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ABSTRACT
We present a method for partitioning meshes that allows a simple and efficient parallel implementation of different
simulation methods. It is based on a generalization of the concept of independent sets from graph theory to sets
of simulation elements. The general description makes it versatile and flexibly applicable in existing simulation
systems. Every simulation method that formerly worked by sequentially processing a set of simulation elements
can now be parallelized by partitioning the underlying set, without affecting the behavior of the simulated model.
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1 INTRODUCTION
The simulation of garments has various fields of ap-
plication, like computer-generated movies, computer
games the virtual prototyping of garments. These ap-
plications cause a constant demand for increased visual
realism, efficiency and accuracy of the underlying sim-
ulation models. Especially in engineering applications,
increased efficiency is usually immediately expended
for increasing the accuracy, e.g. by using meshes with
a higher resolution.
With the advent of the multi-core era, parallelization
started to become increasingly important in garment
simulation. Like all other compute-intensive applica-
tions, garment simulation systems should be able to ex-
ploit the processing power of all available computing
devices in order to scale with future hardware gener-
ations. Therefore, methods have to be developed that
allow a flexible distribution of the workload among
the computing devices and minimize the overhead for
scheduling and synchronization.
In this paper, we give a general description for a strat-
egy that allows us to partition the simulated elements
of the mesh into multiple subsets in a way that allows
an efficient simulation on multiple CPU cores or many
GPU cores, without the need for explicit synchroniza-
tion. The concept of independent sets from graph the-
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ory is generalized to simulation elements (for example,
the primitives of the mesh) as well as sets of simulation
elements.

The remainder of this paper is organized as follows:
Section 2 gives an overview of the related work, fo-
cussing on the different methods for garment simulation
and parallelization and the combination thereof. The
concept for the mesh partitioning presented in this pa-
per is detailed in Section 3. Section 4 shows the imple-
mentation and how the method has been evaluated and
applied to different simulations, leading to the results
that are summarized in Section 5. A discussion of the
advantages and limitations is given in Section 6, and
Section 7 gives a conclusion and an outlook for future
work.

2 RELATED WORK
Many strategies for accelerating garment simu-
lation have been developed since Weil [26] and
Terzopoulus et al. [21] presented their first work about
models for cloth simulation. Some of them focussed
on the simulation model itself. The seminal work of
Baraff and Witkin [1] aimed at increasing the stability
and thus the possible time step size by using implicit
integration. Other approaches model the cloth as a
set of constraints in order to efficiently and robustly
simulate the behavior of cloth, based on the work of
Provot [16]. This usually refers to edge constraints,
but has also been applied to triangle constraints in
order to support the anisotropic behavior of cloth [24]
or bending constraints [25]. Position-based dynamics
for cloth simulation have been examined by [14].
Alternative approaches include Lagrange multipliers
[7] or finite element methods [5]. A recent survey on
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cloth simulation literature can be found in [11], and
more details on the subject in the context of garment
simulation in [12].

General approaches for parallel cloth simulation have
already been considered in [6], where a message-based
method for the simulation of interacting particles is in-
troduced. Parallelization methods for the solution of
sparse linear systems with conjugate gradient methods
have been developed for many engineering applications
(see for example [2]), and applied to cloth simulation as
well [17], [22]. The latter may rely on a decomposition
of the simulated cloth into several subsets, for example,
using mesh decomposition toolkits like Metis [9].

Other works partitioned the primitives of the simula-
tion mesh into independent sets that can be treated in
parallel. Such an approach for independent sets of par-
ticles has been described by Zara et al. [27]: Each pro-
cessor receives a subset of the particles that the simu-
lated object consists of, and computes the forces and
state changes for this subset. In a dedicated computa-
tion step, the interactions between the particle subsets
are handled. Specifically, a dependency graph is used
for the computation of the final state.

For the parallel treatment of edges on many-core ar-
chitectures, different approaches have been developed.
Some authors employed sampling techniques and hi-
erarchical solvers to perform an efficient simulation of
cloth on the GPU, for example, Schmitt et al. [18].
Methods that are based on partitioning the set of prim-
itives have also been developed (e.g. [28]) and are al-
ready implemented in the Bullet library [4]. Here, the
set of edges is partitioned into "batches", where each
batch is a set of edges, and no two edges of one batch
have a common particle.

