node.
If a children node is subdivided then the pointer is set
to the index of the children within the node pool. If the
children is not subdivided then the pointer is set to a
default value, indicating that the traversal can skip this
node. Instead of using a default value it is also possi-
ble to use negative values with a special meaning. With
this it is possible to also store references to geometry
information if needed.
The node pool is also used for the traversal. During
traversal of the line space leaf nodes are skipped com-
pletely. For efficient memory usage therefore only sub-
divided nodes are stored within the node pool. A node
within the node pool consists of different attributes as
illustrated in figure 4 which are used for the traversal.
The main attribute of a node is a reference pointer to its
children group within the tree pool. Other information
needed for the traversal are the position of this node in
world space and its size. It is possible to store addi-
tional information of a node like its resolution for the
case that nodes can have a variable number of children
nodes.
The data of the line space pool is used as termination
criterion in the traversal. The single bit information
whether a shaft is empty is stored in this pool. For
better incorporation with GPU-memory, the informa-
tion of multiple shafts is combined to an integer value.
The partition of the pool correlates with the node pool,
so the n-th node in the node pool is related to the n-th
line space in the line space pool. With this a pointer of
the tree pool simultaneously refers to the corresponding
node and its line space as shown in figure 3. While a
line space, as explained above and shown in the figure,
is illustrated as a two-dimensional data set, it is in fact
implemented as one-dimensional data within the buffer.
It consists of a sequence of combined integer values and
is therefore stored in an efficient way.

4 SHADOW COMPUTATION
Using the line space we have a data structure that is
able to decide whether a ray is probably going to in-
tersect scene geometry through a given shaft or if it is
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Figure 5: Illustration of the line space used for shadow
computation. The object on the bottom is partially oc-
cluded by the dragon. While the occlusion on the left
of the object is correct, the usage of the line space also
results in incorrect occlusion. This inaccuracy is based
on non-empty shafts in which the shadow rays would
normally pass by the scene geometry without intersect-
ing it, but are wrongly classified as occluded. Note that
this inaccuracy can be greatly reduced by using a higher
branching factor for the underlying N-Tree.

definitely not going to intersect anything. Visibility of
a light source in this context is therefore merely an ap-
proximation for the pure possibility of visibility. If a
shaft only intersects empty subnodes, it is called empty
itself. An empty shaft does not change the possibil-
ity of visibility and therefore the light source counts as
”visible”. If a shaft intersects at least one non-empty
subnode, then the shaft is called non-empty. A non-
empty shaft may be able to block the visibility of a light
source and as a result we classify this shaft as ”occlud-
ing”. Note that this is a rather conservative estimation
of occlusion. A ray to a light source within a shaft may
be declared as occluded even though it may pass by the
scene geometry contained in the subnodes. An example
to this is shown in figure 5. Although this approxima-
tion may result in places that are wrongly occluded, this
technique allows for a quick shadow traversal without
the need to test the actual scene geometry for intersec-
tion. The benefit is not only that the test for occlusion
is faster than the typical occlusion test in ray tracing,
but furthermore it is not necessary to store the scene
geometry in the data structure at all. With this our data
structure is mostly scene-independent.

4.1 Traversal
Normally the traversal for shadow computation tra-
verses through the data structure until a node with scene
geometry is found. This geometry is then tested for in-
tersection. If an intersection is found within the node,

then the traversal can end with a positive result. Other-
wise it has to continue until an intersection is found or
the data structures boundary is reached. Depending on
the data structure the tests for intersection with scene
geometry may be more costly than the traversal of the
data structure itself.
In our case we try to use this fact in two ways. On the
one hand we have an implicit intersection test of the
scene geometry which is done with the help of the shaft
information in the line space. This shaft information
is precomputed during initialization of the line space,
so no intersection tests with scene geometry have to be
done during rendering. On the other hand we try to
accelerate the traversal of the data structure by skipping
the deepest level of the hierarchy by using the shafts as
a summary of the underlying deepest level.

