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ABSTRACT

We describe a system that is able to efficiently render large-scale particle-based granular terrains in real-time.

This is achieved by integrating a particle-based granular terrain simulation with a heightfield-based terrain system,

effectively creating a level of detail system. By quickly converting areas of terrain from the heightfield-based

representation to the particle-based representation around dynamic objects which collide with the terrain, we are

able to create the appearance of a large-scale particle-based granular terrain, whilst maintaining real-time frame

rates. The system presented is a proof of concept, to show that such a system may be viable for use in real-time

applications in the future, but initial results are encouraging.
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1 INTRODUCTION

Real-time computer games and simulations often con-

tain large virtual terrain environments. This terrain may

consist of various granular materials, such as sand, rub-

ble and rocks. Granular terrain displays many complex

interactions, both between the constituent granules, and

with objects. Previous approaches to rendering such

terrains rely on simple textured geometry, with little to

no support for dynamic interactions.

Recently, particle-based granular simulations, such as

that of Bell et al.[Bel05] have emerged as an alternative

method for simulating volumes of granular materials.

These systems simulate granular materials by using par-

ticles to represent the individual granules, and exhibit

realistic, physically correct interactions with dynamic

objects.

Longmore et al.[Lon13] extended the work of Bell et

al. with a GPU-based implementation, in order to im-

prove the simulation performance. However, the re-

sulting system remains computationally expensive, and

only small volumes of granular material cane be simu-

lated in real time.

In order to overcome this limitation, we extend Long-

more’s system, by integrating it with a heightfield-

based terrain system to create a level of detail system
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for simulating large-scale granular terrain. The particle-

based terrain system is used to represent areas of terrain

around dynamic objects, whereas the heightfield-based

terrain is used elsewhere. This allows large-scale gran-

ular terrain to be simulated in real-time, with physically

correct dynamic interactions. This is made possible by

a novel system, which allows for terrain to be converted

from one representation to the other in real-time, while

maintaining changes made to the particle-based system

in the heightfield-based system. We use a GPU geome-

try clip maps implementation for our heightfield-based

terrain system, which is very efficient. This frees up

GPU resources for the particle-based simulation.

The system presented is an initial attempt to create a

system capable of simulating and rendering large-scale

particle-based granular terrains. While many issues

still remain, the initial results are promising. We show

that the system is capable of simulating and rendering

multiple particle-based simulations across a large-scale

terrain, whilst maintaining real-time performance. In

one scenario, 10 high-fidelity simulations are run at the

same time, whilst maintaining 30 frames per second.

However, the number of active simulations is limited

by the computational resources of the GPU. Stuttering

during terrain representation conversions has been re-

duced, but unfortunately, still remains. Additionally,

the particle sizes don’t allow for sand to be realistically

simulated on current GPUs. However, other granular

materials may still be simulated.

We make the following contributions: a technique for

scaling particle-based terrain simulations to achieve

finer grained interactions, and a system which is able to

convert between particle-based and heightfield-based

terrain representations in real-time.

WSCG2014 Conference on Computer Graphics, Visualization and Computer Vision

Communication Papers Proceedings 169 ISBN 978-80-86943-71-8



The remainder of the paper is organised as follows: We

begin by exploring related work in the field. We then

introduce our system, giving a broad overview of how

it works. Each individual contribution is then analysed,

before we present our results. Finally we draw conclu-

sions, and present possible future research in this field.

2 RELATED WORK

Terrain forms an important part of virtual environments,

and the efficient creation and rendering of terrain has

thus been an active area of research for many years.

Heightfield based terrains have become popular in mod-

ern games and visual effects simulations. However,

these terrains display little to no dynamic interactions

with dynamic objects. Recently, particle-based granu-

lar terrain simulations have emerged as an alternative to

these techniques. These systems display realistic inter-

actions, but are computationally expensive.

2.1 Heightfield-Based Terrain

Heightfields represent a terrain as a grid of regularly

sampled points, with each point in the grid storing

the elevation at the corresponding point on the terrain.

