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ABSTRACT

We present a method to compute and visualize the curvature and torsion scalar fields derived from a vector field
defined on a multi-block curvilinear grid. In order to compute the curvature and torsion fields, we define a uniform
Cartesian grid of points in the volume occupied by the curvilinear grid and interpolate from the curvilinear grid to
the Cartesian grid to get the vector field at the Cartesian grid points. We can then use finite difference formulas to
numerically compute the derivatives needed in the curvature and torsion formulas. Once the curvature and torsion
have been computed at the Cartesian grid points, we employ a multi scale color coding technique to visualize these
scalar fields in orthoslices of the Cartesian grid. This multi scale technique allows one to observe the entire range of
values of the scalar field, including small, medium and large values. In contrast, if uniform color coding is used to
visualize curvature and torsion fields, it sometimes shows most of the values in a single predominant color, which
makes it impossible to distinguish between the small, medium and large values. As an example of this multi-scale
technique, we displayed the curvature and torsion fields in a computational fluid dynamics (CFD) simulation of an
industrial stirred tank and used these images to identify regions of low, medium and high fluid mixing in the tank.

Keywords
Curvature, Torsion, Vector Field Visualization, Nonlinear Color Map, Transfer Function Generation, Computa-
tional Fluid Dynamics.

1 INTRODUCTION

In computational fluid dynamics (CFD), visualization
of scalar fields derived from vector fields is an impor-
tant tool in identifying and understanding flow patterns
and complex fluid flow motions. There are a number of
visualization methods (cf. (Post et al., 2002) for a sur-

vey of flow visualization techniques) that are suitable
for various circumstances. In this work, we propose to
use multi-scale color coding to visualize the curvature
and torsion scalar fields derived from a vector field de-
fined on a multi-block curvilinear grid in order to inves-
tigate fluid mixing in CFD simulations of an industrial
stirred tank. Implementing this type of visualization
on a multi-block curvilinear grid presents considerable
challenges compared to a uniform grid.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit

1.1 Related Work

or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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Computing the curvature of an entire vector field was
introduced by (Theisel, 1995) for 2D vector fields, then
later was generalized for 3D vector fields by (Weinkauf
and Theisel, 2002) and included torsion, Gaussian cur-
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vature, and mean curvature, as well. They showed that
at the critical points, the curvature tends to infinity. We
extend their work to time-dependent vector fields de-
fined on multi-block curvilinear grids as opposed to
static vector fields defined on uniform grids.

(de Leeuw and van Wijk, 1993) introduced an interac-
tive probe to visualize a vector and other derived quan-
tities from the velocity gradient tensor such as acceler-
ation, curvature, torsion, and shear. They visualized the
curvature as a bended arrow, and the torsion as twisted
stripes around the bended arrow. While this approach
is explicit and very informative, this probe is imprac-
tical for an entire curvature field because the visualiza-
tion would quickly become cluttered. Instead, we opted
for a scalar visualization method. We examined the
curvature and torsion fields using orthoslices. For this
approach, it becomes crucial to choose the right color
mapping technique.

Research on generating color maps focuses on making
the scalar values more prominent and easy to visu-
alize. (Kindlmann and Durkin, 1998) introduced a
semi-automatic method of generating transfer func-
tions to find material boundaries in a volume. They
created a histogram volume which measured the
relationship between the scalar values and their first
and second derivatives, and used this information to
construct opacity functions. Later they further ex-
tended this approach to include curvature information
in their multi-dimensional transfer functions. Other
approaches of generating transfer functions include
topological-controlled methods as done by (Zhou and
Takatsuka, 2009). Alternatively, (Tzeng et al., 2003)
introduced a user interface that allows the user to
paint directly on slices of a volume, then automatically
define high-dimensional classification functions using
artificial neural networks. There also exists other work
in this area involving automatic (Hafen et al., 2013) and
manual (Pfister et al., 2001) generation of functions to
construct color maps.

These color mapping approaches focus on isolating a
specific region in space. In contrast, our multi scale
color coding technique allows us to show all of the ma-
jor ranges of a scalar field by simultaneously displaying
all of the variations in the curvature and torsion across
any given orthoslice.