The approaches for parallelizing cloth simulation are
not restricted to the simulation of the intrinsic behavior
of the cloth like the time integration and computation
of internal forces. Several authors developed methods
for parallelizing other elements of the cloth simulation
process, particularly the detection and treatment of col-
lisions, contact and friction between the cloth and other
objects. Selle et al. [19] proposed an improved, paral-
lel collision detection method similar to that of Brid-
son et al. [3], where the particles of the cloth mesh are
distributed among several processors. An architecture
for parallelizing the whole cloth simulation pipeline,
including time integration, collision detection and col-
lision response was proposed by Tang et al. [20]. They
define streams of data for the state of the simulated gar-
ment, consisting of positions and velocities, as well as
for the collision- and collision response information.
These streams are processed in parallel, solely on the
GPU, in order to achieve a high speedup compared
to CPU based implementations or hybrid methods that

rely on a transfer of the simulation- or collision data
between the CPU and the GPU memory space.

Our focus in this paper is on the parallelization of the
material simulation which is usually summarized as the
computation of internal forces or constraints and the
time integration.

Most of the approaches for parallelizing these steps that
have been presented so far make assumptions about the
structure of the simulated object that make a practi-
cal application of these approaches difficult. These as-
sumptions refer to limitations regarding the shape of
the simulated cloth, and particularly the mesh struc-
ture. For example, many of the aforementioned ap-
proaches rely on the mesh consisting of regular trian-
gles or quadrilaterals.

The partitioning strategies that have been presented for
general or irregular meshes are usually specific for a
certain kind of mesh primitive: They subdivide the sets
of vertices, edges or faces, based on specific rules for
the particular primitive type.

The approaches that try to abstract from the primi-
tive type and apply general partitioning methods to the
whole simulation mesh require an explicit synchroniza-
tion at the borders of the subsets of the mesh.

Our goal is to overcome these limitations, and therefore
we present a method that allows a simple parallelization
of simulations that formerly consisted of a sequential
processing of mesh primitives. It consists of a versatile
partitioning strategy that does not require explicit syn-
chronization between the partition elements and may be
applied to arbitrary meshes with arbitrary primitives.

3 CONCEPT
The majority of the cloth simulation methods referred
to in the previous section operate on a triangle- or
quadrilateral mesh that represents the geometry of the
cloth. Depending on the actual simulation model, dif-
ferent primitives of this mesh are relevant for the actual
computation that is to be performed.

The following subsections will give a general descrip-
tion of possible representations of the cloth model, and
show how this description may serve as the basis for our
partitioning method. The conditions that must hold for
the parallel simulation of cloth on the CPU or the GPU
are explained. We will show how to partition the sim-
ulation model so that these conditions are satisfied, and
how the existing simulation methods may be applied to
the partitioned simulation model.

3.1 Simulation model state
We describe the simulation model in its most general
from to contain a set of simulation elements M. These
simulation elements are usually constructed from cer-
tain primitives of the mesh. For example, the vertices
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of the mesh may be converted into a set of particles,
where each particle pi contains a position xi, a velocity
vi, a mass mi, and either an acceleration ai, or alter-
natively, a force fi where fi = miai. For particle-based
simulation methods like that of Zara et al. [27], these
particles may already be the actual simulation elements.
For other approaches, like classical, edge-based mass-
spring models or the position based approach of Muller
et al. [14], the simulation elements are the springs or
distance constraints that are imposed by the edges of
the simulation mesh or inserted between two opposite
particles of two triangles that share a common edge in
order to model a bending resistance. For triangle-based
simulation methods like that of Volino et al. [24] or the
2D strain limiting approach described in [25], each tri-
angle is a simulation element. When the bending resis-
tance of the cloth is computed from the angle between
the normals of adjacent triangles, as in [25], or the in-
plane deformation of two adjacent triangles as in [23],
one pair of triangles may also be a simulation element.
Other simulation models may involve even higher-order
simulation elements like tetrahedrons.

