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Spectrum of the Sigma Delta Modulation

Abstract – The objective of this paper was describe spectrum of the sigma delta mod-
ulation and their normalization to the Power Spectral Density (PSD) .
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I. MOTIVATION

To validate an analog-to-digital conversion we first need to answer questions:(i) what
is a converter resolution? (ii) what is an accuracy of the converter? The resolution can be
expressed by the number of discrete levels over the range of an analog input signal, and
the smallest change in the value of an input signal results in the change of digital output.
If modulators are validated separately, without the digital part of a Sigma-Delta (Σ∆)
converter, we can hardly speak about resolutions (there is no digital world at the output).
In our case, when the modulator is validated separately, an accuracy of the modulator
is investigated by the comparison of the signal power and the total noise power in band
of interest. Because the signal and the total noise power should be extracted from the
spectrum, attention is focused on analysis in the frequency domain.

II. FREQUENCY SPECTRUM OF THE MODULATORS

A Sigma-Delta Modulator (Σ∆M) is a noise-shaping converter - the quantization
noise is pushed away from the desired frequency band - thus the attention should be
focused on the frequency domain representation of the modulators output stream.

A. Discrete Fourier Transform and Periodogram
Spectral properties can be obtained by Dicrete Fourier Tranform (DFT), where a vec-

tor of N numbers xk, k = {0, ... , N − 1} is transformed into a vector of N complex
numbers ym, m = {0, ... , N − 1}. To obtain DFT, algorithms called Fast Fourier Trans-
form (FFT) is used due his efficiency. The FFT embedded in ELDO offers two type of
normalization: (i) multiplying by 2/NBPT , default option and (ii) no normalization. In
case of the latter, the definition of FFT can be written:

Ym =
N−1∑
k=0

xke
−2πimk

N , m = 0, ... , N − 1, (1)

Input data of a FFT algorithm, xk, are purely real (reference voltages of Digital to Ana-
log Converter (DAC)), what result in symmetry YN−m = Y ∗

m, where Y ∗
m denotes complex

conjugation. Assume an example of testbench, where number of points NBPT = 4096
(is even), then Y0 and YNBPT/2 are real and the upper half of the vector, {YNBPT/2+1 , ... ,



YNBPT−1}, in never computed. The result of FFT is vector, {Y0, ... , YNBPT−1} of data
composed by the real part and the imaginary part:

Yfm = Re(Yfm); fm = 0, ..., NBPT/2

Yfm = Im(Yfm); fm = NBPT/2 + 1, ..., NBPT − 1
(2)

The magnitude of the vector obtained by the FFT algorithm can be rewritten:

Ymag =
√

Re(Yfm)2 + Im(Yfm)2 (3)

Basically, the spectral estimation problem can be expressed by the formulation:”From
a finite record of stationary data sequence, estimate how the total power is distributed
over frequency”[1]. There are several different convention to normalized Power Spectrum
(PS) which is also called PSD.

Suppose sigma-delta bitstream as the signal (data length is OSR fs) then the Fourier
transform exists and the PSD can be obtained by two operations (i) autocorrelation +
Fourier transform, (ii) Fourier transform + magnitude squared. In that case of later the
estimation of PSD is called the periodogram and is defined by the N/2 + 1 frequency
bins[2], as follows:

P (0) =
Ymag

2(0)

NBPT 2 , P (N/2) =
Ymag

2(N/2)

NBPT 2 (4)

P (fm) =
Ymag

2(fm) + Ymag
2(N − fm)

NBPT 2 , fm = 1, ..., (NBPT/2)− 1, (5)

In terms of the frequency domain analysis, there are several pitfalls (circumstances
needed to be considered), which arise from a discrete spectrum representation of a sam-
pled signal. The first problem is usually associated as a spectral leakage and the second
issue is related to uncertainty. The reason for the leakage is that finite data sequence is
equal to windowed data sequence by the square window function. Its Fourier transform
has substantial components at high frequencies. To reduction spectral leakage, particular
window can be used. As consequence, scaling and normalization is needed because a
spectral spike and noise floor are depended on the window type and the window length.