Heightfields are often stored as greyscale images, al-

though other formats also exist. This makes them com-

pact and highly portable. Dynamic terrain is easily sup-

ported, as one only need alter the values stored in the

grid. However, as there is only one height associated

with any point on the terrain, complex structures such

as overhangs cannot be represented. This may be over-

come by adding static geometry at points on the terrain

where these structures are required.

In order to render a heightfield, a mesh is created that

links each node to its adjacent nodes using triangles.

However, for large terrain such a naive approach

produces too many triangles. Level of detail (LOD)

schemes can be used to overcome this limitation. Such

schemes use different representations of an object, with

a simplified geometric structure, in order to manage

rendering efficiency [Lue02].

GPU geometry clipmaps[Asi05] is a level of detail

technique for rendering heightfield-based terrains. The

technique represents a terrain using a set of concentric

regular grids, or “clipmap levels”, of increasing sizes,

centred about the viewer. The terrain is then rendered

by translating and scaling this grid structure in the ver-

tex shader, displacing the vertices in Y-dimension to

correspond with the clipmap heightfield. The technique

is capable of rendering large-scale terrains in real-time,

with minimal overhead.

The original GPU geometry clipmaps implementation

did not provide a method for texturing the resulting ter-

rain. Torchelsen et al.[Tor08] introduced a texturing

technique which assigns a texture coordinate to each

vertex within the grid. A value is obtained, which de-

fines how many times the texture is repeated between

vertices in the grid. This then allows the correct texture

coordinate to be inferred for each fragment, allowing

texturing of the GPU geometry clipmap based terrain.

2.2 Particle-Based Granular Terrain

Bell et al.[Bel05] created a system to simulate a vol-

ume of granular material. The system uses particles to

represent the volume. The particles collectively form

a volume, in the same way grains of sand form a pile

of sand. Granular materials behave differently to fluids

and require a unique set of algorithms to model their

characteristics. Granular materials may flow down a

slope, like fluid, or form a static volume, like a solid.

The system thus uses specialised granular equations to

model the particle interactions.

The sand created using this system is very high fi-

delity, and allows for realistic, physically correct in-

teractions to occur with dynamic objects. The system

simulates the natural interactions of sand using rigid

bodies, which are made up of groups of four particles,

in a tetrahedral structure. Shear, normal and frictional

forces are modelled for both collisions between the var-

ious particles in the system, and the collisions of par-

ticles with dynamic objects. Each individual particle

need only check for collisions within its local neigh-

bourhood, and thus exhibits O(n) complexity. Unfortu-

nately, since a large number of particles are required to

represent even a small volume of sand, it is infeasible

to use such a system to represent a large area of terrain.

Longmore[Lon13] extends this approach to leverage

the parallel processing capabilities of modern GPUs.

Grids are used to represent the sand particles within the

system; one grid stores the positions of the particles,

whilst another grid stores their momentums. These

grids are used to create a 3D texture, which is passed

to the GPU fragment shader, which performs the par-

icle simulation. The system first calculates the forces

applied to each particle, then applies these forces to up-

date the rigid body attributes. The particles are then

updated to match the rigid bodies. Finally, the particles

are rendered using a splat-based rendering technique.

While more efficient than a conventional CPU-based

implementation, the system may still only be used for

smaller-scale granular volumes, as the simulation re-

mains computationally expensive. Additionally, due to

the size of the 3D texture, memory usage is a major

concern, and limits the volume of sand that can be sim-

ulated.

In order for the particle system to interact with a model,

the model must be converted to a particle-based repre-

sentation. This is achieved by creating a signed distance

field[Sig03] for each model. Computing a signed dis-

tance field is expensive, so this conversion is performed
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(a) Barrel Model (b) Density of 0.25 (c) Density of 0.5 (d) Stanford Bunny (e) Density of 0.25 (f) Density of 0.5

Figure 1: Two models are converted to a particle-based representation. (a) barrel model. (d) Stanford bunny. The

particle-based representation for two different particle scales is presented, corresponding to two differently scaled

particle systems.

as a pre-processing step. Once the signed distance field

has been generated, particles are created at any nega-

tive value in the distance field, which lies adjacent to a

positive value (i.e. at each point on the border of the

object). The particles together form a single rigid body

within the system, in the same way that multiple parti-

cles constitute a granule. This creates a surface layer of

particles which represent the object. This is sufficient,

as even if we added particles throughout the body of

the model, collisions with external particles would first

occur with these surface particles, therefore preventing

the internal particles from colliding with external parti-

cles. In fact, by using a single outer layer of particles to

represent the objects, both memory and computational

resources are saved. Whilst the particle-based represen-

tation should interact with the terrain, the model should

still be rendered in its original form.