The similarity of the term "simulation elements" to the
term finite elements is not a coincidence: In both cases,
the elements can be considered as the smallest elements
of a decomposition of the problem. These elements are
the basic building blocks of a computational model of
the simulated object. Thus, the simulation elements
are associated with a representation of the simulation
model state. This state is the actual basis for the com-
putation that is performed for each simulation element.
In many cases, a simulation element mi corresponds to
set of particles that it consists of: mi = {pi0 , ..., pin}.
For example, the simulation model state of an edge in
a mass-spring model is given by the positions, veloci-
ties and accelerations (or forces) that are stored in the
respective particles.

3.2 Sequential processing
Given a simulation model state based on a set of sim-
ulation elements M, we assume that the simulation al-
gorithm in its most abstract and generic form can be
written as in Algorithm 1.

Input is the set of simulation elements M
for all simulation elements mi ∈M do

perform computation for mi

Algorithm 1: Sequential algorithm

The computation that is performed for each simula-
tion element may, for example, be the computation of a
force for one structural spring of a mass-spring-model,
or position corrections for the particles in an edge- or
face-based strain limiting approach.

Our goal is now to partition the simulation elements so
that the same algorithm can be run in parallel, regard-
less of the type of the simulation elements.

3.3 Partitioning simulation elements
The basic idea of partitioning the simulation elements
into independent sets that we describe in the following
sections is conceptually similar to the computation of
the "edge batches" by Zeller et al. [28], and has already
been implemented in [4] or [8]. These descriptions and
implementations are currently restricted to edges as the
simulation elements, with the intention to perform the
simulation on the GPU. Extending this idea to arbitrary
simulation elements is straightforward, and thus will
not be described here in detail. Instead, we will focus
on the extension of this approach to sets of simulation
elements.

3.4 Independent sets
In graph theory, an independent set is a set of vertices
where no two vertices are connected by one edge. Two
simulation elements can be considered as being adja-
cent when they share any data. That is, when the com-
putation of the new state of the simulation model for
one simulation element modifies or depends on the state
of the other simulation element. Particularly, in many
cases it can be said that two triangles or edges are ad-
jacent if they share a common particle. An adjacency
graph for the simulation elements may thus be defined
as a graph G = (V,E), where the vertex set V of the
graph contains the set of simulation elements, and the
edge set E of the graph is defined as the set of 2-tuples
of simulation elements that are adjacent.

A generalization of the concept of independent sets al-
lows us to define two sets of simulation elements as be-
ing adjacent when any simulation element of one set is
adjacent to any element of the other set. The set of sim-
ulation elements M may therefore be divided into sev-
eral subsets, as discussed in Section 4, yielding a par-
tition P(M) = {M0, ...,Mn−1}. These subsets are tested
for pairwise adjacency. Let A be the set of tuples of
adjacent sets (Mi,M j), then G = (P(M),A) is an adja-
cency graph on which a vertex coloring can be com-
puted in order to determine a set of independent sets of
sets of simulation elements.

3.5 Vertex coloring
A vertex coloring is a partition of the vertex set of a
graph so that each element of the partition is an inde-
pendent set. More formally, a c-coloring of the graph is
a set R = {R0, ...,Rc−1} where each Ri = {vi0 ,vi1 , ...} is
an independent set, each corresponding to one color.

The smallest number of colors needed to color a graph
is called the chromatic number of the graph, and the
corresponding coloring is called an optimal coloring.
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Computing such an optimal coloring is an NP-complete
problem, and thus not feasible for larger graphs, even as
a preprocessing step.
Instead of computing the chromatic number of the
graph, one can compute a coloring of the graph with an
optimal coloring number, as defined by [15]. An order-
ing of the vertices that results in an optimal coloring
number copt can be computed using the smallest-last
coloring algorithm introduced by [13]. This coloring
number is bounded by the maximum degree dmax of
any vertex in the graph. A simple greedy strategy
thus allows us to compute a coloring with a number of
colors that is bound by dmax in linear time.
The overall process of computing independent sets of
sets of simulation elements based on a coloring of the
adjacency graph is summarized in Figure 1.

