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Q1Lithium borate Li3B5O8(OH)2 with large second
harmonic generation and a high damage
threshold in the deep-ultraviolet spectral range†

A. H. Reshak

The electronic structure and linear and nonlinear optical susceptibility dispersions of lithium borate

Li3B5O8(OH)2 are comprehensively investigated. The investigation is achieved on Li3B5O8(OH)2 in the

form of single crystals, taking into account the influence of the packing of the structural units on the

linear and nonlinear optical susceptibility dispersion. The calculations highlight that the BO3 structural

unit packing is the main source of the large birefringence in Li3B5O8(OH)2 due to the high anisotropic

electron distribution, and, hence, it affects the macroscopic second harmonic generation (SHG)

coefficients. This work provides a new path for the design of UV-NLO materials with high SHG

efficiencies and short cutoff edges by introducing an alkali metal into borates. The large SHG is due to

hyperpolarizability formed by co-parallel BO3 triangle groups. The absorption edge of Li3B5O8(OH)2
occurs at l = 190 nm and the optical band gap is estimated to be 6.52 eV, which is in good agreement

with the experimental data (6.526 eV). The energy gap value confirms that Li3B5O8(OH)2 exhibits an

exceptional laser damage threshold and is expected to produce coherent radiation in the deep-

ultraviolet (DUV) region. The obtained value of SHG at l = 1064 nm is about 1.5 times that of the well-

known NLO crystal KH2PO4 (KDP) at l = 1064 nm and 3.5 times that of KDP at l = 190 nm, which is

transparent down to the DUV region. Thus, one can conclude that the combination of an alkali metal

with borates leads to the generation of promising DUV-NLO crystals. This work is aimed at qualitative

and quantitative investigation to report a reliable SHG value and provide details of the NLO tensor for

bulk Li3B5O8(OH)2 single crystals.

1. Introduction

The second harmonic generation (SHG) phenomenon is of
great interest and has attracted tremendous attention in laser
science and technology.1 Nonlinear optical (NLO) crystals are
widely used in optical frequency conversion2–7 and produce
laser radiation at wavelengths that are inaccessible via conven-
tional sources.8–11 In order to produce laser radiation in the
ultraviolet (UV) and deep-ultraviolet (DUV) regions, a wide
energy band gap is very essential. Therefore, the crystal should
exhibit a short absorption cutoff and relatively high birefrin-
gence, and the refractive indices dispersion in the UV and DUV
regions must be small enough to match the fundamental wave
with SHG light.12 Thus, the designing of efficient and high-
performing NLO crystals remains challenging. Borate NLO

crystals are among the most promising candidates for this
job.13,14 In borate NLO crystals, B and O atoms form planar
triangles (BO3)3� and (BO4)5� polyhedra. The BO3 groups can
adopt a coplanar configuration promoting birefringence and
SHG. In BO3 groups, three O atoms are linked with a B atom,
eliminating three dangling bonds of the BO3 groups, which
further widens its transparence in the UV and DUV region.
Moreover, the highly anisotropic electron distribution in the
BO3 group favors the NLO properties and birefringence,15 and
the large electro-negativity difference between B and O atoms is
very favorable for transmittance of short-wavelength light.16

KBe2BO3F2 (KBBF) and Sr2Be2B2O7 (SBBO) single crystals17–19

are very good and promising NLO crystals for generating SHG
in the DUV region but due to the high toxicity of the beryllium
oxide powders, it remains challenging to safely grow crystals of
large size. Therefore, searching for safely grown novel NLO
crystals which are able to produce coherent radiation in the UV
and DUV regions has attracted the attention of many research-
ers. Recently, Yang et al.15 substituted Be by Zn to eliminate the
toxicity components inherent in the synthesis of KBBF and
SBBO from the beryllium oxide powder. Therefore, the
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discovery of new crystals opens the way to safe crystal growth
and increases the efficiency of the SHG to almost double in
borate crystals due to the presence of the distorted (ZnO4)6�

tetrahedra. Moreover, the introduction of Zn atoms causes a
red-shift of the CsZn2B3O7 absorption edge to 218 nm.15 We
should emphasize that the unique photochemistry of the
borate non-centro-symmetric crystals may be utilized to launch
some new photoreaction pathways. Lithium borates have
attracted significant interest due to their outstanding proper-
ties and structural diversity, and the latter is very impressive
due to the fact that boron coordinates with three or four oxygen
atoms forming a BO3 triangle or a BO4 tetrahedron. The BO3