O’Brien et al.[Obr01] introduce a system which allows

for a simplified motion model to be used for particle

simulation, which effectively creates an LOD system

for particle based simulations (or “SLOD", using the

papers nomenclature). Under their system, the particle

based simulation is subdivided into groups of particles.

Each group of particles is treated as a single granule,

and the result of the interaction of this granule is ap-

plied to each of its constituent particles. However, the

particle systems for which it has been implemented are

rather simple, and it has not been shown that this system

can be extended for use with granular terrain. Further-

more, the speed up from this form of LOD would not

be sufficient to allow simulation of a complete terrain.

Solenthaler and Gross[Sol11] use two discreet particle

resolutions to perform fluid simulations. The coarser

resolution simulates the fluid as a whole, whilst the finer

resolution is only used in areas where complex interac-

tions occur. Their system produces high quality results,

while simultaneously reducing simulation complexity.

However, the increase in performance is proportional

to the reduction in particle count, and thus, such a sys-

tem could not be adapted to simulate entire terrains, as

even smaller terrains would still require far too many

particles to simulate in real-time.

3 SYSTEM OVERVIEW

Our system is composed of three major components:

a GPU particle-based granular terrain system, a

heightfield-based terrain system, and the terrain man-

ager (Figure 2). The terrain manager lies at the heart

of our LOD system. This component is responsible for

converting between the two terrain representations, in

both directions, and converting models to a particle-

based representation, so that they may interact with

the terrain. It also holds preinitialised particle-based

simulations, so they may be quickly inserted, without

worrying about the cost of initialisation.

Figure 2: The basic system architecture.

The idea behind our LOD technique is fairly simple; we

convert areas of terrain around collisions to the particle-

based representation, so that the object may interact

with the terrain in a realistic and believable fashion.

This creates the illusion of an entire particle-based ter-

rain. Once the object has come to rest, updates for that

particular particle-based simulation are disabled, until

another collision occurs with it, which helps to limit

the overall number of active particle systems. It is still

rendered as the particle-based representation though,

which creates the illusion that there are more active

particle systems than there actually are. Finally, if no

further collisions occur with the simulation after a pe-

riod of two minutes, the area of terrain represented by

the particle system is converted back to the heightfield-

based representation, preserving any changes made to

the terrain in the particle-based simulation. The parti-

cle simulation is then returned to the pool of inactive

simulations, so that it may be reused for further interac-

tions.

The system is currently not very robust. For instance,

if an object is about to leave the current area covered

by the current particle simulation, a new particle system

must be added for the object to move into. Also, the res-

olution of the particle system is locked at initialisation.
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This means that if the camera moves closer towards a

particle system, the particle system will not be refined

to adjust for this change. We have chosen to focus on

the conversion between the two terrain representations,

and have left these issues for future work.

Our heightfield-based terrain system is based directly

on the work by Asirvatham and Hoppe[Asi05]. Below,

we analyse the other two components of the system:

the particle-based terrain simulation, and the conver-

sion process.

4 PARTICLE-BASED GRANULAR

TERRAIN

The particle-based terrain system developed by Long-

more et al.[Lon13] forms the basis of our particle-based

terrain level of detail. In this section we provide a brief

description of the system. Additional details may be

found in the original paper.

The system simulates the natural interactions of sand

using rigid bodies, which are made up of groups of four

particles, in a tetrahedral structure. The particles then

interact with particles from other rigid bodies, which

applies a force to the rigid body. The system produces

realistic particle-based terrain, which exhibits physi-

cally correct interactions. The particle system lever-

ages the computational power of modern GPUs, while

remaining hardware agnostic.

