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ABSTRACT

We propose a novel approach based on machine learning to simulate facial expressions related to physical activ-
ity. Because of the various factors they involve, such as psychological and biomechanical, facial expressions are
complex to model. While facial performance capture provides the best results, it is costly and difficult to use for
real-time interaction during intense physical activity. A number of methods exist to automate facial animation
related to speech or emotion, but there are no methods to automate facial expressions related to physical activity.
This leads to unrealistic 3D characters, especially when performing intense physical activity. This research high-
lights the link between physical activity and facial expression, and to propose a data-driven approach providing
realistic facial expressions, while leaving creative control. First, biological, mechanical, and facial expression data
are captured. This information is then used to train regression trees and support vector machine (SVM) models,
which predict facial expressions of virtual characters from their 3D motion. The proposed approach can be used
with real-time, pre-recorded or key-framed animations, making it suitable for video games and movies as well.
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1 INTRODUCTION neglected. It is sometimes present during cinematic se-
quences, but it suffers from a crude approximation dur-
ing gameplay, and it is often simply overlooked. Ac-
cording to discussions we have had with video game
companies, current approaches for gameplay facial ani-
mations related to physical activity rely on ad hoc tech-
niques based on linear functions and thresholds. Such
approaches are far from the complexity of human fa-
cial animations, in relation to physical activity. In this
Different approaches for automating facial expressions  paper, we propose a novel approach based on machine
related to emotion or speech exist, but none are avail-  learning to simulate facial expressions related to physi-
able to automate expressions related to physical activ-  cal activity, in order to improve the realism of 3D char-
ity. In the visual effects and computer animation com-  acters. The approach is based on the analysis of mo-
munities, facial animations are most often key-framed  tion capture data acquired from real exercise sessions.
or motion-captured. Even though this is a relatively  Given the captured animations and physiological data,
long and costly procedure, it is understandable for main  specific machine learning techniques are selected to en-
characters. For secondary characters, such as a crowd,  able the synthesis of facial expressions corresponding
the facial animation related to physical activity will of-  to physical activity. The main contributions of the pro-
ten be disregarded. In video games, although characters  posed approach can be summarized as:

often have to provide significant physical exertion, fa-
cial animation related to this component is somewhat

Facial animation remains one of most tricky, time-
consuming, and costly aspects of 3D animation. Facial
expressions are difficult to model because of the numer-
ous factors underlying them: emotions (joy, sadness,
etc.), mouth movements (speech, deep breath, etc.), eye
and eyelid movements (blinking, gaze direction, etc.)
and physiological (fatigue, pain, etc.).

e A machine learning framework to derive facial ex-
pressions from physical activity;
e An approach to link mechanical, physiological, and

facial measurements;

e An analysis of the most effective way to compute
energy values for machine learning purposes;

e A set of empirical rules relating physical activity to

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re- specific facial expressions;
publish, to post on servers or to redistribute to lists, requires e A normalization procedure to make better use of
prior specific permission and/or a fee. heart rate and blend shape data.
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With this machine learning framework and captured
data, we are able to synthesize realistic facial expres-
sions. The approach can be used for real-time as well
as off-line facial animation. Furthermore, the method
allows for control over stylization, as key-framed data
could be used instead of captured data. It enables con-
trol over expressiveness, as the animator can adjust var-
ious parameters that have an impact on the facial ex-
pression of the character. Finally, the models developed
in this work also provide metabolic data that could be
used for purposes other than facial animation.

2 RELATED WORK

Previous works are categorized in four topics: the de-
scription of facial expressions, the synthesis of speech-
related expressions, the synthesis of emotion-related
expressions, and the description of facial expressions
related to physical activity.

2.1 Facial Expression Coding

Several objective and systematic approaches to encode
facial expressions have been proposed. Although facial
expressions are due to a wide range of factors, only fa-
cial changes due to emotions, intentions or social com-
munication are taken into account [17]. Various cod-
ing systems have been developed mainly for psycho-
logical studies, including FACES (Facial Expression
Coding System) [14] and FACS (Facial Action Cod-
ing System) [8], which are presented in a survey pa-
per [19]. FACS is an anatomically-based expression
space grouping together facial muscle groups as AUs
(Action Units), whose combination can be used to form
any possible expression [26]. The MPEG-4 standard
proposes a similar approach using FAPs (Facial Action
Parameters), which has been used in various research
projects. In the proposed approach, the facial expres-
sions are built using blend shapes that correspond to
facial muscle groups similar to the FACS approach.