triangle or BO4 unit defines the structure of the borate. Because
of the [BO3] and [BO4] units, borate crystals are often found to
possess hybridized electronic band structures. Lithium borates
exhibit piezoelectricity performance,20 a strong NLO effect21

and fast ionic conduction.22 We should emphasize that the
presence of lithium in the borate crystals (Li3B5O8(OH)2) makes
these crystals efficient NLO crystals in the UV and DUV regions
which is attributed to the fact that the alkali-metals do not have
the d–d or f–f electronic transitions in the closed d or f orbitals
which have an adverse influence on the band gap value. It has
been reported that the polar Li-borates, for instance,
Li3B5O8(OH)2 or Li2B4O7

23,24 are promising materials for non-
linear optical, acoustic, and thermo luminescence
applications.25 Such promising properties have motivated
researchers to search for novel acentric or polar compounds
in borates with lithium atoms, which are relatively rare.

Due to the excellent properties of alkaline metal borates, the
combination of the alkaline metal with borate is expected to
produce a new class of novel NLO crystals. Also, it has been
reported that the combinations of the alkaline metal borates
with wide transparency are prospective materials for efficient
NLO properties. It is well known that alkaline metal borates
have a perovskite-like structure. The compounds with a
perovskite-like structure display interesting structure–property
relationships. It has been reported that the introduction of
alkali metal atoms can widen the transparency of borates in the
ultra-violet region.26–29 Thus the incorporation of the alkali
cations into the borate system could lead to interesting and
novel properties. As Li3B5O8(OH)2 crystals possess a perovskite-
related structure, it is expected that they exhibit wide transpar-
ency which makes them promising candidates for ultra-violet
absorption edge materials. These unique properties can make
Li3B5O8(OH)2 ideal NLO crystals. It has been reported that
Li3B5O8(OH)2 crystals display some very unusual growth
features that are absent in many other alkali borates.30

Therefore, based on previous experimental work on the
synthesis of Li3B5O8(OH)2 single crystals, we use this advantage
to investigate the sources of large linear and nonlinear optical
properties in Li3B5O8(OH)2 single crystals taking into account
the influence of the packing of structural units. It is important
to mention that, on the basis of anionic group theory,31 the
overall SHG response of a crystal is the geometrical super-
position of the second-order susceptibilities. Therefore, the
packing of the BO3 structural unit may also affect the

macroscopic SHG coefficients.32 The large SHG is due to
hyperpolarizability formed by the cations and co-parallel BO3

triangle groups.32 Therefore, this work is aimed at qualitative
and quantitative investigation to report reliable SHG values and
the details of the NLO tensor for Li3B5O8(OH)2 single crystals.

2. Materials and method
2.1. Methodology

In order to gain insight into the microscopic mechanism of the
linear and nonlinear optical properties of Li3B5O8(OH)2 single
crystals, we performed first-principles calculations using the
full-potential method. To perform accurate calculations, the
experimental crystallographic data of lithium borate
Li3B5O8(OH)2

23,25,30 are optimized utilizing the all-electron
full-potential method (wien2k code33) within the Perdew–
Burke–Ernzerhof generalized gradient approximation (PBE-
GGA).34 The resulting optimized geometrical structure is used
to calculate the ground state properties using the recently
modified Becke–Johnson potential (mBJ).35 The crystal struc-
ture of lithium borate Li3B5O8(OH)2 is depicted in Fig. 1. For
the DFT calculation, the basis functions in the interstitial
region are expanded up to RMT � Kmax = 7.0 and inside the
atomic spheres for the wave function. lmax = 10 and the charge
density is Fourier expanded up to Gmax = 12 (a.u.)�1. To obtain
accurate self-consistency, a mesh of 4500

-

k points in the
irreducible Brillouin zone (IBZ) is used. The self-consistent
calculations are converged since the total energy of the system
is stable within 0.00001 Ry. A mesh of 50 000

-

k points in the IBZ
is used to perform the calculation of the linear and NLO
properties. The inputs required for calculating the linear and
NLO properties are the energy eigenvalues and eigenfunctions
which are the natural outputs of band structure calculation.
The linear optical properties are calculated using the optical
code implemented in the Wien2k package;33 for more details
we refer readers to the users’ guide36 and ref. 37. The formalism
for calculating the nonlinear optical properties is given
elsewhere.38–41