1.cInputcmesh 2.cSetscofcsimulationcelementsc(triangles)
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M3
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M2 M4
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3.cAdjacencycgraph
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M5
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R1c=c{cM1,cM3c}
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4.cColoringcandcresultingcindependentcsets

Figure 1: Process of the computation of independent
sets of sets of simulation elements.

3.6 Dispatching to CPUs or GPUs
Within the taxonomy of parallel techniques, we focus
on the architectures using a shared address space. These
may refer to multi-core architectures, namely CPUs
with two or more cores, or to many-core architectures
like GPUs with hundreds or thousands of cores.
The conditions that must hold for the parallel pro-
cessing of simulation elements are the same for the
CPU- and the GPU-case: In both cases, the simula-
tion elements that are processed concurrently may not
be adjacent. However, multi-core CPUs are capable
of task-parallel processing, whereas GPUs are usually
wide SIMD implementations that are tailored for data-
parallelism. That means that multiple CPU cores can
concurrently process the elements of an independent set
of sets of simulation elements, whereas a GPU is bet-
ter suited for concurrently processing the elements of an
independent set of simulation elements. This difference
is sketched in Figure 2.

3.7 Parallel cloth simulation
In order apply the sequential Algorithm 1 in parallel to
multiple sets of simulation elements, we propose Al-
gorithm 2: In a precomputation step, the simulation

1.GIndependentGsetsGofGsetsGofGsimulationGelements,GprocessedGbyGmultipleGCPUGthreads

ThreadG1

ThreadG2

ThreadG3

IndependentGSetG1

ThreadG1 ThreadG8
...

2.GIndependentGsetsGofGsimulationGelements,GprocessedGbyGmanyGGPUGthreads

IndependentGSetG2 IndependentGSetG3

IndependentGSetG1

IndependentGSetG2

IndependentGSetG3

Figure 2: Sketch of the different schemes for dispatch-
ing sets of simulation elements to the CPU or simula-
tion elements to the GPU

elements are created from the input mesh. The set
M of simulation elements is partitioned into P(M) =
{M0, ...,Mn−1} as described in Section 4. The indepen-
dent sets R = {R0, ...,Rcopt−1} are computed based on
the adjacency graph. Each Ri = {Mi0 ,Mi1 , ...} is a set
of sets of simulation elements, and these sets are not
adjacent to each other. Thus, the elements of each Ri
may be processed in parallel, each with the sequential
Algorithm 1.

Input is the set of independent sets of sets of simula-
tion elements R
for all independent set Ri ∈ R do

for all subsets of simulation elements Mi j ∈ Ri in
parallel do

apply Algorithm 1 to Mi j

Algorithm 2: Parallel algorithm

It is important to note that, according to the construc-
tion of the set R, there is no data shared between the
elements of sets Mia and Mib that are processed in par-
allel. They do not have any common simulation ele-
ments. And particularly, according to the definition of
being "independent", the state of the simulated model
that is represented with each simulation element from
Mia is completely unrelated to the state that is repre-
sented with a simulation element from Mib .

4 IMPLEMENTATION
The concept of computing independent sets of simula-
tion elements has been implemented for different cloth
simulation methods. An example implementation of the
basic concept using edge constraints has been shown in
[8]. Within the Future Fashion Design project the con-
cept has been generalized and integrated into a commer-
cial garment simulation system, where a large variety of
simulation schemes are combined. This involves edge
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springs, edge strain constraints, triangular springs, tri-
angle strain constraints, bending edges and pairs of tri-
angles that are used to compute bending forces or bend-
ing constraints, and various combinations thereof.
For the implementation of a parallel cloth simulation on
a multi-core CPU based on independent sets of sets of
simulation elements, we create the simulation elements
from the input mesh. In our current implementation,
this may either be