The automation of the coding process generally re-
lies on video tracking software or motion capture sys-
tems that require complicated setup. In recent years,
novel techniques emerged using depth cameras such as
FaceShift [4] or Brekel ProFace [6]. Other software use
simple webcams, such as Mixamo Face Plus [22], di-o-
matic Maskarad or Emotient software [18]. While most
of the available software extract a set of facial features
or blend shapes, Emotient software extracts Ekman’s
facial expressions and a set of Action Units.

2.2 Speech-Related Facial Expressions

Animation synthesis is generally done by analyzing an
audio input, extracting phonemes, and then animating
the 3D face model’s visemes (phoneme’s visual coun-
terpart) [15]. Different approaches have also been de-
veloped to enhance realism in animation, such as blend-
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ing speech-driven animation into emotion-driven ani-
mation and using anatomically-based structures [16].
Other works [31] have focused on improving the vi-
sual behavior related to speech. Some works use ma-
chine learning methods such as SVMs [33] or neu-
ral networks [7, 21]. All of these methods help to
achieve more realistic results in facial expressions re-
lated to speech, and substantially reduce manual anima-
tion time. They give good results, given that there is a
single input (the audio) that captures all of the required
information to adjust the facial animation.

When considering physical activities, a character’s mo-
tion involves several limbs, as well as potential and ki-
netic energy, torques, etc., which results in a broader set
of inputs. Furthermore, simulating speech-related ani-
mation from audio is synchronized to one input signal,
while the facial expression of the character’s motion
might be the result of both its instantaneous motion and
the movements or activities performed by the character
in the past few minutes. Finally, the character’s motion
triggers facial expressions that will influence parts of
the face that are not related to speech, such as the re-
gion around the eyes. For these reasons, works dealing
with speech cannot fully solve the problem of generat-
ing the facial animation related to physical activity.

2.3 Emotion-Related Facial Expressions

Researchers in psychology studied emotions and came
up with classifications based on a limited number of
emotions. To further simplify the relationships be-
tween emotions, they can be represented in simpler
2D expression spaces [24, 28]. Computer graphics
researchers have taken advantage of such approaches
and proposed different two dimensional emotion lay-
outs that allow a meaningful blending between emo-
tions [25]. Other approaches have relied on coding sys-
tems such as FACS to provide realistic transitions be-
tween emotion expressions [1]. While these works pro-
vide interesting approaches for the transition and blend-
ing of facial expressions, they work when the emotion
is already known, and when a set of face poses is pro-
vided. Animating the right combination of emotions
through time remains a complex problem. It is simi-
lar to the challenge involved in this work: developing
an approach that can predict the facial expression from
observations and models describing how a human sub-
ject reacts in different circumstances.

2.4 Physical Activity-Related Facial Ex-
pressions

Even though 3D characters often perform intense phys-
ical activities, we could not find any research address-
ing the automatic and realistic facial animation related
to physical activity. Outside of the computer graph-
ics field, the work of McKenzie [20] describes the fa-
cial expressions related to substantial effort, exhaustion,
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Figure 1: Machine learning facial expressions

and fatigue. In the computer graphics field, facial an-
imation literature related to physical activity is found
mostly in art books [9, 11]. These contain numerous fa-
cial expressions, some of which are related to physical
activity. While these works provide useful information
for manually animating expressions, they are not useful
for the automatic facial animation from the character’s
motion. Zordan’s work [34] target the modeling and
control of 3D models in relation to respiration.

Numerous works address facial animation in the con-
text of speech and emotion, but they are not adapted to
the synthesis of physical activity expressions. Based on
machine learning and captured data, the proposed ap-
proach derives a model, to animate facial expressions.

3 FACIAL EXPRESSION SYNTHESIS

Fig. 1 shows an overview of the proposed approach.
The first step is to acquire real-life motion capture
data, providing information on the facial expressions
observed under various types of exercise. These data
are used to train machine learning models, which are
then used to generate realistic facial expressions.

3.1 Data Acquisition

Various capture sessions were conducted in order to
gather the information required to develop a model that
gives realistic results. During these sessions, informa-
tion describing the type of activities and physical state
(heart rate and facial expressions) were recorded.