It is well known that the DFT approaches have the ability to
accurately predict the ground state properties of the materials,
and the developed analytical tools are vital to investigate their
intrinsic mechanism. This microscopic understanding has
further guided molecular engineering design for new crystals
with novel structures and properties. It is anticipated that
first-principles material approaches will greatly improve the
search efficiency and greatly help experiments to save
resources in the exploration of new crystals with good
performance.42–51 For instance, several researchers have used
DFT calculations for exploration of the linear and nonlinear
optical properties of new NLO materials and have found good
agreement with the experimental results. We would like to
mention here that, in our previous studies,52–55 we have
calculated the linear and nonlinear optical properties using
the FPLAPW method for several systems whose linear and
nonlinear optical susceptibility dispersions are known

1

5

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55

2 | Phys. Chem. Chem. Phys., 2017, 00, 1�12 This journal is �c the Owner Societies 2017

Paper PCCP



experimentally and very good agreement with the experi-
mental data was obtained. Thus, we believed that our

calculations reported in this paper would produce very accu-
rate and reliable results.
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Fig. 1 (a–c) The crystal structure of Li3B5O8(OH)2 which crystallizes in the noncentrosymmetric tetragonal space group P41212, No. 92 with four
formula units per unit cell. The unit cell consists of two lithium, three boron and five oxygen atoms i.e. ten independent atoms. The crystal structure of the
tetragonal lithium borate Li3B5O8(OH)2 consists of Li–O polyhedra and the [B5O8(OH)2]3� polyborate anion. The [B5O8(OH)2]3� polyborate anion consists
of two 6-membered rings in which two B atoms are surrounded by three O atoms (BO3 triangle), and the other three B atoms are surrounded by four O
atoms (BO4 tetrahedron). Each 6-membered ring is linked by a common BO4 tetrahedron and consists of one BO3 triangle, one BO3(OH) tetrahedron,
and a common BO4 tetrahedron. The [B5O8(OH)2]3� units are linked together through four exocyclic O atoms to neighboring units and formed a 3-D
structure. Moreover, there also exist hydrogen bonds between the framework hydroxyl groups and the exocyclic O atoms. The Li+ ions are located in the
anionic [B5O8(OH)2]3� framework and compensate its negative charge. There are two kinds of coordinated forms for Li+ ions. Li1 exhibits a 5-fold
coordination and coordinates to three O atoms from B–O–B bridges and two O atoms from hydroxyl groups. Li2 exhibits a 6-fold coordination and
coordinates to four O atoms from B–O–B bridges and two exocyclic O atoms. The BO3 triangles adopt a nearly coplanar configuration, which enhances
the SHG and the birefringence in borate crystals.
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2.2. Crystal structure

It has been reported that Li3B5O8(OH)2 crystallizes in the
noncentrosymmetric tetragonal space group P41212, No. 92
with four formula units per unit cell and unit cell parameters
of a = 6.891 (4) Å, c = 14.615 (12) Å.23,25,30 The unit cell consists
of two lithium, three boron and five oxygen atoms i.e. ten
independent atoms23,25,30 (see Fig. 1). The crystal structure of
the tetragonal lithium borate Li3B5O8(OH)2 consists of Li–O
polyhedra and the [B5O8(OH)2]3� polyborate anion. The
[B5O8(OH)2]3� polyborate anion consists of two 6-membered
rings in which two B atoms are surrounded by three O atoms
(BO3 triangle), and the other three B atoms are surrounded by
four O atoms (BO4 tetrahedron). Each 6-membered ring is
linked by a common BO4 tetrahedron and consists of one
BO3 triangle, one BO3(OH) tetrahedron, and a common BO4

tetrahedron. The [B5O8(OH)2]3� units are linked together
through four exocyclic O atoms to neighboring units and
formed a 3-D structure. Moreover, there also exist hydrogen

bonds between the framework hydroxyl groups and the exocyc-
lic O atoms. The Li+ ions are located in the anionic
[B5O8(OH)2]3� framework and compensate its negative charge.
There are two kinds of coordinated forms for Li+ ions. Li1
exhibits a 5-fold coordination and coordinates to three O atoms
from B–O–B bridges and two O atoms from hydroxyl groups. Li2
exhibits a 6-fold coordination and coordinates to four O atoms
from B–O–B bridges and two exocyclic O atoms.