We previously used multi scale color coding to display
the curvature and torsion along integration lines (path-
lines) in a vector field (Khurana et al., 2012). In this
paper we extend our previous work from integration
lines to scalar fields of the entire vector field. Thus here
we generate the curvature and torsion everywhere in the
stirred tank instead of just along pathlines.
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2 METHOD

In this method, the two major parts are 1) computation
of the curvature and torsion scalar fields, and 2) ren-
dering the scalar fields as orthoslices using multi scale
color mapping. In the first part, we read a data file,
of size 350 GB in binary HDF5 format, that contains
the vector field (fluid velocity) at the grid points of the
multi-block curvilinear grid used in the CFD stirred
tank simulations. This curvilinear grid is subdivided
into 2088 blocks and contains 3.1 million grid points.
The CFD simulation was run over 5700 time steps rep-
resenting 25 rotations of the stirred tank impeller (Roy
et al., 2010). We then do the following steps:

1. Define a 3D Cartesian grid of points in the stirred
tank that will be used to calculate the curvature and
torsion fields.

2. Since these Cartesian grid points are different from
the curvilinear grid points where the vector field is
given, we have to get the vector field at the Cartesian
points by interpolation. We do this using the Direct
Interpolation method which is described in (Bohara
et al., 2010).

3. Compute the first, second, and mixed derivatives of
the vector field with respect to x, y, and z at the
Cartesian grid points using finite difference formu-
las.

4. Use these derivatives to calculate the curvature and
torsion at the Cartesian grid points. This gives us
the curvature and torsion fields for the entire stirred
tank.

In part two, we render the resulting scalar fields as fol-
lows:

1. Construct a histogram of the scalar values, then de-
sign a multi scale color map. We show that the
use of conventional uniform color coding for the
whole range of these scalar values often gives a sin-
gle predominant color, making it impossible to vi-
sualize variations in the scalar values. In contrast,
multi scale color coding gives different colors for
the small, medium, and large scalar values, thereby
enabling one to visualize the entire range of these
values.

2. Extract a plane (orthoslice) from the Cartesian grid
on which the scalar fields are computed, and apply
the multi scale color map to the orthoslice. This
technique enables one to visualize the variations in
the scalar values throughout the orthoslice.

In the following subsections, we describe parts one and
two in more detail.
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2.1 Curvature and Torsion Computation

The CFD simulation models an ideal continuous stirred
tank reactor in which the fluid velocity V (vector field)
is continuous everywhere inside the tank. Since the dis-
crete vector field in the simulation represents an actual
continuous vector field, we can assume that the equal-
ity of mixed partial derivatives is true for our discrete
representation. Also we neglect any possible critical
points in the vector field and assume that its derivatives
are defined everywhere in the discrete grid.

Let V be the fluid velocity (vector field) in the CFD
stirred tank simulation:

V = (u,v,w) €))

where u, v and w are the x, y and z components of the
fluid velocity. The first derivatives of V with respect to
X,y and z are:

V, = (’/‘x;vmwx) ()
Vy = (uy, vy, wy) 3)
V. = (ug, vz, we) 4

where u,, v,, and w, are the first derivatives of u, v, and
w with respect to x, etc.

The second derivatives and mixed derivatives of V are:

Vi = (e Virs Wxx) ®)
Vyy = (tyy, vy, wyy) (6)
Vo = (s iz, Wiz) @)
Viy = (tay, Vay; Way) (®)
Vg = (thaz; Vazs Wiz ) )
Vyz = (ttyz, Vyz, Wyz) (10)

where iy, Vyy, Wy are the second derivatives of u, v, w
with respect to x, etc., and u,y, Vyy, Wy, are the mixed
derivatives of u, v, w with respect to x and y, and so on.

Let L be the position field of the fluid whose velocity
field (vector field) is V. Then the first, second and third
derivatives of L with respect to time are given by:

L=V (11)

L:qu—l—ny—i—wVZ (12)

L = (utty + vuy +wuy) Vit
(uve +vvy +wv,)Vy+
(uwy +vwy +ww, )V +
WV + szyy + WZVZZ—I-

2uvV,y 4+ 2uwV i + 20wV, 13)

Communication Papers Proceedings

The curvature k and torsion T are then given as:

LxL
_| T | (14)
detli, L,
_ et 1 (1)
|Lx L]

These formulas can be used to calculate the curvature
and torsion at any point in the stirred tank Cartesian
grid for any time step in the CFD simulations.

