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ABSTRACT 
We propose a weight adjustment strategy to prevent a cascade of boosted classifiers from overfitting and to achieve 
an improved performance. In cascade learning, overfitting often occurs due to the iterative applications of 
bootstrapping. Since false positives that the previous classifier misclassifies are collected as negative examples 
through bootstrapping, negative examples more similar to positive examples are prepared as stages go on, and thus 
classifiers become tuned to the positive examples. When overfitting occurs, the classifier cascade shows 
performance degradation more in the detection rate than in the false alarm rate. In the proposed strategy, the 
imbalance between the detection rate and the false alarm rate is evaluated by computing the weight ratio of positive 
examples to negative examples and it is compensated by adjusting the weight ratio prior to boosting at each stage. 
Experimental results confirm the effectiveness of the proposed strategy. For experiments, face and pedestrian 
classifier cascades were trained by employing previous approaches and the proposed strategy. By employing the 
proposed strategy, the detection rate of classifier cascades was significantly improved for both face and pedestrian. 
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1. INTRODUCTION 
Cascade of boosted classifiers is an object detection 
method popularly employed in real-time systems. 
Since Viola and Jones introduced a real-time face 
detector based on classifier cascade [Vio04], the 
cascade structure has been successfully adopted in 
detecting various objects such as faces [Li11, Liu12, 
Cev13], vehicles [Cui10, Siv12], and pedestrians 
[Che11, Xin11, Hoa12, Pri13], and now it serves as a 
foundation for modern detectors [Dol12]. Many state-
of-the-art object detectors utilize the cascade structure 
alone or combined with other object detection 
methods [Dol09, Che11, Xin11]. 

The success of classifier cascade is mainly due to its 
fast processing speed. In object detection domain, 
where a few objects have to be distinguished from an 
extremely large number of non-objects, classifiers 
have to be trained to achieve a very high detection rate 
(e.g., 95%) and an extremely low false alarm rate (e.g., 
10–6). This asymmetric performance goal can be 

efficiently achieved by employing the cascade 
structure. Classifier cascade achieves a fast processing 
speed by pre-filtering most of non-objects with simple 
classifiers at early stages and a high detection 
accuracy by using more complex classifiers at later 
stages [Vio01]. Enzweiler and Gavrila compared 
several pedestrian detectors and reported that the 
pedestrian detector based on the cascade structure was 
approximately 20 times faster than the other detectors 
[Enz09]. 

Successful cascade learning requires extensive trial-
and-error. In cascade learning, each classifier in a 
cascade is trained just until a given performance goal 
is achieved. Therefore, the performance of a classifier 
cascade cannot be simply improved by adopting a 
more sophisticated algorithm for training each 
classifier. Furthermore, the detection rate of a 
classifier cascade is definitely degraded while the false 
alarm rate will be improved by appending more 
classifiers to the cascade. 

In this paper, we propose a cascade learning strategy 
to achieve an improved performance. In cascade 
learning, negative examples required for training each 
classifier are collected through bootstrapping [Sun98]. 
Overfitting often occurs due to iterative applications 
of bootstrapping. As stages go on, negative examples 
which are more similar to positive examples are 
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collected and classifiers become tuned to the positive 
examples. In the proposed strategy, the imbalance 
between the detection rate and the false alarm rate is 
evaluated at each stage to detect overfitting and the 
weights of training examples are adjusted to avoid 
overfitting. The rest of this paper is organized as 
follows: We briefly review related works in the 
following subsection and describe conventional 
cascade learning algorithms in Section 2. The 
proposed strategy is described in Section 3, and 
experimental results are presented in Section 4. In 
Section 5, the conclusions are drawn. 

1.1 Related Work 
Multi-exit cascade has been studied as an improved 
cascade structure [Pha08]. While the information 
obtained by the previous classifier is discarded prior 
to boosting at each stage in the Viola-Jones cascade, it 
is inherited to the subsequent classifier in the multi-
exit cascades such as boosting chain [Xia03], nested 
cascade [Wu04], soft cascade [Bou05], and embedded 
cascade [Sab12]. By recycling information at each 
stage, the information redundancy between classifiers 
will be reduced and more efficient classifier cascade 
can be constructed [Sun14]. 