The experimental crystallographic data23,25,30 were used as
input to perform geometrical relaxation. The experimental
lattice parameters were optimized and the experimental atomic
positions were relaxed by minimizing the forces acting on each
atom; we assume that the structure is totally relaxed when the
forces on each atom reach values less than 1 mRy/a.u. The
relaxed geometry of Li3B5O8(OH)2 is provided in the ESI.†
Geometrical relaxation was achieved by using PBE-GGA. From
the relaxed geometry, the electronic band structure was
obtained using mBJ. We should emphasize that the mBJ
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55Fig. 2 (a) Calculated electronic band structure of Li3B5O8(OH)2 along with the enlarged bands around the Fermi level i.e. the VBM and the CBM; (b–e)
the calculated angular momentum projected density of states of Li3B5O8(OH)2.
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succeeds by a large amount in bringing the calculated energy
gap closer to the experimental one. Therefore, the results
obtained by mBJ are shown below. Based on the calculated
band structure, the complex first-order linear and second-order
non-linear optical dispersions are obtained.

3. Obtained results and discussion

The obtained electronic band structure of the tetragonal
Li3B5O8(OH)2 crystals reveals the nature of the band gap and
the high k-dispersion bands around the Fermi level (EF) as
shown in Fig. 2a. One can see that the top of the valence band
(VBM) is located at the M point of the first BZ whereas the
bottom of the conduction band (CBM) is situated at G resulting
in a direct band gap. The calculated energy band gap’s value
using mBJ is estimated to be 6.52 eV in close agreement with
the experimental values (6.526 eV).23,25,30 Therefore, a material
with such an energy band gap value is expected to possess a
high laser damage threshold.56,57 It is necessary to highlight
that the high k-dispersion bands around EF possess low effec-
tive masses and, hence, high mobility carriers, which enhances
the charge transfer process. The mobility of the photogenerated
carriers significantly influences the SHG efficiency. Moreover,
the great effective mass difference (see Table 1) between the
electron (e�) and the hole (h+) can facilitate the e� and h+

migration and separation, and finally improve the SHG
performance.

To better understand the relationship between electronic
structures and optical properties, the total and the angular
momentum projected density of states (PDOS) are computed as
shown in Fig. 2b–e. This will help in gaining a detailed
description about the orbitals that form the VBM and the
CBM and the orbitals which are responsible for the optical
transitions according to the dipole selection rules. The
obtained PDOS helps in identifying the angular momentum
character of the various structures. It was found that the VBM
originates mainly from O-2p states with small contribution
from Li-2s and O-2s states whereas the CBM is formed by O-
2p and B-2p states with small contributions from H-1s, O-2s
and Li-2s states. Furthermore, a strong hybridization between
Li-2s, O-2s and Li-2s is observed, and also O-2-p states form
strong hybridization with B-2s/2p states. The hybridization
favors the enhancement of the covalent bonding, and hence,
the optical performance due to the fact that covalent bonding is
more favorable for the transport of the carriers than the ionic
one.58

In order to elucidate the characteristics of chemical bonding
of Li3B5O8(OH)2, the calculated angular momentum projected
density of states was used (Fig. 2b–e). The structure of the
valence bands that is confined between �8.0 eV and EF is

mainly formed by O-2s/2p, H-1s, Li-2s and B-2s/2p orbitals.
The total number of electrons/electron volts (e/eV) of these
orbitals was obtained as follows; O-2p orbital 0.7 e/eV, B-2p
orbital 0.28 e/eV, B-2s orbital 0.28 e/eV, Li-2s orbital 0.016 e/eV,
O-2s orbital 0.038 e/eV and H-1s orbital 0.082 e/eV. One can
conclude that some electrons from O-2s/2p, H-1s, Li-2s and B-
2s/2p orbitals were transferred to the VBs and participated in
the interactions between the atoms to form covalent bonding.
The strength of the covalent bond depends on the degree of
hybridization and electro-negativity differences between the
atoms. This can be seen directly from the contours of the
valence electronic charge density of each atom in Li3B5O8(OH)2.
These contours were obtained in different crystallographic
planes as shown in Fig. 3. Fig. 3a, shows the (1 0 0) crystal-
lographic plane; it can be seen that the B atom forms strong
covalent bonds with the nearest O atoms in BO3 and BO4 (see
Fig. 3b–d). Due to the electro-negativity differences between B
(2.04) and O (3.44) charge transfer occurs towards O atoms as
they are surrounded by uniform spheres. It was reported that in
borate materials, the large electro-negativity difference between
B and O atoms is very favorable for transmittance of short-
wavelength light.59 In general, the B and O atoms in borates
form planar triangles (BO3)3� and (BO4)5� polyhedra. The BO3