A full-body motion capture was done in a large room
where 15 participants of different age (20 to 46 years
old) and training level (0 to 7.5) exercised freely with-
out training devices. The resolution of the motion cap-
ture cameras did not allow facial capture along with the
full-body capture. Furthermore, using training devices
would have led to markers occlusion. For these rea-
sons, the capture was split in two sessions: full-body
and facial. The goal of the full-body session was to
provide data to establish the relationship between the
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motion and physiological measures. The participants
were asked to alternate between exercises of low and
high levels of intensity, and to slow down to ensure that
a large range of data was acquired. While participants
were training, both full-body motion and heart rate data
were recorded. The software used to record the heart
rate provided an estimation of other metabolic indica-
tors, such as metabolic energy consumption, breathing
rate and EPOC (Excess Post Oxygen Consumption).

The second capture session was done at a fitness center,
where 17 participants from the same age groups and
training level as the previous session, were asked to ex-
ercise on either a cardiovascular training machine or a
mixture of strength training machines and free weights.
The goal of this capture session was to establish the re-
lationship between motion, heart rate, and facial expres-
sion. Again, this capture involved exercising at differ-
ent levels of intensity and a slow-down period. Using
this procedure, the data collected for each exercise in-
cluded repetitions for the same participant as well as for
different participants. Facial expressions were filmed,
while heart rate data were recorded following the same
procedures and with the same material as during the
first session. Together with the height and weight of the
participants, the specific loads used with the strength
training machines and free weights allowed for a good
approximation of the involved work and forces.

3.2 Biomechanical Model

One of the key inputs to both the off-line and on-
line phases of the proposed approach is the mechani-
cal work resulting from the motion. Different meth-
ods were evaluated to approximate the work: potential
energy, translational kinetic energy, and rotational ki-
netic energy. Different ways of evaluating the mechan-
ical energies were tested: using the center of mass of
the whole character, using the lower/upper body, and
computing these values for each limb. Potential energy,
translational and rotational kinetic energies were used.

Tests were conducted to find an approach that would be
efficient to compute, while providing good results for
both the learning and synthesis phases. While separate
inputs for each limb intuitively seemed to provide better
knowledge about the type of exercise and effort, they
resulted in noisy facial animations with blend shape
weights that changed too rapidly compared to the real
data. An explanation for this phenomenon is that even
though there are several captures, the amount of input
data is still too small to correctly capture the intricate
interrelations between specific limbs and facial expres-
sions. Ultimately, what provided the best result was
using the sum of the mechanical work (potential, trans-
lational kinetic and rotational kinetic) for all limbs.
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3.3 Machine Learning Facial Expressions

To get a better understanding of the underlying mech-
anisms and relations between the exercises and the fa-
cial expressions, a preliminary analysis of the data was
conducted. As the relations between the metabolic,
mechanical and facial parameters are too complex to
model using simple polynomial equations, it made
sense to use machine learning. Given the type of cap-
tured data and the kind of predictions required, re-
gression techniques were the most appropriate. Sev-
eral models were trained using different sets of features
as input, and the quality of these models was evalu-
ated. Likewise, appropriate model parameters were se-
lected using cross-validation. The data flow, learning
approaches and models are presented in Fig. 1.

3.3.1 Metabolic Parameters Prediction

To predict the heart rate from the character’s motion,
various learning techniques were tested with different
combinations of features as input. The heart rate in-
creases or decreases depending on the intensity of the
exercise: for each person, there is a certain threshold in
exercise intensity that results in an increase or decrease
in the demand for oxygen. To model this behavior, re-
gression trees were found to give an accuracy compa-
rable to more complex models such as SVM. Further-
more, this technique was also selected for its ability
to provide a human-interpretable model, which can be
used to get more artistic control on the final result.

Since the range of input values affects learning tech-
niques, and as the range of heart rates varies among the
participants, the data were transformed to the [0, 1] in-
terval resulting in the normalized heart rate (NHR):

current heart rate — resting heart rate

NHR = - :
maximum heart rate — resting heart rate

The maximum and resting heart rates are found in stan-
dard training charts based on the age and training level.

A regression tree model was built using the UserClassi-
fier in the Weka software [12]. Several combinations of
inputs were tested (mechanical work as input and heart
rate as output, mechanical work and heart rate differ-
ence as input and heart rate difference as output, etc.).
Among the tested models, the one providing the best
results was to predict the difference in heart rate using
the current heart rate and the instantaneous mechanical
work. By using the last predicted NHR in the subse-
quent prediction, the model considers the temporal in-
formation and the accumulated fatigue.