In term of windowing, two parameters, Coherency Gain (CG) and Noise Gain (NG),
can be defined[3]:

CG =
1

NBPT

N−1∑
i=0

w(i), i = 0, ... NBPT − 1, (6)

NG =
1

NBPT

N−1∑
i=0

w(i)2, i = 0, ... , NBPT − 1, (7)

B. Normalization and Power Spectrum
First, the result of the peridogram is correct only when rectangular windows is used.

Due to spectral leakage, Hann window is preferred by the author and equations 4 and 5
can be rewritten:

PSrms(fm) =
P (fm)

NG2
Hann

, fm = 0, ..., (N/2)− 1, (8)



This normalization of the PSD is sometimes called modified periodogram. In the
section 2.1, periodogram was defined as the estimator of PS. But the question is in what
sense is the estimator, PSrms(fm), of the power spectrum ”true” power spectrum of the
sigma-delta bitstream?

The signal, located at frequency bins {fin − fres, fin, fin + fres} (Hann window is
used), has the power PsigRMS equal to height of frequency bins:

PsigRMS =

fin+fres∑
fm=fin−fres

PSrms(fm), (9)

One problem with this normalization is that noise floor is not displayed correct. Finite
length data of the bitstream result in finite frequency resolution, fres, and the power of the
noise (this is also true for the signal) is accumulated in particular frequency bins. In other
worlds, the power represented frequency bins fm = {PSrms(0), ... , PSrms(N/2)} are
not equal to the continuous PSrms(f) at exactly fm. We could expect the PSrms(m) to
be some kind of average ”true” continuous time power spectrum, PSrms(f), at frequency
interval {fm − fres/2, fm + fres/2} [2].

Roughly speaking, the frequency bins, fm, has the width equal to frequency resolu-
tion, fres, centered at fm. To display PSD as some kind of continuous power spectrum,
modified periodogram can be extended, divided by the with of a frequency bin equal to
fres = fs/NBPT , as follows:

PSDrms(fm) =
P (fm)

fresNGHann

=
P (fm)NBPT

fsNGHann

, (10)

Although, the vector produced by the equation 10 gives the discrete-time sequence of
the frequency domain, it represent a continuous-time power spectrum width the resolution
given by fres.

III. TEST CASE OF THE SIGMA DELTA BITSTREAM

The example of normalized frequency spectrum of simulated output bit stream of a
continuous-time modulator is shown in Figure I. Blue waveform represents normalization
given 10 and green represents frequency bins of discrete power spectrum obtained 8. The
modulator is oversampled by OSR = 64 with the sinusoidal input signal of fin = 250Hz
and Asin = 0.5V amplitude. The spectrum is computed from NBPT = 4096 output
samples. The input signal is found in frequency, fin, equal to 250Hz and the effect of
noise shaping is also clearly visible in the chart.

To validate normalization given by the equation 10, the power of the output bitstream
in the time domain, Pt, must be equal to the total power in the frequency range 0, ..., fs/2,
Pf ,:

Pt =
1

Ttran

∫ Ttran

0

(Vout sdm(t)− VCM)2dt =|VDDA=2.5V = 1.5625[W ], (11)

Pf =

∫ fs

0

PSDrms(f)df =|VDDA=2.5V = 1.5625[W ], (12)

The input sinusoidal signal with peak amplitude, Asin = 0.5, has a power:

P in
sin =

1

Ttran

∫ Ttran

0

(Asinsin(ϕ+ jωint))
2dt |Asin=0.5V = 125[mW ], (13)



The signal power of an input sinusoidal signal, Asin sin(ϕ + 2πfsin), stored in Σ∆
bitstream, is distributed in the frequency range fsin−2 fres, ..., fsin+2 fres of the modified
periodogram, equation 10, and we can write:

P sd
sin =

fin+fres∑
fm=fin−fres

PSrms(fm) ≈
∫ fsin+2fres

fsin−2fres

PSDrms(f)df = 124.64mW (14)

IV. CONCLUSION

The signal power extracted from the normalized spectrum P sd
sin = 124, 6mW corre-

spond to value of power in the time domain, Psin = 125[mW ]. The difference is caused
by the transfer function of a loop filter of the modulator.
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Figure I. Normalized power spectral density.
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and SGS-2015-002: Modernı́ metody řešenı́, návrh a aplikace elektronických a komu-
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