groups can adopt a coplanar configuration promoting birefrin-
gence and SHG. In BO3 groups, three O atoms are linked with
the B atom, eliminating three dangling bonds of the BO3

groups, which further widens its transparency in the UV and
DUV region. Moreover, the high anisotropic electron distribu-
tion in the BO3 group favors the enhancement of the SHG and
birefringence.60 More details can be seen from the (1 0 1)
crystallographic plane (Fig. 3b), which reveals that the Li atoms
form ionic bonding. Also it shows the (BO3)3� triangles and
(BO4)5� polyhedra. This supports the finding from the PDOS,
which states that there exists strong hybridization between B
and O atoms. The strong/weak hybridization may lead to the
formation of strong/weak covalent bonding. It is interesting to
compare our calculated bond lengths with the measured
ones,23,25,30 as shown in Table 2, which reveals that there is
good agreement between the theory and the experiment.

To confirm that the absorption edge of the tetragonal
Li3B5O8(OH)2 occurs in the DUV region, the absorption spectra
are calculated, as presented in Fig. 4a. The absorption edge’s
value of the semiconductor materials could be solved as
follows; the square of the absorption coefficient I(o) is linear
with energy (E) for direct optical transitions in the absorption
edge region, whereas the square root of I(o) is linear with E for
indirect optical transitions.61,62 The data plots of SQRT[I(o)]
and SQ[I(o)] versus E in the absorption edge region are shown
in Fig. 4b and c. The left inset of Fig. 4b shows that the
SQRT[I(o)] vs. energy deviates from the fitted straight line,
whereas SQ[I(o)] vs. E is nearly linear (Fig. 4c). These features
suggest that the absorption edge of Li3B5O8(OH)2 caused by
direct transitions and the charge transfer from the O-2p orbital
at the VBM to the B-2p orbital at the CBM contributes to the
absorption edge. Thus, the optical properties of Li3B5O8(OH)2

arise due to the transitions between B-2p and O-2p orbitals with
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Table 1 Calculated effective masses

me*/mo mh*/mo D = me*/mh* D = mh*/me*

0.01202 0.01988 0.60462 1.65391
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small contributions from Li-2s and H-1s orbitals. Following
Fig. 4c, we can conclude that the absorption edge of

Li3B5O8(OH)2 occurs at l = 190 nm and the optical band gap
is estimated to be 6.52 eV in good agreement with the experi-
mental data (6.526 eV).23,25,30

This observation motivated us to demonstrate the calculated
imaginary and real parts of the optical dielectric function
(Fig. 4d). The imaginary part shows the first critical points
(the absorption edges) for the perpendicular and parallel tensor
components along the fundamental crystal axes, which are
located at 6.52 eV and the fundamental peaks situated at 8.5
and 12.5 eV. Furthermore, the imaginary part reveals that e82(o)
is the dominant tensor component at low energies while e>2 (o)
acts as the dominant tensor component at high energies,
resulting in a considerable anisotropy. The calculated vanish-
ing frequency value (static electronic dielectric constant
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Fig. 3 (a and b) The electron cloud of Li3B5O8(OH)2 in two crystallographic planes namely (100) and (101); (c and d) the electron cloud of the BO3 anionic
groups which exhibit a planar shape with conjugated electron orbitals which make the BO3 anionic groups the main source of the large birefringence in
Li3B5O8(OH)2. The electron cloud of the BO4 tetrahedron; (e) thermo-scale.

Table 2 Calculated bond lengths in comparison with the experimental
data25b

Bond Exp. bond lengths (Å) Calc. bond lengths (Å)

Li(1)–O(5) 1.962(3) 1.960
Li(1)–O(3) 2.009(3) 2.002
Li(1)–O(2) 2.035(3) 2.033
Li(2)–O(1) 2.0242(15) 2.0239
Li(2)–O(2) 2.056(3) 2.054
Li(2)–O(4) 2.436(3) 2.434
B(1)–O(3) 1.3765(18) 1.3760
B(2)–O(1) 1.4772(18) 1.4769
B(3)–O(2) 1.4636(15) 1.4632
B(3)–O(3) 1.4964(16) 1.4960
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eN = e>1 (0) and eN = e81(0)) of e>1 (o) and e81(o) confirms the
occurrence of absorption edges at 6.52 eV, whichcan be
explained on the basis of the Penn model e1(0) E 1 +
(h�oP/Eopticalgap),2,63 where the calculated e1(0) is inversely
related to the energy gap. For Li3B5O8(OH)2 the calculated
e1(0) and the plasma energy h�oP are given in Table 3. Thus,
the Eoptical gap is about 6.52 eV and l = 1239.8/Eoptical gap = 190 nm.
Therefore, the calculated e>2 (o), e>2 (o), e>1 (o), e81(o), e>1 (0) and
e81(0) support our observation that the absorption edge of
Li3B5O8(OH)2 occurs at l = 190 nm and the optical band gap is
estimated to be 6.52 eV in good agreement with the experimental
data (6.526 eV).23,25,30 Furthermore, the calculated values
of e>1 (0) and e81(0) help in estimating a very important quantity
which is called uniaxial anisotropy using the relation de =
[(e80 � e>0 )/etot