2.2 Multi Scale Color Coding

In designing a multi scale for color coding, one has to
specify the number of divisions in the scale, the range
of the scalar values in each division, and the color range
for each division. Generally one needs to visualize the
entire range of the scalar field values including small,
medium and large values, but if the range of values is
large, as in the case of curvature and torsion, uniform
color coding often gives a single predominant color for
most of the values which makes it difficult to distin-
guish between these values. We need to see the small
and medium values of the curvature and torsion in ad-
dition to the large values in order to determine the de-
gree of fluid mixing in different parts of the stirred tank.
Thus we have to choose a set of parameters for the multi
scale (the number of divisions and the range of scalar
values and colors for each division) that will enable us
to visualize the entire range of curvature and torsion
values.

Various techniques can be used to construct the multi
scale. In the method presented here, the number of di-
visions in the multi scale and the range of scalar values
in each division are determined manually so as to fa-
cilitate the visualization of the scalar field variations of
interest. A cumulative histogram of the scalar values is
used to determine the boundaries of the divisions so that
each division contains the desired percentage of scalar
values. The user can choose any number of divisions
and specify any range of scalar values and any range of
colors for each division in order to enhance the visual-
ization of the scalar values of interest.

An example of multi scale color coding is given in
figure 1, which compares the uniform and multi scale
color coded curvature field in an orthoslice in the xy
plane at time step 1 in the CFD stirred tank simulations.
A histogram of the curvature values, which range from
0 to more than 55, shows that about 41% of them are
less than 1, 72% are less than 2, 86% are less than 3,
92% are less than 4, 96% are less than 6, etc. The cur-
vature values were capped at 55 so that values greater
than 55 were treated as outliers and set to 55. If uni-
form color coding is used to display the curvature val-
ues from O to 55 on a color scale that goes from red to
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violet, most of the values are shown as shades of red
and cannot be distinguished from each other, making
it impossible to visualize the small, medium and large
values, as shown in figure 1(a).

In order to see the small, medium and large values of the
curvature, we manually designed the following multi
scale color mapping, which has 9 divisions and is piece-
wise linear in each division:

Division | Curvature Range | Percent Range
1 0-0.5 0-17.90
2 05-1 17.90 - 40.96
3 1-15 40.96 - 59.86
4 1.5-2 59.86 - 72.38
5 2-25 72.38 - 80.83
6 25-3 80.83 - 85.91
7 3-4 85.91-91.64
8 4-6 91.64 - 96.44
9 6-55 96.44 - 100

The curvature ranges and corresponding percent ranges
used in this multi scale mapping were obtained manu-
ally from a cumulative histogram of the curvature val-
ues. The color scale that we are using goes from red
to violet as its color index goes from O to 1. The color
range for each division is specified by converting the
percent range to decimal percents and using these as
the starting and ending color indexes for that division
(e.g., the starting and ending color indexes for division
2 are .1790 and .4096). Within each division, the color
index varies linearly with the curvature value:

(v—vi).(ca—c1)
V2 — V]

c=ci+ (16)
where v is the curvature value, c is the corresponding
color index, v; and v, are the starting and ending curva-
ture values of the division, and ¢ and ¢, are the starting
and ending color indexes. Thus this multi scale color
coding is piecewise linear.

When this multi scale scheme is used to display the cur-
vature in the orthoslice, one can now easily distinguish
between the small, medium and large curvature values,
as shown in figure 1(b). The red and orange areas, yel-
low and green areas, and blue and violet areas corre-
spond to small, medium, and large curvature, respec-
tively. Thus the red and orange areas indicate a small
degree of fluid mixing while the blue and violet areas
indicate a large degree of mixing.

3 RESULTS

We used the multi scale color coding technique de-
scribed above to color code the curvature and torsion
fields in a specified orthoslice of the stirred tank’s uni-
form Cartesian grid. The orthoslice we used is paral-
lel to the xy plane and is located around the middle of
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Curvature at Time Step 1, Uniform Scale

y-

(b) Multi scale color coding for curvature

Figure 1: Comparison of uniform and multi scale color coding
of an orthoslice of the curvature field.

the stirred tank. The main idea is to visualize the vari-
ations of the curvature to see the regions of high and
low straining of the fluid elements, and to visualize the
variations of the torsion to see where fluid elements get
twisted the most. These are shown in separate sections
which compare the uniform and multi scale color cod-
ing methods for each quantity. The dimensions of the
orthoslices are 100 x 100 x 1 in the x, y, and z direc-
tions respectively. We rendered both uniform scale and
multi scale color coded orthoslices of the curvature and
torsion fields at time step 1 in order to compare the uni-
form and multi scale color coding methods (figures 2
and 3). We then rendered 12 multi scale color coded
orthoslices, including 6 for the curvature field and 6 for
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the torsion field at time steps 1, 1000, 2000, 3000, 4000,
and 5000, in order to observe the scalar fields at differ-
ent time steps (figure 3).