While a model trained using the data from a single
participant could accurately predict the heart rate of
this participant (correlation coefficient of 0.88 and root-
mean-square error — RMSE — of 19%, see Fig. 2(a, ¢)),
combining the data from every participant in a single
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©) (d
Figure 2: Comparison between real (blue) and pre-
dicted (red) NHR as a function of time (in minutes). (a-
b) cardiovascular and (c-d) strength training exercises.
(a,c) the same and (b,d) different participants.

model resulted in significant errors (correlation coeffi-
cient of 0.21 and RMSE of 79%, see Fig. 2(b, d)). To
improve the results, simpler models were derived.

Using appropriate regularization parameters and tree
pruning yielded simple regression trees with only two
leaves. By analyzing these simpler models for each
participant, a common structure emerged: all regres-
sion trees had the same test at the root node, comparing
the mechanical work w to a threshold value ¢,,,;, which
broke the predictions into increases or decreases in the
heart rate. Moreover, the main difference between these
personalized models was the threshold value used in the
test, this value depended largely on the fitness level of
the participant. Based on these observations, a linear
regression between the training level and #,,,; was used
to improve the model. The resulting model based on the
linear regression and regression tree is as follows:

troot = 7.1340.42 X training level

troot < W
w < troor

Cine X (W —ty901) X (1 —nhr)?
Cdec X (W —troor) X nhr?

A(nhr) = {
Cine = 0.0056 — 0.00043 x training level

Cdec = 0.0009 4-0.00025 x training level

The threshold t,,,; determines when the heart rate starts
to increase while ¢, and ¢y, are the factors of increase
or decrease. These values were obtained by calculating
a linear regression between the individual values ob-
tained in the regression tree of each participant.

This model provided a prediction that was almost as
good as the one for separate participants (correlation
coefficient of 0.87, RMSE of 24%). Furthermore, the
training level can be used to control the response level
of characters to various types of exercises.
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The normalized heart rate is used to approximate the
oxygen consumption (VO,) and respiration rate. Both
the VO, and respiration rate have to be normalized rel-
atively to their minimal and maximal values. Given
the normalized values, the VO, and respiration rate are
proportional to the normalized heart rate [27]. With
the VO, estimation, EPOC can be approximated [10].
These estimations, together with the mechanical work
and mechanical power, are then used to predict the fa-
cial animations as will be described in the next section.

3.3.2  Predicting Expression Components

To animate a virtual character, the four weights corre-
sponding to the blend shapes associated with the basic
components identified in the preliminary analysis (see
Section 4.1.1) should be obtained from the movement
of the character. Compared to the metabolic parame-
ters, the facial expressions in our capture data exhibited
more sudden and frequent changes. Because of this be-
havior, regression trees did not provide adequate results
to predict blend shape weights.

Instead, we opted for SVM regression, which provided
better prediction results and had already been used suc-
cessfully for facial animation [32]. Tests were con-
ducted with multiple participants, for multiple exercises
as well as for single participant and single exercise (see
Fig. 3). For a single participant and exercise, the pre-
diction of the participant’s blend shapes corresponding
to exercises not used to train the model was accurate
(Fig. 3 (a), (b)). Compared to what was observed for
the metabolic parameter, the prediction from strength
training exercises (Fig. 3 (b), (c), and (d)) lines up quite
well with the real data, while the prediction for cardio-
vascular exercises (Fig. 3(b)) follows the general trend
of the curve, but presents variations of smaller ampli-
tude due to the regularization of the model.

For multiple participants, training with a single exer-
cise enabled a good prediction of the same exercise for
a participant not used in the training data (Fig. 3(c)).
Nevertheless, generalization across all participants and
exercises was relatively poor. Again, the data had to be
normalized, but this time with respect to the expressive-
ness of the participant. This can be seen in Fig. 3(c), as
the curves are well aligned, but the blend shape weights
are on a different scale. Some of the participants could
endure incredible exertion with a relatively neutral ex-
pression while others depicted pronounced expressions.
The expressiveness could not be linked to any of the pa-
rameters collected about the participants (age, training
level, etc.). It still can be computed for each participants
by finding the maximal weight for each blend shape,
resulting in a four-dimensional expressiveness vector.
The captured blend shape weights of the participants
were then normalized. This expressiveness vector al-
lows to control the facial expressions by increasing or
reducing the expressiveness values.
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Figure 3: In each case, the acquired data (blue) was not
used to train the model for the prediction (red) of the
blend shape weight. In (a), (b), and (c), the prediction
and SVM model are for the same exercise, while in (d)
we tested the prediction for an exercise not used to train
the SVM model. The prediction works for (a) cardio
and (b) strength training exercises. The motion of a
participant not used to construct the SVM model is used
for the prediction in (c). In (d), the prediction is for an
exercise not used to train the SVM model.