Figure 3: Granules are made up of four particles. The

corresponding particle and rigid body attributes are

stored in textures[Lon13].

The data required for the particles and rigid bodies is

stored in a collection of textures. Textures may be used

as a data source, or a data target, and thus present an

attractive method to store this information. Addition-

ally, texture caching allows extremely fast access to

data which is accessed in spatially local area. Each tex-

ture is a four channel floating point texture, and repre-

sents a property of the group of particles or rigid bodies.

These properties are position, orientation, momentum,

and angular momentum for the rigid bodies, and posi-

tion, momentum, force and offset for the particles.

The particles are linked to the rigid bodies using unique

identifiers. Each particle is allocated an identifier, based

on its position within the texture. This identifier is

stored in the alpha channel of the position texture. The

rigid body then stores the identifier of its first con-

stituent particle. As each rigid body is made up of a

known number of particles, it is then simple to retrieve

the other constituent particles.

4.1 Updates

The system maintains two textures for each property

that is stored for the particles/rigid bodies. Each frame,

one texture acts as the data source, and one texture

acts as the data target. The data is processed by the

GPU, and the results are written to the target texture,

which then becomes the source texture for the follow-

ing frame. The advantage here is that because the re-

sult is written to a different texture, the source data re-

mains intact, so the result for each particle is based on a

constant, non-varying set of data. The system uses the

fragment shader to process the updates, which allows

the system to remain hardware agnostic, as it does not

require any hardware specific third party libraries.

Figure 4: The 3D grid is represented by a 2D texture.

Each slice in the 3D grid is stored as a tile within the

2D texture. Each texel represents a voxel within the

3D grid, and can store up to 4 particles (one per colour

channel). This diagram, from Longmore et al.[Lon13],

shows the layout for a 5×5×5 voxel area of space.

In order to detect collisions between the various parti-

cles in the simulation, a texture representing a 3D grid

is used. An example of this texture can be seen in Fig-

ure 4. This 3D grid represents the volume in which the

particles and rigid bodies exist, effectively discretising

the space into a voxelised format. The ID of each par-

ticle is added to the grid node which corresponds to it’s

position in 3-dimensional space. As each texel within

the texture is composed of four values, a maximum of

four particles may translate to a single grid node. Col-

lisions with adjacent particles are detected by sampling
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neighbouring voxels in the grid. This requires 27 tex-

ture lookups (i.e. a 3× 3× 3 cube). If a particle from

another rigid body is found in an adjacent node (includ-

ing its own grid node), we then perform a collision be-

tween the particles. The resultant force of the collision

is calculated using the formulas from Bell et al.[Bel05].

Particle systems are sensitive to the time step used. The

simulation uses a constant time step of 20 milliseconds.

4.2 Rendering

A splatting technique is employed to render the parti-

cles. Splatting is a technique which renders objects us-

ing points. This is usually used to render volumetric ob-

jects, but has also been adapted to render objects with a

large number of vertices[Rus00].

In order to perform the rendering, a vertex buffer ob-

ject (VBO) is generated. One vertex is added to the

VBO for each particle within the simulation. Its posi-

tion is the texture coordinate which corresponds to the

particle within the particle position texture. The ver-

tices are then rendered using the glDrawArrays call,

with the rendering mode set to GL_POINTS. The ver-

tex shader reads the position of the particle from the po-

sition texture, and sets the position of the resulting point

to that position. The points produced by GL_POINTS
are square, and thus need to be trimmed by the fragment

shader. Any fragments which lie outside of a circle are

simply discarded. This method is very efficient, and

allows the entire particle system to be rendered with a

single call.

However, there are a few downsides to this method.

Firstly, the particles each appear spherical, giving the

system a uniform look. However, the larger problem

for our scenario is that it doesn’t integrate well with

heightfields. We alpha blend between the two repre-

sentations, but the difference is still quite obvious. In

order to overcome this, a different visualisation is re-

quired, which more closely matches the regular struc-

ture of heightfields. However, we have chosen to focus

on localised particle-based simulation and conversion

techniques, and have thus left this as future work.