3.1 Curvature Field

In figure 1(a), uniform color coding is used to display
the curvature field in an orthoslice in the xy plane at
time step 1. As mentioned previously, a cumulative his-
togram of the curvature values shows that about 92%
of them are less than 4, but in the uniform color scale
shown in the figure, curvature values less than 4 are in
the bottom 7% of the color scale which contains only
shades of red. Thus when uniform color coding is em-
ployed, 92% of the curvature values are displayed using
only 7% of the color scale and hence these curvature
values all appear as shades of red and cannot be dis-
tinguished from one another. This means that in gen-
eral, uniform color coding cannot distinguish between
the small, medium and large curvature values. It can
only distinguish the very large ones from the others.

In order to visualize the small, medium and large cur-
vature values, we used the multi scale color map de-
scribed above to display the curvature field in the or-
thoslice, which is shown in figure 1(b). In this multi
scale method, the lowest 92% of the curvature values
are displayed using 92% of the color scale instead of
only 7%, the lowest 96% of the curvature values are
displayed using 96% of the color scale, etc. This causes
the small, medium, and large values to be shown in dis-
tinctively different colors (red and orange, yellow and
green, and blue and violet, respectively) so that one can
easily distinguish between them. In the figure we can
clearly see that in general the outer regions near the baf-
fles of the stirred tank produce significant curvature and
flow distortion. This reaffirms the expectation that the
baffles disturb the rotation of the fluid causing distor-
tion and stretching of the fluid elements, which pro-
motes mixing. In general the lowest curvature values
appear to be near the inner rotating shaft, as expected.

Figures 4(a)-4(f) show the multi scale color coded cur-
vature images in the orthoslice at time steps 1, 1000,
2000, 3000, 4000 and 5000. The multi scale used in
these 6 images is similar to the one described in Sec-
tion 2.2 except that the upper end point of the curvature
range in the last division is 200 instead of 55 (i.e., the
curvature values are capped at 200 instead of 55) and
the percent ranges for the 9 divisions are slightly differ-
ent at each of the 6 time steps. Thus figure 4(a) is the
same as figure 1(b) except that the curvature values in
figure 4(a) are capped at 200 instead of 55 in order to be
consistent with figures 4(b)-4(f). In all of these images,
the multi scale color coding enables one to clearly vi-
sualize the small, medium and large curvature values as
the red and orange, yellow and green, and blue and vio-
let areas, respectively. It can be observed in these time
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Absolute Value of Torsion at Time Step 1, Uniform Scale
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(b) Multi scale color coding for torsion

Figure 2: Comparison of uniform and multi scale color coding
of an orthoslice of the torsion field.

series images that in general the regions of high and low
curvature do not change spatial locations significantly
with time. This type of visualization and analysis is not
possible with uniform color coding.

3.2 Torsion Field

Figure 2(a) shows the uniform color coded torsion field
in the orthoslice at time step 1. As mentioned in Sec-
tion 1.2, the torsion values can be positive or negative,
but we are visualizing only the absolute value of the tor-
sion, neglecting whether the twist is clockwise or coun-
terclockwise since the degree of fluid mixing depends
primarily on the magnitude of the torsion rather than its
direction. A cumulative histogram of the absolute value
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of the torsion values shows that about 94% of them are
less than 17, but in the uniform color scale shown in the
figure, torsion values less than 17 are in the bottom 6%
of the color scale which contains only shades of red.
Thus uniform color coding uses only 6% of the color
scale to display 94% of the torsion values and hence
these torsion values all appear as shades of red and can-
not be distinguished from each other. This means that in
general, as in the case of curvature, uniform color cod-
ing cannot distinguish between the small, medium and
large torsion values. It can only distinguish the very
large ones from the others.