• The edges of the underlying mesh

• Bending edges between opposite particles of pairs
of triangles with a common edge

or

• The triangles of the mesh

• Pairs of triangles with a common edge

each being used as springs or constraints.
Once these simulation elements have been created, dif-
ferent strategies may be employed to split these ele-
ments into multiple subsets. Many of these strategies
are conceptually similar to that for the construction of a
bounding volume hierarchy (see for example the work
of Klosowski [10]): The sets of simulation elements
may be constructed bottom-up, by combining adjacent
elements into groups, or top-down, by splitting the ini-
tial set into smaller subsets. For the latter approach,
there are several choices for selecting the split axes and
the number of subsets that is created in each step. The
goal usually is to obtain a balanced hierarchy - which
corresponds to subsets of approximately equal sizes in
our case.
In our test scenes, the cloth is initially given in a rest
state in the xy-plane. A very simple splitting strategy
for this case is the recursive subdivision: A bounding
box is computed for the set of simulation elements M.
Then the set is split at the bounding box center along
the x- or/and y-axis, yielding 2 or 4 new sets, respec-
tively. This subdivision step is repeated on the resulting
sets, until a stopping criterion is met, yielding a parti-
tion P(M) = {M0, ...,Mn−1}.
There are several possible stopping criteria for the
recursive subdivision: The recursion may either stop
when the number of simulation elements in each set
falls below a certain threshold, or when a certain
number of partition elements is reached. This is a
tuning parameter that will be detailed in Section 5.
Figure 3 shows the result of the computation of the in-
dependent sets of sets of simulation elements, for one
pattern of a garment, using triangles as the simulation
elements. It shows the full pattern, as well as the re-
spective independent sets R0, ...,R3, each with a differ-
ent color.

Figure 3: A coloring on the graph whose nodes cor-
respond to sets of simulation elements of one pattern
yields a set of independent sets of sets of simulation el-
ements.

Each Ri contains sets of simulation elements, namely
Ri = {Mi0 ,Mi1 , ...}. According to the construction of
these sets, the simulation model state of any simulation
element in Mia does not affect or depend on the simula-
tion model state of any Mib for a 6= b, so the elements
of Ri may be be processed in parallel using Algorithm
2.

5 RESULTS
We integrated our mesh partitioning method into an ex-
isting garment simulation system in order to verify its
practical applicability. The system uses many different
kinds of simulation elements, which are combined in
order to perform an isotropic or an anisotropic material
simulation.

5.1 Simulation types
The isotropic simulation is edge-based. The simulation
elements are different kinds of edges:

• Edge Forces (EF) are springs that correspond to the
edges of the triangle mesh

• Edge Constraints (EC) are distance constraints for
the edges of the triangle mesh

• Edge Bending Constraints (EBC) are distance con-
straints that are inserted between opposite particles
of two triangles that share one edge, to model bend-
ing resistance (these constraints are of the same type
as the Edge Constraints)

The anisotropic simulation is triangle-based. The sim-
ulation elements are triangles and pairs of triangles:

• Triangle Forces (TF) are spring forces that are com-
puted based on the deformation of the triangles of
the mesh

• Triangle Bending Forces (TBF) are spring forces
that are computed for pairs of triangles that share
one edge, which are used in the computation of the
bending resistance
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• Triangle Constraints (TC) are constraints enforcing
the triangles of the mesh to be in their rest shape

5.2 Benchmark scenes

In order to evaluate the speedup that can be achieved
with our method, we used two different test scenes: The
first one, shown in Figure 4, is an artificial scene of a
large circular piece of cloth that is draped on a torus.
The cloth consists of 45k particles, 95k triangles and
155k edges.

Figure 4: Benchmark scene 1: A cloth with 45k parti-
cles, 95k triangles and 155k edges, draped over a torus

The second benchmark is a realistic shirt worn by an
artificial character, as shown in Figure 5. The shirt con-
sists of 10 patterns, with 60k particles, 116k triangles
and 176k edges in total.

Figure 5: Benchmark scene 2: A shirt consisting of 10
patterns, with 60k particles, 116k triangles and 176k
edges in total

The current focus of our research is on interactive vir-
tual prototyping applications. Therefore, our bench-
marks consist of meshes with a resolution that still al-
lows an interactive simulation. We ran several artifi-
cial benchmarks with different mesh resolutions, and
the speedup that was achieved was largely independent
of the actual mesh resolution.