Algorithm 1 The recursive line space traversal algo-
rithm for shadow computation
1: procedure TRAVERSE(Ray r, Node n)
2: if n has subnodes and LS(r, n) is true then
3: if n is deep enough in hierarchy then
4: return true
5: else
6: while subnodes left do
7: s← next subnode in direction of r
8: if s is non-empty then
9: if TRAVERSE(r, s) then
10: return true
11: end if
12: end if
13: end while
14: end if
15: end if
16: return false
17: end procedure

The final traversal algorithm is shown in algorithm 1.
All nodes in the data structure are either subdivided and
contain a line space or are leaf nodes and contain scene
geometry. The latter are not needed during traversal as
explained above, so this is checked first. If the node
is subdivided then the entry for the ray within the line
space of this node is checked (line 2). If the entry is
not set, it means that the according shaft of this ray is
empty and therefore the ray is not able to hit anything
within this node. Further inspection of this node can be
skipped. If the entry is set, so the according shaft is non-
empty, then the traversal of this node continues. Next it
is tested whether the current node is deep enough in the
tree hierarchy (line 3). A node is called deep enough,
if it is on the second to last level in the hierarchy, so
all subnodes of this node are leaf nodes. With this it
may be possible that scene geometry is intersected by
the ray and the ray gets accepted as occluded. Note that
this is the part where the shadow is approximated. If
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the current recursion depth is not yet deep enough then
the subnodes intersecting the ray are being recursively
tested for intersection (line 9).

A drawback using the line space without scene geom-
etry is that it does not work if the ray starts within a
shaft. The information stored within this shaft can not
be applied to the ray because of the uncertainty how the
objects within the shaft may be positioned in relation
to the ray. Therefore the node where the ray starts has
to be skipped in the process and the traversal needs to
start with the next node. This leads to a loss in quality
in detailed areas.

4.2 Soft Shadow Computation
Using the line space as termination criterion for the
traversal has the benefits of a faster occlusion test and
it may need less memory space. The downside to this
is the loss in accuracy which comes from the approxi-
mation of the scene geometry with shafts as explained
above. This effect is observable at the edges of the
shadow regions where in general the line space pro-
duces more occluded areas as other approaches (see fig-
ure 5). Then again in most cases there are no point
lights required but area lights, which do normally not
produce hard shadow edges but soft transitions between
occluded and non-occluded areas. Most approaches
try to generate this effect by using multiple samples
of the area light and calculating the percentage of non-
occluded samples for lighting. By using this technique
combined with the line space, the approximative nature
of line space generated shadows become negligible (see
figure 7).

Though the shadows generated by this are overly shad-
owed, the difference is almost not visible, especially
when many samples are used. In addition the inaccu-
racy caused by the line space is especially less signifi-
cant the bigger the area light sources become. This is
due to the fact that less samples near the geometry edge
are falsely occluded by the line space. An example of
soft shadows generated by the line space is shown in
figure 6. By only testing the visibility based on shafts
and not on the actual scene geometry the traversal of the
shadow rays is also more coherent and therefore better
suitable for parallelization with the GPU.

5 RESULTS
We implemented our approach on a NVidia GeForce
GTX 1080 system with an Intel i7-6800k 3.6 GHz CPU
and used GLSL Compute Shaders for GPU computing.
As test scenes we used typical test models with differ-
ent numbers of triangles and different characteristics
(Bunny 69k triangles, Dragon 871k triangles, Buddha
1087k triangles and Dragon and Buddha combined) on
top of a simple plane. All scenes were rendered with a

Area light source

Correctly
lighted

Correctly
occluded

Incorrectly
occluded

Figure 6: Illustration of the line space used for soft
shadow computation. In this example 10 samples of
the light source are used to calculate occlusion, while
one of those samples is wrongly occluded. Note that
as with normal shadows the accuracy of soft shadows
based on the line space can be greatly reduced by using
a higher branching factor for the underlying N-Tree.

resolution of 1024× 1024. While the geometry is ren-
dered using typical forward rendering first, the shadows
are applied using one of the techniques mentioned. We
use different camera angles and take the average run
time as result. We compared our method with the state
of the art in BVH accelerated ray tracing using the GPU
as proposed by Aila and Laine [Ail09].

The size of the line space and the build time varies sig-
nificantly with the branching factor and the maximum
tree depth used for the underlying N-Tree. As supposed
by [Keu16] we use a branching factor between 4 and 8
with a maximum recursion depth of either 3 or 4. The
line space is constructed on the GPU on top of the pre-
viously build N-Tree. As with most other complex ray
tracing data structures, we do not achieve interactive
initialization timings. The number of nodes containing
a line space and the resulting size of the data structure
with different parameter sets are given in table 1. There,
the build timings for the line space on top of the N-Tree
and the rendering timings are shown as well.