Given these normalized blend shape weights, the whole
dataset could be learned using an SVM. To select the
best-suited set of inputs and model parameters, several
combinations were evaluated on a test data set and us-
ing cross validation. The combination that gave the best
results was mechanical work, mechanical power, nor-
malized heart rate and EPOC as inputs, and blend shape
weight as output. As the predicted heart rate is used as
an input for the next prediction (see Fig. 1), the mod-
els consider the temporal information and do not only
model the correlation at a single-frame level.

With respect to the selection of the SVM parameters,
the radial basis function (RBF) kernel was selected, and
several combinations of parameters were tested: regu-
larization parameter and gamma of the RBF varying in-
dependently from 10719 to 10'°. The values of these
parameters that produced the best results were different
from one blend shape to the other. The regularization
parameter ranged from 10 to 10 while the gamma of
the RBF ranged from 1073 to 102,

Since different areas of the face reacted in different
ways depending on the physical activity and the partic-
ipant, the predictions use four SVM models. Although
these are independent, the predictions were consistent
in all of our tests. The training RMSE of the models
was in the [17%,26%] range. The final models enabled
a good generalization of the captured data, which indi-
cates that our method could be used to generate realistic
facial animations on other types of movements.
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Figure 4: The physical effort resulted in a broad range of facial expressions

(b)
Figure 5: Results for five minutes of running at medium
speed with different training levels: (a) 10, (b) 5, (c) 0

4 RESULTS

In this section, the approach and its experimental evalu-
ation are discussed in the context of the expected use of
the models. The accompanying video presents results
for different types of exercises. The results present be-
lievable expressions based on the physical activity of
the character, and these expressions improve the real-
ism of the 3D character (see Fig. 5).

The learned regression tree and SVM models were used
to animate facial expressions of a 3D head model. Us-
ing the LibSVM implementation to perform the predic-
tions showed that the approach can easily achieve real-
time frame rates. On an average computer, 60 to 600
FPS were obtained depending on the render settings and
mesh complexity. The prototype can be used either by
triggering pre-recorded animation clips or by using a
live input from a Kinect device. The user can specify
the age, height, weight, fitness level and expressiveness
vector of the 3D character, and can also add weights
lifted in each hand as well as on the back. The facial
expressions change relatively to the motion of the char-
acter and the specified parameters. The user can change
the character parameters and get a real-time feedback.
Fig. 5 shows different results achieved with different
training levels and Fig. 6 shows different results ob-
tained by changing the expressiveness vector.

4.1 Discussion
4.1.1 Observations on the Captured Data

A qualitative analysis of the captured data (full-body
capture, video and heart rate) was conducted. While
these observations helped us in the selection of the ap-
propriate machine learning methods, they should also
benefit artists in animating 3D characters. Two types of
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relations were discovered: general relations that hold
for most facial expressions, and specific relations that
apply to particular expressions.

The first general rule is that the intensity of expressions
is proportional to the displaced mass and inversely pro-
portional to the mass of the muscle. The expression
related to the instantaneous exertion is proportional to
the mechanical power. The evolution of the expression
intensity is proportional to the change in heart rate and
metabolic energy. Finally, the recovery time is propor-
tional to the effort intensity and inversely proportional
to the training level.

Rules specific to individual components of facial ex-
pression were also observed. It was determined that the
facial expression features associated with physical ac-
tivity were concentrated around the eyes and the mouth
(see Fig. 4). Regarding the expressions related to the
mouth, the stretching is induced by two factors: instan-
taneous physical exertion and fatigue level. The mouth
remains closed at the beginning of the training session.
After a certain time, it starts to open, and the opening is
linked to the respiration rate and the fatigue level.