4.3 Scaling of Particle-Based granular

terrain

One of the features of the LOD system is the ability to

use coarser particle simulations further away from the

observer, and finer grained, more detailed particle sim-

ulations closer to the observer. However, Longmore’s

particle system lacks the ability to scale the particle

sizes. Thus, the particle system was adapted to support

particles of different sizes. We found that scaling the

equations within the updates step tended to introduce

instability to the system.

The alternative method we devised is simple and fast.

The updates and collisions are processed with particles

of the regular size. The renderer then scales the particle

sizes and positions, creating the appearance of a larger

or smaller particle size. This works well, as the parti-

cles are in a stable configuration at the default particle

scale. The velocity of the objects need not be scaled,

as this is already scaled by the scaling of the position.

Only forces external to the terrain must be scaled. The

only force that needs to be scaled is thus gravity. This is

because the distance covered by a falling object in the

virtual world should remain constant, regardless of the

scale of the particle system. As gravity results in a con-

stant acceleration, it can be scaled linearly. Addition-

ally, the velocity of objects entering the system should

be scaled. This scaled velocity results in appropriately

scaled forces when it collides with the terrain, and thus

the underlying algorithms can be left untouched. Al-

though smaller particles would usually dictate smaller

time steps, in practice we had no problems with insta-

bilities, as the scaling of these velocities did not intro-

duce enough energy into the system to cause any insta-

bilities.

5 CONVERSION

The terrain manager is responsible for switching be-

tween the heightfield-based terrain and the particle-

based, in both directions, and converting models to a

particle-based representation, so that they may interact

with the terrain.

5.1 Heightfield to Particle System

In order to convert from a heightfield to the particle-

based terrain representation, the system needs to create

a volume of particles. The height of the volume at each

point on the x-z plane must correspond to the height

stored in the heightfield. Thus, the first step in the con-

version is dividing up the area covered by the particle

system into a grid. The size of each unit in the grid

corresponds to the particle system scale. The height-

field is then sampled at each point on this grid. Bilin-

ear interpolation[Len12] is used to infer to the height

at points which fall between texels in the heightfield.

This height is used to deduce the number of rigid bod-

ies which must be stacked at that point in order to reach

that height on the terrain.

Arrays are created to store the rigid body and parti-

cle attributes. The grid is iterated over, and at each

grid point rigid bodies and their corresponding parti-

cles are inserted into the arrays, until the height of the

terrain at that point in the grid is reached. Each rigid

body and particle is assigned an index, leaving us with

the required arrays of particle and rigid body attributes,

which are ready to be inserted into the particle system.

The topmost particle in each stack is assigned a random

orientation, which helps create a more natural looking

surface.
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(a) (b)

Figure 5: An example terrain with a converted particle system inserted. The inset shows a zoomed in view. (a)

Shows the result of the injected heightfield, with no filtering applied. This results in an obviously bumpy surface.

(b) Shows the same section, but with Gaussian filtering applied. No discernible discontinuities are present.

These attribute arrays are passed to an inactive particle

simulation. However, uploading all this data to the GPU

at once results in the CPU – GPU bus becoming bottle-

necked, resulting in a noticeable stuttering effect. In-

stead, the data is uploaded over multiple frames, which

significantly reduces the stuttering.

The particle system is then left to settle. Once injected

into the system, the rigid bodies shift from their initial

positions. This appears unnatural, as the particle sys-

tem should be representing terrain at rest. Introducing

a settling period effectively negates this issue. How-

ever, depending on the terrain, particles may continue

to move after this settling period, thanks to the “cas-

cading" property of sand. Additionally, in some cases,

such as objects moving quickly across the terrain, we

cannot afford to wait for the system to settle first be-

fore displaying the terrain. Both of these issues could

potentially be solved by precalculating various stable

particle configurations, and combining them to match

the outline of the terrain.