In cascade learning, each classifier is trained to 
achieve a very low false negative rate (e.g., 0.5%) and 
a rather high false alarm rate (e.g., 50%). Training a 
classifier to achieve such an asymmetric goal is not a 
task typically addressed by machine learning 
algorithms. In the Viola-Jones’ scheme, a very low 
false negative rate is achieved by adjusting threshold 
of each classifier [Vio04], however, with the penalty 
of sharply increased false alarm rate [Xia03]. By 
adopting an asymmetric AdaBoost, the asymmetric 
goal can be achieved more effectively [Vio01, Mas07, 
Sun07, Wu08, Lan12, Wan12]. Masnadi-Shirazi and 
Vasconcelos [Mas07] presented a theoretically solid 
asymmetric boosting algorithm based on the statistical 
view of boosting, and Sun et al. [Sun07] investigated 
several asymmetric boosting algorithms which assign 
larger weights to false negatives by manipulating 
weight update rule. Landesa-Vázquez and Alba-
Castro [Lan12] showed that AdaBoost can be used as 
an asymmetric learning algorithm by manipulating 
initial weights of training examples instead of 
manipulating weight update rule. 

Cascade learning has several parameters such as the 
number of classifiers in a cascade and the performance 
goal for each classifier. Since the processing speed and 
the performance of a classifier cascade vary non-
intuitively with these parameters, a successful cascade 
learning requires extensive trial-and-error [Sab12]. 
Several cascade optimization algorithms have been 
proposed [Sab12, Wan12, Lud13, Pai14]. These 
algorithms search for optimal trade-off between the 
detection performance and the processing speed. 

2. CONVENTIONAL CASCADE 
LEARNING ALGORITHM 
In this section, AdaBoost algorithm and conventional 
cascade learning algorithms are described. Among the 
several variants of AdaBoost algorithms, the gentle 
AdaBoost [Fri00] is presented, which is also used for 
describing the proposed strategy in Section 3. For 
cascade learning algorithms, both the Viola and Jones’ 
algorithm [Vio04] and the multi-exit cascade learning 
algorithm [Xia03, Pha08] are described. 

2.1 AdaBoost 
AdaBoost is a machine learning algorithm for 
constructing a strong classifier as a linear combination 
of weak classifiers [Fre97]. AdaBoost maintains a 
distribution of weights over the training examples by 
increasing the weights of misclassified examples and 
decreasing those of correctly classified examples at 
each boosting round. With this weight update rule, 
AdaBoost focuses on training examples so far 
misclassified. 

For given training examples (x1, y1), … (xN, yN), where 
xi is an example image and yi is class label (+1, –1 for 
positive and negative examples, respectively), the 
weights of training examples are evenly initialized 
before boosting begins. At each boosting round, a 
weak classifier is learned from the weight distribution, 
and the weight of each training example is updated 
according to the prediction of the weak classifier as 
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where wt(i) and wt+1(i) are the weights of a training 
example xi at the rounds t and t+1, respectively, and 
Zt+1 is the normalization factor. ht(xi) is a weak 
classifier which outputs a confidence-rated prediction 
(a value between –1 and +1) for each example. The 
weak classifier learning and the weight update are 
repeated until a performance goal is achieved, and the 
boosted classifier is given as a linear combination of 
the weak classifiers as 
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where T is the number of weak classifiers in the 
boosted classifier and b is the bias applied for the 
classifier. In cascade learning, a positive bias (b > 0) 
is applied to the boosted classifier to achieve a lower 
false negative rate, with less weak classifiers, by 
sacrificing its false alarm rate. 

To achieve the asymmetric performance goal more 
efficiently, an asymmetric AdaBoost algorithm can be 
adopted. As Landesa-Vázquez and Alba-Castro 
[Lan12] showed, AdaBoost can be directly used as an 
asymmetric learning algorithm. Boosting becomes to 
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focus more on reducing the false negative rate when 
larger initial weights are assigned to the positive 
examples as 
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where γ ∈(½, 1) is the asymmetric parameter, and  N+ 
and N– are the number of positive examples and that 
of negative examples, respectively. 