0 ].64 It is found that the uniaxial anisotropy of
Li3B5O8(OH)2 is about�0.0081, which confirms the considerable
anisotropy. The considerable anisotropy favors an important
quantity in SHG and OPO due to better fulfilling of phase-
matching conditions determined by birefringence. The birefrin-
gence can be obtained from the calculated refractive indices
(Fig. 4e) using the expression Dn(o) = ne(o) � n0(o), see Fig. 4f.
The obtained values of the birefringence at the static limit, l =
1064 nm and at l = 190 nm are given in Table 3. Birefringence is
important in fulfilling the phase-matching conditions. Further-
more, the calculated refractive indices (Fig. 4e) confirm the value

of n 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
e1ð0Þ

p
, Fig. 4e shows that naverage(0) occurs at 1.27

thus eaverage
1 (0) = 1.61, and hence, the absorption edges of

Li3B5O8(OH)2 occur at l = 190 nm. The calculated refractive
indices at zero limit, at l = 190 nm (6.52 eV) and l = 1064 nm are

shown in Table 3 and they are small enough to match the
fundamental wave with the SHG light.

To further investigate the linear optical susceptibility dis-
persion, the reflectivity spectra and the loss function are
calculated. The reflectivity spectra (Fig. 4g) show the first
minimum at the plasma frequency (i.e. 12.5 eV), the energy
point where optical spectra of e>1 (o) and e81(o) cross zero,
confirming the occurrence of collective plasmon resonance in
concordance with our observation in Fig. 4d.

The loss function’s peaks (Fig. 4h) are initiated at the values
of the plasma frequencies o>

P and o8
P at the energy point where

optical spectra of e>1 (o) and e81(o) cross zero. The frequency-
dependent optical conductivity (Fig. 4i) can be obtained from
the complex first-order linear optical dielectric function follow-

ing the expression e oð Þ ¼ e1 oð Þ þ ie2 oð Þ ¼ 1þ 4pis oð Þ
o

.65,66 It

consists of imaginary and real parts; therefore, it completely
characterizes the linear optical properties. The imaginary part
s>2 (o) and s82(o) between 0.0 and the values of o>

P and o8
P

exhibit overturned features of e>2 (o) and e82(o), whereas the real
parts s>2 (o) and s82(o) show similar features to those of e>2 (o)
and e82(o). The intersection of the imaginary and real parts of
the optical conductivity at zero energy represents the values of
s>2 (o) and s82(o).

It has been reported that in most borate crystals the SHG
responses mainly arise from the coparallel BO3 triangles, for
instance: the KBBF derivatives contain two types of B–O groups
and one of the B–O groups consists of coparallel BO3 triangles.
The second B–O group is located between the two adjacent
[Be2BO3O2] and connects them together with antiparallel
arrangement, resulting in canceling their contribution to the
macroscopic SHG response. Hence, the SHG responses in KBBF
derivatives mainly arise from the coparallel BO3 triangles.
Therefore, the number density of the coparallel BO3 triangles
will determine the SHG response of the KBBF structures.53,67

Also in CsZn2B3O7, the B3O6 groups are located between
adjacent [Zn2BO3O2] layers and they are antialigned. Thus,
the SHG response of CsZn2B3O7 should also come from the
coparallel BO3 triangles, which was confirmed by Yu et al.17