In comparison to BVH based ray tracing, the line space
does not need any intersection test with scene geometry.
With this, it has a substantially better performance in
computing soft shadows. The results may differ signif-
icantly in scenes that do not fit in the GPU memory, but
this needs to be further investigated and is beyond the
scope of our work. It is visible that the rendering per-
formance of the line space in comparison to the BVH
is better in medium and big scenes, whereas the BVH
achieves faster results in the small scene. Overall it is
visible that the quality of the BVH in terms of perfor-
mance is mainly influenced by the number of triangles
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Scene BVH LS (4, 4) LS (5, 4) LS (6, 3) LS (7, 3) LS (8, 3)
BUNNY size (MB) 4,3 9,4 92 12,3 45,6 115,2
(69k tris) nodes (in 1000) 31,4 13 57,2 3,9 8,1 12,4

init time (ms) - 28 489 100 547 1779
render (FPS) 95,3 58,7 52,5 69,9 62,2 59,6

DRAGON size (MB) 35 9,9 97,7 13,1 48,7 122,2
(871k tris) nodes (in 1000) 82,9 13,8 60,7 4,1 8,7 13,2

init time (ms) - 34 533 105 558 1788
render (FPS) 22,4 23,7 21,1 33,6 32,2 29,8

BUDDHA size (MB) 41,6 9,4 67,1 12,1 35,4 95,7
(1087k tris) nodes (in 1000) 69,9 13,1 41,7 3,8 6,3 10,3

init time (ms) - 30 355 98 397 1432
render (FPS) 16,4 47,5 42,6 60,8 57,3 19,7

BUDDHA & size (MB) 76,6 12,7 89,4 15,8 46,2 127,6
DRAGON nodes (in 1000) 152,7 17,7 55,6 5 8,2 13,7
(1959k tris) init time (ms) - 42 475 131 523 1928

render (FPS) 12,7 23,6 22,4 26,6 24,9 24,3
Table 1: Comparison of the size in MB, number of subdivided nodes, build time in ms and rendering times in
frames per second for different parameter sets of the line space and BVH based on the work by Aila and Laine
[Ail09]. Every parameter set of the line space is given as (N, d), where N stands for the branching factor and d for
the maximum depth of the used N-Tree. For the rendering we measured the time to compute soft shadows of one
area light source with 25 shadow rays with an image resolution of 1024×1024. It is visible that the line space has
better rendering performance in medium and big scenes, but not in scenes with only a small number of triangles.

used in the scene. In contrast, the performance results
of the line space are as expected more stable with vary-
ing numbers of scene triangles, but are more influenced
by the spatial structure of the scene. This is due to
the fact that the line space does not store the scene ge-
ometry in any kind, but an approximation of the scene
within the abstraction of the shafts.

In terms of memory consumption the BVH is mainly
affected by the number of scene triangles which have
to be stored in addition to the node information of the
hierarchy. In contrast the line space does not need to
store any triangle information at all and it can only rely
on the node and line space data. Figure 8 shows the
memory consumption for the mentioned scenes for the
BVH and the line space with the tested parameter sets.
The size of the line space significantly depends on the
used parameter set, where a higher value of the branch-
ing factor N or the maximum tree depth d leads to a
much higher memory consumption. As with the ren-
dering performance, it is visible that the memory size
of the line space is nearly scene independent and quite
stable over all used scenes. With this it is possible to
give an early estimation of the memory size for a given
parameter set before actually building it.

As explained before, the usage of the line space for
shadow generation is flawed with approximations due
to the abstraction with the shafts. This is especially vis-
ible when only one shadow ray is used per pixel. In
soft shadow computation, this problem is only barely
noticeable and can be reduced by increasing the param-
eter set values used. Figure 7 illustrates this effect.