5.3 Benchmark setup
The simulation system is implemented in Java. The
tests have been run on an Intel Xeon 2.4GHz, with 6
cores (12 virtual), 24 GB RAM, Windows 7 / 64bit, us-
ing the Java JRE 7u11. Each benchmark run consisted
of starting the simulation with a time step of 1ms, and
running for a predefined number of steps until the cloth
approached a rest state.

5.4 Benchmark results
For both test cases, the default number of subsets that
was created during the recursive subdivision was 128
(also see the section about the Benchmark Parameters
below). The first test scene was run for 600 steps, and
the second scene was run for 200 steps. The follow-
ing tables contain the average duration for the compu-
tations for each simulation element type in the last 25
time steps. The durations are given in milliseconds.

Note that these timings do not include miscellaneous
computation steps like the collision detection or ren-
dering updates. They only refer to the core of the
simulation which is parallelized using our partitioning
method. The computation that is performed for each
subset of simulation elements is exactly the same as for
the serial version. Thus, the overall behavior and drape
of the garment is not noticeably affected by the paral-
lelization.

N EF EC EBC Total
1 9.06 104.16 50.76 163.99
2 3.79 53.78 26.56 84.14
4 2.51 29.95 15.99 48.47
6 2.63 24.24 13.80 40.68
8 2.52 23.20 13.85 39.58

10 2.48 22.87 13.49 38.86
12 2.22 22.92 13.99 39.14

Table 1: Computation time for the first benchmark
scene, in milliseconds, using the edge-based simula-
tion. N = Number of threads, EF = Edge Forces, EC
= Edge Constraints, EBC = Edge Bending Constraints,
as detailed in 5.1

The diagrams 6 and 7 show the total speedup of the
computation for all simulation elements in the edge-
based and the triangle-based simulation method, re-
spectively, depending on the number of threads.

It can be seen that the speedup increases nearly lin-
early with the number of threads, up to the number of
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N TF TBF TC Total
1 9.56 47.85 270.23 327.65
2 5.93 22.48 132.38 160.81
4 2.88 11.49 99.75 114.13
6 2.54 9.74 56.52 68.81
8 2.27 9.16 47.48 58.92

10 2.24 8.95 48.54 59.74
12 2.17 7.94 47.97 58.09

Table 2: Computation time for the first benchmark
scene, in milliseconds, using the triangle-based simu-
lation. N = Number of threads, TF = Triangle Forces,
TBF = Triangle Bending Forces, TC = Triangle Con-
straints, as detailed in 5.1

N EF EC EBC Total
1 10.45 175.08 98.50 284.03
2 5.37 103.44 88.11 196.93
4 3.52 50.82 32.70 87.04
6 2.97 42.14 27.83 72.94
8 2.94 40.44 27.80 71.19

10 2.16 40.60 29.46 72.23
12 2.11 39.37 26.75 68.24

Table 3: Computation time for the second benchmark
scene, in milliseconds, using the edge-based simula-
tion. N = Number of threads, EF = Edge Forces, EC
= Edge Constraints, EBC = Edge Bending Constraints,
as detailed in 5.1

N TF TBF TC Total
1 10.09 51.79 565.72 627.61
2 5.96 27.53 220.35 253.85
4 3.55 15.66 120.66 139.88
6 3.04 11.59 101.32 115.96
8 2.54 13.40 97.09 113.04

10 2.71 11.90 91.16 105.78
12 2.75 11.18 88.55 102.48

Table 4: Computation time for the second benchmark
scene, in milliseconds, using the triangle-based simu-
lation. N = Number of threads, TF = Triangle Forces,
TBF = Triangle Bending Forces, TC = Triangle Con-
straints, as detailed in 5.1

available physical cores. Thus, our method allows us to
achieve a significant speedup for all kinds of simulation
elements, and scales well with an increasing number of
physical cores.

