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(a) 

 
(b)  

Figure 2. Pedestrian example images. (a) Samples 
of pose variations of front, back, left, and right. (b) 
Templates of front/back and left/right 

 

templates. For feature extraction, we introduce a 
novel combination of HLID [6] and cell-structured 
LBP [7] features. We compare the proposed 
approach to the HLID/linSVM classifier approach 
because the motivation of this study is to gain 
performance improvements over our previous work 
that used an FIR-specified feature [6].  

 

2. PEDESTRIAN CLASSIFICATION 
To improve classification performance, we adopt 
pose-specific classifiers and multiple features to FIR-
based pedestrian classification. For the pose model, 
only two poses of front/back and right/left are 
considered instead of four poses (front, back, right, 
and left), as is the case in visible spectrum image-
based pedestrian classification because of the similar 
contours between the combined poses. Furthermore, 
it makes the classification problem simple and 
reduces the computational power. Fig. 2 shows the 
samples as pose variations and the pose templates 
that are generated by averaging the intensity of 
manually separated positive samples of poses from 
training sets. Regarding features, we chose HLID 
features and cell-structured LBP features. HLID was 
selected because it has been shown to outperform 
HOG in FIR-based classifications [6]. Further, LBP 
was selected because it was expected to compensate 
the problems (sensitivity to noisy background edges) 
of HLID using its uniformity constraints [7].   

For combining information from multiple poses and 
multiple features, we employed a mixture-of-experts 
(MoE) framework introduced in [3]. In the MoE 
approach, the posterior probability that a given 
sample (ݔ௜) is a pedestrian class (ሺ߱଴ሻ) is (ܲሺ߱଴|ݔ௜ሻ), 
which is approximated with a sample-dependent 
weight ݓ௞ሺݔ௜ሻ  and a pose-specific classifier output 
  with pose clusters k as	௜ሻݔ௞ሺܪ

																				ܲሺ߱଴|ݔ௜ሻ ൎ෍ݓ௞ሺݔ௜ሻܪ௞ሺݔ௜ሻ
௞

														ሺ1ሻ. 

Given the pose-specific MoE model, the pose-
specific expert classifier ܪ௞ሺݔ௜ሻ	  was modeled in 
terms of our multiple feature set (f) as   

௜ሻݔ௞ሺܪ																										 ൌ෍ݒ௞
௙ܫ௞

௙൫ݔ௜
௙൯

௙

																				ሺ2ሻ. 

Here, ܫ௞
௙൫ݔ௜

௙൯	 denotes a local expert classifier for the 
kth pose cluster with features f from a feature set, and 
௞ݒ
௙	 represents a pose and feature dependent weight 

with ∑ ௞ݒ
௙ ൌ 1௙ . For expert classifiers ܫ௞

௙, we used a 
linear support vector machine (linSVM) to train the 
classifiers from the corresponding pose and feature 
only. Given K (2 of front/back and right/left) pose 
clusters and F (2 of HLID and LBP) features, we 
trained K × F classifiers ܫ௞

௙  on the pose-specific 
training set. Weights ݒ௞

௙	 were used to model the 
contribution of the individual classifiers. Hence, we 
derived the weights by the discriminative power of 
the individual expert classifiers using a training 
dataset. The sample-dependent weight ݓ௞ሺݔ௜ሻ  was 
decided using similarity between pose templates 
 ௜ asݔ and the sample	௞ݐ

																								߱௞ሺݔ௜ሻ ൌ
,௜ݔሺݎݎ݋ܿ ௞ሻݐ

∑ ,௜ݔሺݎݎ݋ܿ ௞ሻ௞ݐ
																		ሺ3ሻ. 

To measure the similarity, we used simple template 
matching using Pearson’s correlation measures. Both 
templates and samples were normalized before 
matching. For the weight function, the weights of 
sample outputs of pose-specific classifiers were 
determined proportionally by their similarity to the 
pose template with 0 ൑ ௜ሻݔ௞ሺݓ ൑ 1	 and ∑ ௜ሻݔ௞ሺݓ ൌ 1௞ . 
Using the weight function, this method can lower the 
risk of degradations in the classification process that 
are caused by incorrect pose decisions. 