Once the particle system has settled, the particle-based

terrain manager alpha blends in the particle system over

the course of one second. However, rendering order is

an issue. If the terrain is rendered first, particles which

lie beneath the level of the terrain will be discarded,

yet they will be visible once the blending is complete,

which will lead to a noticeable popping effect. Addi-

tionally, particles which intersect with the terrain will

only be partially rendered, resulting in unsightly arte-

facts. If the particle system is rendered first, then the

terrain will not be rendered behind the particles, and the

particles will appear to pop in, and blend between black

and their resulting colour. We use the following solu-

tion. First, the terrain is rendered as a first pass. The

depth buffer is then cleared, and the particle system is

rendered. The particles will thus be correctly blended

with the underlying terrain. However, particles which

should not be visible will be rendered. To address this,

the terrain is rendered again, thus occluding particles

which should be occluded.

5.2 Conversion from Particle System to

Heightfield

In order to convert the terrain from the particle-based

representation to the heightfield-based representation,

a method is required which is capable of quickly con-

verting the volume of particles to a heightfield. Sur-

face extraction from a set of points is a difficult prob-

lem, and many techniques have been developed to solve

it, such as Gumhold et al.[Gum01], and Rosenthal et

al.[Ros08]. However, these techniques typically take a

few seconds, to minutes to complete, and thus are not

suitable for real-time applications.

We note that a useful feature of the particle system is

that while dynamic updates are expensive, the render-

ing of the system is comparatively cheap. Also, the

particles form a single volume of sand. Based on these

two observations, we have developed a novel rendering

based technique to perform this conversion. By per-

forming a top-down orthographic projection of the par-

ticle system, and extracting the depth buffer from the re-

sulting image, a depth map of the terrain is obtained. As

the position of the camera above the terrain is known,

it is fairly simple to convert this resulting depth map

into a heightmap. As the z-buffer sampling for an or-

thographic projection is linear, the following formula is

used to convert the depth value to a height value:

height = ycamera −n− z( f −n)

where ycamera is the height of the camera, n is the dis-

tance to the near plane, f is the distance to the far plane

and z is the depth value.

Performing this rendering step with a resolution equal

to the size of the particle system produced poor re-

sults. Instead, the system renders the particle system

using a resolution of 1024× 1024. This resolution is

much higher than the number of visible particles, with

each particle covering multiple pixels. The depth map

is sampled at points which correspond to points in the

heightmap.

Although this produces better results, a stepping effect

may occur, since, depending on the positions of the
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particles, the same particle may be sampled multiple

times. This is corrected by applying a 3× 3 Gaussian

filter[Sha01], to smooth out sharp transitions (Figure

5). A larger filter kernel size results in over-smoothing,

and thus the loss of subtle changes made to the terrain

in the particle system.

The resultant heightmap is inserted into the terrains

heightfield, over-writing the section of the heightfield

which corresponds to the particle system. This causes

any changes made to the terrain in the particle-based

system to persist in the heightfield-based system. How-

ever, there may be a discontinuity along the edges of

the newly injected heightmap. This is due to a sudden

transition from the original heightfield, to the height-

field representing the particle system, which may lie

slightly below or above the level of the terrain at that

point. Thus, a Gaussian filter with a 3×3 kernel is also

applied along the border of the inserted heightfield.

6 RESULTS

The system was implemented in C++, using the Mi-

crosoft Visual Studio 2010 IDE on Windows 7 (SP1)

and employs OpenGL 2.1, with GLEW 1.10.0. All re-

sults are generated at a resolution of 1920x1080. The

hardware testing platform consists of an Intel Core i7

930 processor with 6GB of DDR3 memory. Results are

presented for both an Nvidia Geforce GTX 460 with

1024 MB RAM, and an Nvidia Geforce GTX 770 with

2048 MB RAM. These two cards where chosen to rep-

resent the performance of mid- and high-end cards. The

Nvidia display driver 331.58 was used for both cards.

6.1 GPU Geometry Clipmaps

In order to evaluate the performance of the GPU Ge-

ometry clipmaps implementation, we tested the perfor-

mance across a range of different terrains. Ten differ-

ent terrains are used in total, and the results are av-

eraged, to provide a reasonable performance measure

against which to evaluate system performance. Each

terrain was run five times. Two different terrain sizes

are used: 512×512(6) and 1024×1024(4). The view

of the terrain is from the corner, and spans the entire

terrain. The 512× 512 terrains produce 79,886 trian-

gles, whereas the 1024×1024 terrains produce 103,700

triangles. The size of the terrain has a fairly mini-

mal impact on performance, as only a single additional

clipmap level is required to render the extra terrain sec-

tion in the larger terrain, due to the exponential increase

in the grid resolution.