They reported that the net Q4dipole moments of the BO3 triangles
and (ZnO4)6� tetrahedra are pointed along the polar c-axis
which means that BO3 triangles and (ZnO4)6� tetrahedra con-
tributions to the SHG response are larger than that of B3O6
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Fig. 4 (a) The calculated absorption spectra of Li3B5O8(OH)2; (b and c) the data plots of SQRT[I(o)] and SQ[I(o)] versus E in the absorption edge region
are shown in (b) and (c). The left inset of (b) shows that the SQRT[I(o)] vs. energy deviates from the fitted straight line, whereas SQ[I(o)] vs. E is nearly linear.
These features suggest that the absorption edge of Li3B5O8(OH)2 caused by indirect transitions and the charge transfer from the O-2p orbital at the VBM
to the B-2p orbital at the CBM contributes to the absorption edge. Thus, the optical properties of Li3B5O8(OH)2 arise due to the transitions between B-2p
and O-2p orbitals with small contributions from Li-2s and H-1s orbitals. We can conclude that the absorption edge of Li3B5O8(OH)2 occurs at l = 190 nm
and the optical band gap is estimated to be 6.52 eV in good agreement with the experimental data (6.526 eV); (d) calculated e>2 (o) (dark solid curve-black
color online) and e82(o) (light dashed curve-red color online) along with calculated e>1 (o) (light dotted dashed curve-green color online) and e81(o) (light
dotted curve-blue color online); (e) calculated n>(o) (dark solid curve-black color online) and n8(o) (light dashed curve-red color online); (f) calculated
birefringence Dn(o); (g) calculated R>(o) (dark solid curve-black color online) and R8(o) (light dashed curve-red color online); (h) calculated L>(o) (dark
solid curve-black color online) and L8(o) (light dashed curve-red color online); (i) calculated s>2 (o) (dark solid curve-black color online) and s82(o) (light
dashed curve-red color online) along with calculated s>1 (o) (light dotted dashed curve-green color online) and s81(o) (light dotted curve-blue color
online).

Table 3 The calculated energy band gap in comparison with the experi-
mental value, e>1 (0), e81(0), h�o8

P, h�o>
P , n>(o), n8(o), Dn(0) and Dn(o)

Eg (eV) 6.52, 6.526a

e>1 (0) 1.619
e81(0) 1.606
de �0.0081
h�o>

P 12.884
h�o8

P 13.211
n>(o) 1.272b, 1.275c, 1.450d,
n8(o) 1.267b, 1.270c, 1.473d,
Dn(o) �0.005b, �0.006c, +0.0141d

a Ref. 23, 25, 30 (experimental work). b Ref. this work at zero limit.
c Ref. this work at l = 1064 nm. d Ref. this work at l = 190 nm.
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groups.17 Thus, based on these results and similar to other
borates the SHG responses in Li3B5O8(OH)2 mainly arise from
the coparallel BO3 triangles. Therefore, the number density of
the coparallel BO3 triangles will determine the SHG response of
the Li3B5O8(OH)2 structure. Our investigation confirms that

Li3B5O8(OH)2 possesses large birefringence and considerable
anisotropy in the linear optical properties, and the absorption
edge occurs at l = 190 nm. Therefore, based on these promising
results, we calculated the nonlinear optical susceptibility dis-
persion of Li3B5O8(OH)2.
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Fig. 5 (a) Calculated |w(2)
ijk (o)| for the five tensor components of Li3B5O8(OH)2; (b) calculated imaginary w(2)

132(o) (dark solid curve-black color online) and
w(2)

213(o) (light dashed curve-red color online) spectra; (c) calculated imaginary w(2)
132(o) (dark solid curve-black color online) and w(2)

213(o) (light dashed curve-
red color online) spectra; (d) calculated total Imw(2)

132(o) spectrum (dark solid curve-black color online) along with the intra (2o)/(1o) (light solid curve-blue
color online)/(light dashed doted curve-cyan color online) and inter (2o)/(1o) (light long dashed curve-red color online)/(light doted curve-green color
online) -band contributions; (e) upper panel: calculated |w(2)

132(o)| (dark solid curve-black color online); lower panel: calculated exx
2 (o) (dark solid curve-

black color online); calculated exx
2 (o/2) (dark dashed curve-red color online).