 

3. EXPERIMENTAL RESULTS 
The proposed method was evaluated using 6573 FIR 
images that were taken from moving vehicles in an 
urban area at nighttime. We split the set of images 
into training sets and test sets according to the days 
of images captured: 4668 images for training and 
1905 images for test. The training samples were 
cropped from the training set and then divided into 
two different pose sets of front/back and right/left. 
Test samples were cropped automatically from the 
test set using the sliding window technique based on 
the overlap ratio between the current window and the 
manually labeled pedestrian ground truth (we choose 
the current window as test sample when the overlap 
ratio exceeds over 70%). Table 1 gives an overview 
of the dataset. Samples were resized to 24 × 48 pixels.  
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Pedestrians 

(front/back) 

Pedestrians 

(right/left) 
Non-
pedestrian 

Training 
set 

2209 1879 8555 

Test set 13123 10173 

Table 1. Datasets for evaluation 

 

We computed HLID8,2 features using a cell size of 6 
× 6 pixels, block size of 2 × 2 cells, overlap of 0.5 
blocks, and L2-norm block normalization. To extract 
LBP features, we computed LBP8,2 features using a 
cell size of 8 × 8 pixels and a maximum transition 
number of 2. Expert weights ݒ௞

௙	 were estimated by a 
linSVM on the training set (0.52 for HLID and 0.48 
for LBP for both poses). To quantify the performance, 
we plotted the detection error tradeoff (DET) curves 
on a log-log scale on both a per-window and per-
image evaluation. We followed the evaluation 
method used in [8]. 

First, we compared our proposed pose-specific and 
multiple feature-based classification approach to the 
single feature-based classifier, pose-specific classifier, 
and multiple feature-based classifier approaches. We 
selected HLID as the baseline feature to show the 
performance improvements over the FIR-specified 
feature. Multiple feature-based classification was 
conducted by concatenating two features into a single 
feature vector. The results are shown in Fig. 3(a). As 
expected, the proposed approach that combines pose-
specific and multiple feature-based classifiers 
outperformed other approaches. We also found that 
both the pose-specific classifier approach and the 
multiple feature-based classifier approach 
outperformed the single feature-based classifier. The 
results confirm that the pose-specific classifier 
approach performs better because the pose variations 
are relatively smaller than the classifier trained on a 
whole dataset irrespective of pose. Further, the 
combination of multiple complementary features 
boosts the performance. 

Next, we compared the MoE framework to simple 
combination rules to see the performance if the 
fusion method is varied. For simple combination 
rules, the concatenated multiple features were 
classified based only on the selected pose-specific 
classifier of having maximum pose similarity. Fig. 
3(b) shows that the MoE approach outperforms the 
simple combination approach. The differences were 
mainly caused by errors in pose estimation and by the 
use of the same weights for features without 
consideration of the discriminative power of each 
feature.  

Finally, we evaluated our proposed method on a per-
image basis to compare with the single feature-based 
classifier described in [6],  and checked for  

 
(a) 

 
(b) 

Figure 3. Performance comparison results with 
per-window evaluations. (a) Performance based 
on information of classification variations. (b) 
Performance based on fusion method variations. 

 

improvements for pedestrian detection in FIR image 
sequences. Except for the classification method, all 
of the other procedures and evaluation methods are 
the same. Fig. 4 shows that our proposed method 
improves the pedestrian detection performance by 
reducing the miss rate by approximately 4% at 10-1 
false positive per image (FPPI). These results  

 

 
Figure 4. Pedestrian detection performance 
comparison between the proposed classifier and 
the baseline HLID/linSVM classifier.  
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Figure 5. Detection examples of representative 
scenarios of single or multiple pedestrians with 
pose variations (the red boxes indicate the 
detection results).  

 

demonstrate the benefit of our proposed method. In 
order to gain more performance improvements, it 
will be necessary to upgrade pose estimation 
accuracy. This will be investigated in a future work. 
Fig. 5 shows some detection examples in FIR images. 

 

4. CONCLUSION 
We proposed a pose-specific pedestrian classification 
using multiple features in FIR images. Experiments 
showed the proposed approaches outperform single 
feature-based classifier. Reducing pose variation is 
helpful for FIR-based pedestrian classification. 
Further, the newly introduced combination of HLID 
and LBP features proved to be beneficial. We hope 
that our results will help promote further research on 
classifiers in FIR-based pedestrian detection systems. 
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