The systems performs very well (Table 1), with both the

midrange and the high-end graphics cards. Such high

performance from the heightfield-based component of

the system is necessary, since the particle-based simu-

lation is computationally expensive (see Section 6.3).

Finally, the memory usage of the system is measured.

GTX 460 GTX 770

512×512

Average (FPS) 393 949

Std Dev (FPS) 23 72

Shadowed Average (FPS) 169 484

Shadowed Std Dev (FPS) 23 36

1024×1024

Average (FPS) 315 776

Std Dev (FPS) 12 28

Shadowed Average (FPS) 129 382

Shadowed Std Dev (FPS) 7 17

Table 1: GPU geometry clipmap performance results

for the Nvidia Geforce GTX 460 and GTX 770.

The system uses a total of 30MB of main memory and

40MB of graphics memory. A low memory footprint is

important, as it allows for other high quality assets to

be used in the game or simulation.

6.2 Particle-based Simulation

The performance of the particle-based terrain simula-

tion is of greatest importance, as the physical correct-

ness of the system has already been established[Lon13].

To test the particle-based system, particles are injected

into a 3D cuboid. Particles are injected in sets of

40,000, i.e. 10,000 granules at a time. The framerate

is measured for each set of injected particles.

Figure 6: Performance results of the particle-based sim-

ulation. Note that each rigid body, or granule, is made

up of four particles in a tetrahedral configuration.

The system scales fairly well with the computational

power of the graphics card used, with the more power-

ful GTX 770 achieving almost double the performance

of the GTX 460. The framerate is inversely propor-

tional to the number of particles in the system.

The particle-based simulation is comprised of two pri-

mary components: the update component, and the ren-

dering component. In order to measure the performance

of these individual components, we measure the frame

time of the entire system. Then, we disable the simula-

tion, and simply render the system, while recording the
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Figure 7: The GPU profiling results for the GTX 770, for a particle system with 100,000 granules, over 45 seconds.

frame time. The difference between these two frame

times corresponds to the time taken to process the up-

dates. The result is shown in Figure 8.

Figure 8: Frame time of the particle-based simulation

components, for the GTX 770. The time spent to pro-

cess updates is indicated by the red area, whereas the

time spent on rendering is shown in green.

Clearly, the updates are the major limiting factor be-

hind system performance. This is to be expected, as

the updates entail mapping the particles to a 3D grid,

then performing collisions for hundreds of thousands

of particles, and updating the rigid bodies and particles

in response to these collisions. The frame time, both

with and without updates, is linearly proportional to the

number of particles, which accords with the previous

performance results.

We used Nvidia Perfkit 3.1.0.13233 to measure the

GPU performance counters, in order to identify any po-

tential bottlenecks. As can be seen from the results

shown in Figure 7, we can see that shader usage is ex-

tremely high, and is the primary bottleneck behind GPU

performance. The next closest performance metric, tex-

ture usage, peaks at less than 10%, which means that

system performance should scale well with future in-

creases in GPU shader performance.

The system used 140 MB of main memory and 188 MB

of GPU memory. This memory usage is mainly due to

the number of textures required to store all the particle

and rigid body attributes. Fortunately, with the amount

of memory available in most modern computers and

graphics cards, this memory usage is perfectly accept-

able, and allows us to use multiple particle-simulations

concurrently, along with other graphical assets. Note,

that the number of particles added to the system does

not affect the memory usage. Textures of a set size are

used to hold the particle and granule attributes. These

textures are allocated during the system set up. Thus

the memory usage is independent of the particle count.

6.3 Integrated System

Three scenarios were developed in order to test the var-

ious facets of the LOD framework.

Figure 9: Screen shot of the first test scene. The particle

simulation can be seen interacting with a model.