(a) 1 Shadow Ray to center of light

(b) 25 Shadow Samples to area light

Figure 7: Rendering results for the Dragon Scene using
a single shadow ray (top) and 25 shadow samples (bot-
tom). The shadows in the left images are computed with
the line space with a low valued parameter set for illus-
tration (a branching factor N of 5 and tree depth d of
3) while the shadows in the right images are computed
with a BVH as ground truth data. Using the low values
in the line space parameter set leads to a bad shadow
silhouette in the case that 1 shadow ray is used. In soft
shadow computation the difference to the ground truth
data is nearly not visible.
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Figure 8: Overview of the memory usage (in MB) of the line space using different parameter sets and BVH for
the test scenes. Although it is not necessary to store triangle information within the line space data structure, it is
important in terms of memory usage to choose the correct parameter set. Using a parameter set with a big value of
N or d leads to a high memory consumption, as shown by the parameter sets of LS (5, 4) and LS (8, 3). It is visible
that the size of the used memory is nearly scene independent and mainly depends on the used parameters. The size
of the BVH is rather small but needs the triangle information of the scene in addition.

The rendering results for soft shadow computation are
shown in figure 9 on the last page. The usage of the line
space leads to faster results in bigger scenes with only
a minimal loss in accuracy. Nevertheless, the shadows
are only approximated as explained above and so the
quality of the line space results is not as precise com-
pared to accurate computations using BVH accelerated
ray tracing. The results show the mentioned difficul-
ties of our approach. It is observable that different pa-
rameter sets of the line space lead to different results in
the shadow generation, which can be explained with the
varying orientation and size of the shafts within nodes
with different resolutions. Furthermore it is visible, that
shadows in detailed areas get lost with the line space
and the shadows are in total slightly darker. But over-
all, these inaccuracies are only barely noticeable. The
results are nearly similar to the precise results of the
BVH traced method and are therefore quite acceptable.

6 CONCLUSION AND FUTURE
WORK

We present a novel approach in calculating fast shadows
with the GPU. Using the line space as a data structure
for precomputed approximated occlusion values leads
to a fast traversal of shadow rays. Though the produced
shadows are not absolutely accurate, they are precise
enough for soft shadows. Moreover, we showed that the
results are faster in production than typical ray tracing
methods. Furthermore, the data structure does not need

information about the scene geometry for shadow cal-
culation and it is therefore able to have a smaller mem-
ory consumption.

As future work we want to accelerate the initialization
process by computing it in parallel on the GPU. With
that it may be possible to work with dynamic scenes
and the line space may then become an alternative for
typical soft shadow techniques for dynamic scenes.

Apart from this we want to investigate the impact of
storing not only binary information for shafts. For ex-
ample it may be possible to precompute ambient oc-
clusion values per shaft and store them within the data
structure. This would accelerate the traversal step fur-
ther and may therefore lead to better results. Another
option would be to not store binary information in a
shaft, whether it is intersected by scene geometry, but
to count the number of objects intersecting the shaft.
This may give the possibility for dynamic updates, so
that it is not necessary to recompute the full line space
once an object is moving.

Furthermore we want to identify the extents of the use-
fulness of the line space. In previous work it was shown
that it is possible to speed up the general traversal in
ray tracing. Additionally we showed that it is possible
to use the line space visibility information for shadow
computations. In the future we want to examine if other
information for shafts may also grant the possibility to
compute indirect or global illumination.
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Figure 9: The test results with different test scenes. The geometry is rendered with typical forward rendering.
Soft shadows are then computed with our technique using a medium sized parameter set of (N,d) = (7,3). The
results are compared to a BVH accelerated ray tracer based on the work of Aila and Laine [Ail09]. All images
have resolutions of 1024×1024 and soft shadows were generated using one area light source and 25 samples. The
size of the test scenes range from small (Bunny, 69k triangles) to rather big (Buddha + Dragon, 1959k triangles).
Additionally two medium sized test scenes (Dragon, 871k triangles and Buddha, 1087k triangles) were used for
evaluation. In the upper part the results for the big scene are shown. For the line space magnified images with
varying parameter sets are illustrated to demonstrate the differences caused by the early ray termination of the line
space. Using parameter sets with bigger parameter values lead to better results but have a much higher memory
consumption as demonstrated in table 1. In the lower part a comparison to a BVH based ray tracer as ground truth
is presented. The inaccuracies of the line space mentioned above are only barely noticeable, even with smaller
parameter sets. The produced shadows are slightly darker and the skipping of the first node in the line space
traversal leads to less occlusion in detailed areas. Overall, our results are similar to ground truth renderings, but
have better performance and do not need to store the scene geometry, which grants less memory usage and different
opportunities in the future.
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