Table 4 Calculated |w(2)
ijk (o)| and bijk Li3B5O8(OH)2, in pm/V at the static limit, at l = 190 nm and at l = 1064 nm

Li3B5O8(OH)2

Tensor
components w(2)

ijk(0)
Theory dijk = 0.5 w(2)

ijk(o)
at static limit

w(2)
ijk(o) at
l = 1064 nm

Theory dijk = 0.5
w(2)

ijk(o) l = 1064 nm
w(2)

ijk(o) at
l = 190 nm

Theory dijk = 0.5
w(2)

ijk(o) l = 190 nm

|w(2)
132(o)| = |w(2)

213(o)| 0.7 d14 = 0.35 1.28 d14 = 0.64 3.00 d14 = 1.5
b333 0.413 � 10�30 esu 0.206 � 10�30 esu 0.477 � 10�30 esu 0.238 � 10�30 esu 2.274 � 10�30 esu 1.137 � 10�30 esu
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Due to the symmetry, Li3B5O8(OH)2 possesses two non-zero
tensor components, these are 132 = �213. The calculated |w(2)

132

(o)| = |w(2)
213(o)| are shown in Fig. 5a. The calculated values of

these tensor components at the static limit, at l = 190 nm and
at l = 1064 nm, are presented in Table 4. The calculated value of
SHG at l = 1064 nm is about 1.5 times that of the well known
NLO crystal KH2PO4 (KDP) at l = 1064 nm and 3.5 times that of
KDP at l = 190 nm, which is transparent down to the deep-UV
region. Thus, one can conclude that the combination of an
alkali metal into borates leads to the generation of promising
DUV NLO crystals.

Furthermore, we calculated the imaginary and real parts of
w(2)

132(o) = �w(2)
213(o), as shown in Fig. 5b and c. It is shown that

the 2o resonance starts oscillating at around 3.26 eV, the half
value of the fundamental optical band gap. The highest inten-
sity which is confined between 6.52 and 9.0 eV comes from the
contribution of 2o and o. The imaginary and real parts are
further separated into 2o/o inter-/intra-band contributions.
Fig. 5d shows the 2o/o inter-/intra-band contributions of the
imaginary part of w(2)

132(o). It is clear that the 2o/o inter-/intra-
band contributions oscillate around zero and exhibit a con-
siderable anisotropy. The sum of those contributions gives the
total value of the imaginary part of the SHG.

To have an idea about the origin of the SHG, we have
analyzed the spectral features of |w(2)

132(o)|. A step forward, the
absorptive part of the corresponding dielectric function e2(o) as
a function of both o/2 and o is associated with the spectral
structures of |w(2)

333(o)|, as shown in Fig. 5e. For simplicity, the
spectral structures of e2(o), e2(o/2) and |w(2)

132(o)| can be divided
into three spectral regions. The spectral region confined
between Eg/2 and Eg is mainly formed by the 2o resonance,
which is associated with the main spectral structure of e2(o/2).
The second structure between Eg and 11.0 eV is associated with
the interference between 2o and o resonances, which is
associated with the first spectral structure of e2(o) and the
second structure of e2(o/2). It is clear that in this region the o
terms start to oscillate and contribute to the spectral structure
of |w(2)

132(o)| in addition to 2o terms. The third spectral structure
from 11.0 eV and 13.5 eV is mainly due to o resonance which is
associated with the second structure in e2(o).

Using the obtained value of w(2)
ijk(o), we have obtained the

values of the microscopic first hyperpolarizability, bijk,68 the
vector component along the dipole moment direction, at the
static limit, at l = 190 nm and at l = 1064 nm. We should
emphasize that the bijk term cumulatively yields a bulk obser-
vable second order susceptibility term, w(2)

ijk(o), which in turn is
responsible for the strong SHG response.69 In Table 4, we have
presented the value of b132 at the static limit and at the
wavelengths of 190 nm and 1064 nm.

4. Conclusions

A comprehensive ab initio calculation was used to investigate
the linear and nonlinear optical susceptibility dispersions of
Li3B5O8(OH)2 which crystallizes in a non-centrosymmetric

tetragonal space group. A bulk structure of Li3B5O8(OH)2 in
the form of single crystals is used to investigate the linear and
nonlinear optical susceptibility dispersions, taking into
account the influence of the packing of structural units on
the resulting linear and nonlinear optical susceptibility disper-
sions. We found that the packing of the BO3 structural unit is
the main source of the large birefringence, and hence, affects
the macroscopic SHG coefficients. The large SHG is due to
hyperpolarizablity formed by co-parallel BO3 triangle groups.
The accuracy of the mBJ approach shows that the absorption
edge of Li3B5O8(OH)2 occurs at l = 190 nm and the optical band
gap is estimated to be 6.52 eV in good agreement with the
experimental data (6.526 eV). Therefore, Li3B5O8(OH)2 is
expected to produce laser radiation in the DUV region. The
resulting SHG is 1.5 times that of the well-known NLO crystal
KH2PO4 (KDP) at l = 1064 nm and 3.5 times that of KDP at
l = 190 nm.
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