5.5 Benchmark parameters
As mentioned in Section 4, there are several degrees of
freedom for the computation of the initial subdivision
of the set of simulation elements. The recursive sub-
division that we use in our implementation allows two
different stopping criteria: Either depending on the size
of the resulting subsets, or depending on the number of
subsets. For our analysis, we focus on the latter, be-
cause for our test cases, the number of simulation ele-
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Figure 6: Speedup for the edge-based simulation
method depending on the number of threads on a 6-core
machine
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Figure 7: Speedup for the triangle-based simulation
method depending on the number of threads on a 6-core
machine

ments of the individual test scenes as well as the number
of CPU cores of the target machine are known before-
hand, whereas in other application scenarios, a criterion
based on the size of the subsets may be more appropri-
ate.

The number of subsets that are created with the subdi-
vision process affects the dispatching and processing in
two ways: A larger number of smaller subsets (which
results in larger independent sets) allows a more fine-
grained scheduling and makes it possible to distribute
the workload more evenly among the available cores.
On the other hand, when the number of subsets is too
large compared to the number of elements they con-
tain, the overhead for dispatching them will increase
and might degrade the overall performance. However,
we found that for large meshes, the overall performance
did not change significantly when the number of subsets
was between 8 and 64 times the number of available
cores, as illustrated in Figure 8.

For example, in our first benchmark scene, the set of
95k triangles is subdivided into 128 subsets. The graph
coloring yields 5 independent sets, each containing ap-
proximately 26 subsets, each on average containing 744
elements.
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Figure 8: Dependency of the running time on the num-
ber of subsets that are created during the recursive sub-
division. The test was performed with scene 1, using
the edge-based simulation, and running with 8 threads.
The time is given in milliseconds.

6 DISCUSSION
The main advantage of the partitioning scheme pre-
sented here is that it may be applied to all kinds of simu-
lation elements, and may easily be integrated into exist-
ing simulation applications. A given implementation of
an algorithm that sequentially processes simulation el-
ements, as sketched in Algorithm 1, may easily be con-
verted into a parallel version according to the scheme
sketched in Algorithm 2, after partitioning the simula-
tion elements as described in this paper.

We consider it as important to point out that the pro-
posed method does not require an explicit synchroniza-
tion among the elements that are processed in paral-
lel, since they are independent by construction. Other
methods divide the simulated mesh into several parts
and treat these parts in parallel, but still require a syn-
chronization at the border of these parts. When the par-
allelism should be increased, by increasing the number
of parts that are created, then the synchronization over-
head grows accordingly. This is not the case for our
method.

It is not obvious how a similar partitioning scheme may
be applied to an algorithm that involves data structures
of a more global nature — for example, matrices that
contain constraint information that has been derived
from the structure of the whole mesh, and which is used
as the input for SLE solvers. Another challenge may
be topological changes of the underlying mesh, which
may make it necessary to update the internal data struc-
tures. Since one of our goals is general applicability of
the method, these aspects will also be addressed in our
future work.

7 CONCLUSION AND FUTURE
WORK

The description of the implementation in this paper
focussed on parallel simulation for multi-core CPUs.

Similar concepts have been developed for a many-core
GPU-based simulation. The increasing number of
different computing devices, ranging from CPUs and
GPUs to specialized DSPs, will make it necessary
to tailor applications for heterogeneous computing.
The methods presented here may be one step towards
this goal: It is possible to create independent sets of
sets of simulation elements for the CPU, as well as
independent sets of simulation elements for the GPU.
Once there is a common execution- and memory model
for both device types, it could be possible to split the
workload that is imposed by a large simulation mesh
into smaller workloads whose structure is appropriate
each of the available computing devices, respectively.
That means that one part of the simulation mesh may
be treated efficiently by several CPU cores, whereas
another part is treated by multiple GPUs.
Another aspect that is to be examined is the combina-
tion of the presented approaches with changes in the
topology of the underlying mesh. This may refer to
small and local changes that may happen when sewing
or otherwise modifying patterns, as well as to large and
global changes that may happen in a simulation that
adaptively changes the mesh resolution. In this case,
simulation elements are removed or created on the fly,
and the sizes and structure of formerly independent sets
may change so that a recomputation or adaption of these
sets may be necessary. For this purpose, we are ex-
amining data structures that allow a description of the
structure of independent sets in form of a hierarchy that
may be updated efficiently in response to changes in the
topology.
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