The first scenario contains one very high quality par-

ticle system. This is a stress test, to test the systems

ability to render and simulate a large particle system,

while also rendering the heightfield-based terrain, all

the while maintaining real-time performance. The par-

ticle system for this scenario consists of 115,502 gran-

ules (i.e. 462,008 particles).

In addition, a barrel model is dropped onto the particle

simulation. This model is made up of 6,261 particles.

This is done to showcase the realistic interactions, and
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Figure 10: Performance results from the first test sce-

nario.

puts further stress on the system. The performance re-

sults for this scenario are shown in Figure 10.

Figure 11: Screen shot of the second test scene. Three

simulations can be seen, each with a different scale.

The second scenario contains three particle systems,

with three different particle scales. Each scale repre-

sents a different distance from the camera. The aim of

this test is to verify that multiple particle simulations, of

different scales, may be used concurrently, whilst main-

taining real-time performance. This scenario represents

the general envisaged use case, with a few simulations

taking place at different distances from the user.

Figure 12: Performance results from the second test

scenario.

Each particle system in the scenario has a scale appro-

priate for the distance from the camera. The foreground

simulation contains 202,352 particles, the midrange

particle simulation contains 54,876 particles, and the

far particle simulation contains 25,776 particles. The

performance results for this scenario are shown in

Figure 12.

The final test consists of ten particle simulations. The

dynamic object for each particle system is added 10 sec-

onds after the last. This shows off the ability of the sys-

tem to handle many particle simulations, by disabling

updates once bodies have come to rest. Each simula-

tion is fairly complex, and contains between 55,000 to

75,000 rigid bodies (220,000 particles to 300,000 parti-

cles). A particle scale of 0.33 is used for each simula-

tion. The results are shown in Figure 14.

Figure 13: Screen shot of the third test scene. Ten par-

ticle simulations can be seen. Active systems are out-

lined in green, and systems at rest are outlined in red.

While both cards generally maintain real-time frame

rates, the GTX 460 falters in scenario 3. Closer inves-

tigation showed that due to the slower updates the par-

ticle system models took a longer time to come to rest.

By this time another particle system had been popu-

lated, thus competing for computational resources. This

in turn caused the updates for both simulations to slow

down, and when another simulation was added, the ef-

fect compounded, leading to a cascading drop in per-

formance. The GTX 770 on the other hand, is powerful

enough to ensure that this doesn’t occur. This suggests

that for mid-range and lower level graphics cards, the

particle systems used should not be too finely scaled,

in order to allow the dynamic objects to come to rest

quickly. Additionally, the number of concurrently ac-

tive particle simulations may also need to be limited.

While the stuttering effect has been reduced somewhat

by inserting particle data over multiple frames, it has

not been completely eliminated. This can be seen by

the downward spike after particle insertion in all the test

scenarios. However, the framerate stays high enough

that it is not too noticeable.
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Figure 14: Performance results for the third test scenario.

7 CONCLUSION

In this paper, we have presented our GPU-based LOD

technique for large-scale particle-based granular ter-

rains. The resulting system can simulate large-scale

granular terrain in real-time, by seamlessly switching

between the heightfield-based and particle-based repre-

sentations. Changes to the terrain in the particle-based

simulation persist in the heightfield-based system, by

virtue of a novel rendering-based conversion technique.

Performance results are promising, with both test

GPUs maintaining real-time performance, except for

in one of the three test scenarios, where the mid-range

GPU produced poor results. However, the system

requires many GPU resources to maintain real-time

performance, which currently limits its usefulness for

real applications. This limitation should hopefully be

alleviated by future increases in GPU performance.

It is important to remember that this paper represents

a proof of concept, and simply explores the potential

feasibility of such systems. Whilst this paper addresses

some of the issues with rendering large-scale granular

terrain in real-time, many issues remain, and thus there

are many possible avenues for future research in this

area. For instance, the rendering technique should be

updated to a system which more closely matches the

regular grid structure of heightfields. The heightfield to

particle system conversion could be optimised with pre-

generated particle configurations to stabilise, and allow

almost instantaneous conversions, and particle systems

could be refined to finer resolutions as the camera ap-

proaches them.
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