Other observations were related to the region of the
eyes. Eye squinting is mainly induced by instantaneous
physical exertion until a certain fatigue level. At a
higher level of fatigue, the eyes tend to relax in con-
nection with the fatigue level with a remaining constant
squinting value. The behavior of the eyebrows is a com-
bination of a downward movement related to the physi-
cal exertion and an upward movement related to fatigue.

Finally, some observations were made with respect to
both the breathing and the swallowing. The frequency
of occasional breathing movements related to loud and
quick expiration is induced by two factors: fatigue level
and respiration rate. The frequency of the occasional
gulping is proportional to the fatigue and to the regular
respiration rate. These observations helped in defining
blend shape selection greatly inspired by the muscular
groups of the human face, as described in FACS [8].
The model consisted of a neutral face and four blend
shapes that can be used in various expressions linked to
physical activity (see Fig. 7).

4.1.2 Manual Blend Shapes Recovery

To simplify the capture sessions, only a video recording
of the face was used for the facial expression capture.
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(2)

(a) Neutral (b) Mouth Stretch

Figure 7: The four blend shapes used in our implementation.

Different techniques were evaluated for retrieving facial
animation data, but it was found that manual animation
provided more reliable results. To recover objective val-
ues that can be used with machine learning approaches,
a virtual character’s face was key-frame animated to
match the expression of the participants. To ensure the
results are reproducible, blend shapes were key-framed,
one at a time, and always in the same order. Further-
more, to measure how perceptually meaningful the val-
ues were, three different people independently adjusted
the blend shape weights for a selection of eighteen rep-
resentative poses. Even though the blend shape weights
were not identical, the error remained limited to 11%
on average and was considered to be quite sufficient for
the purposes of this work.

4.1.3 Limitations

As shown in Fig. 7, the blend shape model used in this
work is sufficient, but it does not cover the whole range
of expressions. Since each blend shape is predicted sep-
arately, there could be inconsistencies in the face of the
character. Resolving such inconsistencies and provid-
ing a better correspondence could be achieved through
a constrained weight propagation [23]. While the mesh
deformation used in this paper is based on blend shapes,
the models could be learned with the use of other con-
trol mechanisms, such as bone systems.

The generated facial expressions are generalizations of
the observed data. They correspond to mean values and
sometimes lack expressiveness (see Fig. 8). The models
sometimes output results that deviate significantly from
the observations. As they happen quite infrequently,
they can be easily filtered out.
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(c) Mouth Opening

(d)
Figure 6: Results obtained with different expressiveness vectors: (a-b) softened expressions, (c) predicted expres-
sion, and (d-e) exaggerated expressions. The red lines are added as guides to help in comparing the expressions

(d) Eyes Squinting (e) Eyebrows

The metabolic prediction model uses its last prediction
as input. It is thus subject to error accumulation and
could diverge from the observed values over time. Ap-
proaches to steer the values back to the observed range
should be used to solve such problems.

(b)
Figure 8: Comparison between real and predicted facial
expression from one participant to another: (a) gener-
ated, (b-c) different participants doing the same exer-
cise.

S CONCLUSION

By analyzing two sets of captured data, this paper re-
veals several important observations about what trig-
gers specific facial expressions. A combination of two
machine learning techniques was used in order to auto-
matically synthesize some metabolic parameters as well
as the facial animation of a 3D character. While be-
ing automatic, this approach provides meaningful pa-
rameters that animators can change to deliver realistic
and compelling facial animations that automatically ad-
just to the motion of the character. Furthermore, the
metabolic parameters provided by the approach could
also be helpful in animating other aspects of the char-
acter, such as breathing and sweating. Finally, the ap-
proach can be used for real-time applications as well as
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off-line high quality rendering. The approach provides
more realistic characters while reducing the burden of
capturing or hand animating the facial expressions re-
sulting from physical activity.

As the manual blend shape animation was a time con-
suming process, the method was limited to four blend
shapes. Automating this process by using novel tech-
niques [5, 29, 30] would allow for a larger number of
blend shapes or Ekman’s AU’s by using the Emotient
software for even more realistic results. Like other
methods described in Section 2, the proposed approach
addresses a single aspect of facial animation (only from
physical activity). A future work would be to provide a
framework that allows mixing different types of expres-
sions through various methods [2, 3, 13]. The proposed
approach is deterministic in nature: given the same con-
trol parameters and motions, it will result in the same
facial animation. An interesting future research would
be to incorporate the probabilistic and stochastic nature
of human reactions into the models.
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