2.2 Viola-Jones Cascade Learning 
AdaBoost [Fre97, Fri00] is used to train each classifier 
in a cascade. Each classifier is trained to achieve a 
very low false negative rate and a rather high false 
alarm rate. In object detection domain where there 
exist only a few objects contrary to an extremely large 
number of non-objects in an image, it is possible to 
construct a simple classifier with a very low false 
negative rate by sacrificing its false alarm rate 
[Vio01]. Cascade of boosted classifiers achieves both 
fast processing speed and high accuracy by discarding 
negatives with these simple classifiers at early stages 
and by using more complex classifiers at later stages 
[Vio04]. 

Negative examples for training each classifier are 
prepared through bootstrapping. False positives which 
the previous classifier misclassifies are collected and 
used as negative examples for training the subsequent 
classifier [Sun98]. By the iterative applications of 
bootstrapping, cascade learning becomes to face more 
difficult negative examples as stages go on. 

The number of classifiers in a cascade can be 
determined from a given goal for the detection rate and 
the false alarm rate [Vio04]. For example, a detection 
rate of 95% and a false alarm rate of 6 x 10–6 can be 
achieved by constructing a 10-stage cascade and 
training each classifier to achieve a detection rate of 
99.5% (0.99510 ≈ 0.95) and a false alarm rate of 30% 
(0.310 ≈ 6 x 10–6). One thing we have to remember in 
the cascade design is that the detection rate of a 
classifier cascade as well as its false alarm rate 
decrease as more classifiers are appended to the 
cascade, which makes the cascade optimization much 
complicated. 

2.3 Multi-exit Cascade Learning 
Xiao et al. [Xia03] proposed the multi-exit cascade 
structure called boosting chain where each classifier 
inherits score from its previous classifier. In the Viola-
Jones cascade learning, weights of training examples 
are evenly initialized before boosting begins at each 
stage, and thus information obtained by its previous 
classifier is discarded. For a multi-exit cascade, each 
classifier is trained after the weights of training 
examples are initialized and then updated according to 

the predictions of the weak classifiers of its previous 
classifier [Xia03]. Weight of each training example is 
initialized and updated as 
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where w1(i) is evenly initialized weight, ht(xi) is a 
weak classifier which outputs a confidence-rated 
prediction for each training example, M is the number 
of weak classifiers in the previous classifier, and ZM+1 

is the normalization factor. Boosting proceeds with the 
weights initialized and updated. 

3. PROPOSED CASCADE LEARNING 
STRATEGY 
In this section, the proposed cascade learning strategy 
is presented, which evaluates the imbalance between 
the detection rate and the false alarm rate and 
compensates it to avoid overfitting. 

3.1 Overfitting in Cascade Learning 
While a classifier trained to be overly complex may 
classify the training examples perfectly, it is unlikely 
perform well on new patterns. This situation is known 
as overfitting [Dud01]. Even though it is often 
believed that AdaBoost does not suffer from 
overfitting [Fri00], cascade learning which employs 
AdaBoost to train each classifier in the cascade often 
undergoes overfitting. In cascade learning, false 
positives which the previous classifier misclassifies 
are collected and used as negative examples for 
training the subsequent classifier [Sun98, Vio04]. As 
stages go on and the bootstrapping is iterated, negative 
examples which are more similar to positive examples 
are collected, and thus the generalization of the 
classifier cascade becomes degraded. 

Even though the overfitting occurs due to the 
bootstrapping iterations, it will not be solved by 
reducing the number of bootstrapping iterations. The 
bootstrapping iterations can be reduced by designing 
the cascade to have less number of classifiers and each 
classifier to achieve a lower false alarm rate (to reject 
more negatives) as we described in Subsection 2.2. 
However, if each classifier in a cascade achieves a 
lower false alarm rate, negative examples even more 
similar to the positive examples will be collected 
through bootstrapping. This will worsen the 
overfitting problem. 

3.2 Proposed Cascade Learning Strategy 
When overfitting occurs, the classifier cascade shows 
performance degradation more in the detection rate 
than in the false alarm rate, since each classifier is 
trained with true positives (positive examples) and 
false positives (bootstrapped negative examples). In 
the proposed strategy, the imbalance between the 
detection rate and the false alarm rate of the previous 
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classifier is evaluated and it is compensated by 
adjusting the weights of training examples. The multi-
exit cascade structure described in Subsection 2.3 is 
employed in the proposed strategy. In the multi-exit 
cascade learning, the weights of training examples are 
updated using the weak classifiers of the previous 
classifier before boosting begins at each stage [Xia03]. 
The imbalance between the detection rate and the false 
alarm rate can be evaluated from the updated weight 
distribution by computing the weight ratio of positive 
examples to negative examples, and it can be 
compensated by adjusting the weight distribution. 