In order to visualize the small, medium and large tor-
sion values, we manually constructed the following
multi scale color mapping, which has 10 divisions and
is piecewise linear in each division:

Absolute Value of

Division Torsion Range Percent Range
1 0-1 0-18.61
2 1-2 18.61 - 36.07
3 2-3 36.07 - 50.59
4 3-4 50.59 - 61.18
5 4-5 61.18 - 68.69
6 5-6 68.69 - 74.13
7 6-8 74.13 - 82.30
8 8-11 82.30 - 89.55
9 11-17 89.55 - 94.40
10 17 - 300 94.40 - 100

The absolute value of torsion ranges and corresponding
percent ranges used in this multi scale mapping were
obtained manually from a cumulative histogram of the
torsion values, which were capped at 300. The above
multi scale color map was used to display the torsion
field in the orthoslice, which is shown in figure 2(b). In
this multi scale method, the lowest 94% of the torsion
values are displayed using 94% of the color scale in-
stead of only 6%. This enables one to easily visualize
the small, medium, and large torsion values, which are
shown in red and orange, yellow and green, and blue
and violet, respectively.

Figures 4(g)-4(1) show the multi scale color coded tor-
sion images in the orthoslice at time steps 1, 1000,
2000, 3000, 4000 and 5000. The multi scale used in
these 6 images is similar to the one used in figure 2(b)
except that the upper end point of the torsion range in
the last division is 600 instead of 300 and the percent
ranges for the 10 divisions are slightly different at each
of the 6 time steps. Thus figure 4(g) is the same as
figure 2(b) except that the torsion values in figure 4(g)
are capped at 600 instead of 300 in order to be consis-
tent with figures 4(h)-4(1). In all of these images, the
multi scale color coding enables one to clearly distin-
guish between the small, medium and large torsion val-
ues, which is not possible with uniform color coding.
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Figure 3: Torsion isosurface of a sub grid of the stirred tank.

The regions of high torsion are associated with fluid
elements that are significantly distorted in the angular
plane and hence likely to be well mixed. As in the case
of curvature, in general the outer regions of the stirred
tank near the baffles produce areas of high torsion and
hence high mixing, while low and medium torsion ar-
eas, which indicate low and medium mixing, are pri-
marily located in the interior of the tank.

Figure 3 shows a sample non color coded torsion iso-
surface for the iso value 979.1. In future work we plan
to generate multi scale color coded isosurfaces for both
curvature and torsion to complement the multi scale
color coded orthoslices.

4 DOMAIN EXPERT REVIEW

Images for the orthoslices considered here are gener-
ated using both the multi scale and the uniform color
coding techniques. The multi scale images can be ob-
served for analysis of mixing performance as they are
capable of displaying both the well and poorly mixed
zones in the stirred tank. The greater the values of cur-
vature and torsion, the greater the mixing of the flu-
ids in that region. In figure 4, there are many regions
(blue and violet) of high curvature and torsion indicat-
ing high mixing. These regions are typically located
in the near-baffle regions close to the stirred tank wall.
Similarly, there are areas (red and orange) of low cur-
vature and torsion which indicate low mixing and are
typically located in the interior of the tank. These types
of observations are not possible in the uniformly color
coded images as they are visually incapable of provid-
ing a definitive analysis of the scalar fields.

ISBN 978-80-86943-71-8



WSCG2014 Conference on Computer Graphics, Visualization and Computer Vision

(j) Torsion at time step 3000 (k) Torsion at time step 4000 (1) Torsion at time step 5000

Figure 4: Curvature and torsion fields at various time steps, displayed using multi scale color coding.
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S CONCLUSION

In this paper, we demonstrated the computation and vi-
sualization of curvature and torsion scalar fields that are
derived from a vector field (the fluid velocity) defined
on a multi-block curvilinear grid used to model a stirred
tank reactor. We showed that if uniform color coding is
used to display the scalar quantities, then most of them
are shown in the same color (red), making it impossible
to distinguish between the small, medium and large val-
ues. Instead, we used a multi scale color coding tech-
nique that displays the small, medium, and large values
in distinctively different colors (red and orange, yellow
and green, and blue and violet, respectively) so that one
can easily distinguish between them. This enables one
to estimate the degree of fluid mixing in different parts
of the stirred tank since curvature and torsion are in-
dicators of fluid mixing (the greater the curvature and
torsion, the greater the mixing). Thus if the values of
a scalar field are not uniformly distributed between the
lowest and highest values, which is usually the case,
then multi scale color coding is needed to effectively
display these values. In future work we plan to generate
multi scale color coded isosurfaces of the curvature and
torsion fields, which will complement the multi scale
color coded orthoslices shown in this paper.
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