Fig. 1 shows the proposed learning algorithm for each 
classifier in a cascade. This classifier learning has to 
be repeated to construct a classifier cascade. After the 
weights of training examples are initialized and 
updated, the ratio of the sum of positive example 
weights to that of negative example weights is 
computed as  
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where w1(i) is an evenly initialized weight, ht(xi) is a 
weak classifier which outputs a confidence-rated 
prediction (a value between –1 and +1) for example xi, 
and M is the number of weak classifiers used in the 
previous classifier. 

Since each classifier except the first classifier in a 
cascade is trained with bootstrapped negative 
examples (false positives), the sum of negative 
example weights is larger than that of positive 
examples weights (rM < 1) after the weight update. 
When larger weights are given to the negative 
examples at the weight initialization, boosting will 
focus more on reducing the false alarm rate [Lan12]. 
To prevent boosting from focusing more on reducing 
the false alarm rate, the weight ratio has to be adjusted 
to be balanced. The weight of each training example 
is adjusted by adding a bias bw to the weight update 
rule of the multi-exit cascade as 
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where ZM+1 is the normalization factor. The bias bw for 
the weight adjustment is computed as 
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where Wa is the weight adjustment factor devised for 
experimental purpose, which is a desired weight ratio 
of positive examples to negative examples. Wa = 1 

should be used to compensate the imbalance between 
the detection rate and the false alarm rate. If the 
weights are adjusted with Wa < 1, boosting will focus 
more on reducing the false alarm rate, and vice versa. 
To confirm this, several different weight adjustment 
factors will be tested in our experiments. 

After the weights of training examples are adjusted, 
boosting is proceeded as in the conventional cascade 
learning. Since the weights are updated using the weak 
classifiers of the previous classifier before boosting 
begins, the prediction of each boosted classifier has to 
be computed by summing the predictions of all the 
weak classifiers used in the previous classifier as well 
as in the current classifier as 

 
1

( ) ( ( ) )
M k

i t i
t

H x sign h x b
+
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where M is the number of weak classifiers used in the 
previous classifier, k is the number of newly learned 
weak classifiers, and b is the bias applied to the current 
classifier to reduce the false negative rate by 
sacrificing its false alarm rate. 

• Given training examples (positive examples 
and bootstrapped negative examples): 

- Initialize the weights of examples evenly. 

- Update the weights of examples using the 
weak classifiers of the previous classifier and 
compute the weight ratio rM using the 
equation (5). 

- Compute the bias bw for weight adjustment 
with the weight adjustment factor Wa = 1 
using the equation (7). 

- Adjust the weights of examples with the bias 
bw using the equation (6). 

• Repeat the following process until a given 
performance goal is achieved: 

- Proceed with the conventional boosting 
(Train a weak classifier and update the 
weights with the predictions of the weak 
classifier). 

- Determine the bias b that is applied to the 
boosted classifier to achieve the goal for the 
false negative rate as in the equation (2). 

• Output the boosted classifier, which is a linear 
combination of all the weak classifiers learned 
at the previous stage as well as at this stage as 
in the equation (8). 

Figure 1. The proposed classifier learning 
algorithm for constructing a classifier cascade 
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4. EXPERIMENTAL RESULTS 
For experiments, we trained classifier cascades for 
face and pedestrian by employing the Viola-Jones 
cascade (VJ), the multi-exit cascade (Multi-exit), the 
Viola-Jones cascade with the asymmetric AdaBoost 
(Asymmetric), and the proposed strategy (Proposed). 
Each classifier in the cascades was trained using the 
gentle AdaBoost [Fri00] with the same set of Haar-
like features [Vio04], and was trained to achieve the 
same performance goal: a detection rate of 99.5% and 
a false alarm rate of 50%. The classifier cascades 
employing the asymmetric AdaBoost [Lan12] were 
trained with the asymmetry parameter γ = 4/5 in the 
equation (3) to assign four times of weights to positive 
examples. The weight adjustment factors Wa = 0.5 and 
2.0 were also tested in the experiments, which assign 
twice weights to negative examples and to positive 
examples, respectively. 

Face examples were obtained by cropping the images 
in Labeled Faces in the Wild-a [Hua07, Wol11]. All 
of the 13,233 face examples were resized to 18 x 22, 
and 2,000 examples of them were used for training and 
the rest was used for test. Pedestrian examples were 
cropped from test images in the Daimler Stereo 
Pedestrian Detection Benchmark Dataset [Kel11], and 
were resized to 14 x 28. Among 13,714 pedestrian 
examples, 5,000 examples were used for training and 
the rest was used for test. For test, 1,000,000 negative 
examples were prepared by randomly cropping from 
more than 8,000 images which do not contain any 
objects. 

4.1 Impact of Weight Adjustment 
Fig. 2 shows the learning curves of the classifier 
cascades evaluated at each stage with test examples. 
The false negative rate and the false alarm rate of the 
classifier cascades are presented separately to show 
the imbalance between them. The performance goal 
for the cascade learnings is also presented in the figure 
(Goal). 

The imbalance problem is obviously observed in the 
face cascade learnings. All the cascades employing the 
previous approaches overachieved the false alarm rate 
goal while they failed to achieve the false negative rate 
goal. In case of the pedestrian cascade learnings, all 
the cascades employing the previous approaches 
underachieved both the false negative rate and the 
false alarm rate goals. However, the degradation in the 
false negative rate was more severe. 

The experimental results show that the performance 
imbalance problem can be solved by employing the 
proposed strategy. When larger weights were assigned 
to negative examples (Wa = 0.5), the false negative rate 
was similar to or worse than that of cascades 
employing the conventional approaches, and it was 
improved when the same or larger weights were 
assigned to positive examples (Wa ≥ 1.0). The biggest 
improvement on the false negative rate was achieved 
when larger weights were assigned to positive 
examples (Wa = 2.0). However, in this case, there was 
degradation in the false alarm rate. Moreover, the 
pedestrian classifier cascade failed to reduce the false 
alarm rate anymore at 10th stage as shown in Fig. 2(b). 

Figure 2. Learning curves of classifier cascades. (a) Face, (b) pedestrian. 
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These experimental results confirm that the weight 
ratio should be balanced (Wa = 1) to achieve a higher 
detection rate without sacrificing the false alarm rate. 

The figure also shows that the performance 
improvement gained by adopting the multi-exit 
cascade structure or the asymmetric AdaBoost is 
marginal. By adopting a sophisticated algorithm for 
training each classifier, the performance goal for each 
classifier can be achieved with less number of weak 
classifiers. However, the performance of the classifier 
cascade is hardly improved, since each classifier is 
trained just until a given goal is achieved. 

4.2 Detection Performance Comparison 
We compared the performance of the classifier 
cascades employing the proposed strategy against that 
of the classifier cascades employing the previous 
approaches. Fig. 3 shows the receiver operating 
characteristic (ROC) curves for the classifier cascades. 
Even though all the classifier cascades were trained to 
achieve the same performance goal with the same set 
of training examples and the same set of Haar-like 
features, those employing the proposed strategy show 
significantly improved detection rate at the same false 
alarm rate. 

5. CONCLUSIONS 
We propose a weight adjustment strategy to achieve 
an improved performance in cascade learning. 
Cascade learning often underachieves the detection 
rate goal even when it overachieves the false alarm 
rate goal due to overfitting. In the proposed strategy, 
the weight ratio of positive examples to negative 
examples is computed to evaluate the imbalance 
between the detection rate and the false alarm rate, and 
it is adjusted to be balanced to prevent cascade 
learning from overfitting. 

Since both the detection rate and the false alarm rate 
definitely decrease as more classifiers are appended to 
the classifier cascade, maintaining a higher detection 
rate is far more important than achieving a lower false 
alarm rate in cascade learning. By adopting the 
proposed strategy, an improved performance can be 
achieved by preventing the degradation in the 
detection rate at later stages, which often occurs in 
cascade learning. 

Experimental results confirm the effectiveness of the 
proposed strategy. For experiments, face and 
pedestrian classifier cascades were trained by 
employing previous approaches and the proposed 
strategy. Even though each classifier cascade was 
trained to achieve the same performance goal with the 
same set of training examples and the same set of 
features, the performance of the classifier cascades 
employing the proposed strategy is significantly 
improved. 
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