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Figure 1: Augmented reality application showing user perceptive view of two different maintenance procedures.

ABSTRACT
Augmented reality (AR) is a technology that overlays virtual 3D content in the real world to enhance a user’s
perception. This AR virtual content must be registered properly with less jitter, drift or lag to create a more
immersive feeling for the user. The object pose can be determined using different pose estimation techniques using
the data from sensors cameras and inertial measurement units (IMUs). Camera based vision algorithms detect the
features in a given environment to calculate the relative pose of an object with respect to the camera. However,
these algorithms often take a longer time to calculate the pose and can only operate at lower rates. On the other
hand, an IMU can provide fast data rates from which an absolute pose can be determined with fewer calculations.
This pose is usually subjected to drift which leads to registration errors. The IMU drift can be substantially
reduced by fusing periodic pose updates from a vision algorithm. This work investigates various factors that affect
the rendering registration error and to find the trade-off between the vision algorithm pose update rate and the
IMU drift to efficiently reduce this registration error. The experimental evaluation details the impact of IMU drift
with different vision algorithm pose update rates. The results show that the careful selection of vision algorithm
pose updates not only reduces IMU drift but also reduces the registration error. Furthermore, this reduces the
computation required for processing the vision algorithm.
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1 INTRODUCTION
In past decades, virtual reality (VR) and augmented
reality (AR) have seen a wide range of applications
starting from entertainment (games) to medical fields.
Many companies like Google (Google glass1), Mi-
crosoft (Hololens2), Epson (Moverio3) for example
brought this AR technology from research experiment
projects to daily use commercial products. The AR
technology enables one to perceive reality in a more

1 https://support.google.com/glass/
2 https://www.microsoft.com/
microsoft-hololens/

3 http://www.epson.com/cgi-bin/Store/jsp/
Landing/moverio-bt-200-smart-glasses.do

informative dimension. This supplementary infor-
mation can be useful in many applications, one such
is a maintenance application [Feiner11]. This paper
concentrates on maintenance operation in ATLAS4

particle physics detector (in Large Hadron Collider
(LHC)) as a use case environment. The operators
and technicians in this high energy physics radiation
environment have to finish the maintenance job rapidly
to reduce the exposure time. The AR technology can
help in replacing paper manuals and actually display
each maintenance procedure in the operator’s field
of view. Figure 1 shows the user perceptive view of

4 http://atlas.ch/
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two maintenance procedures for repairing a FPIAA
(Finding people in ATLAS environment) system.
AR technology relays on the pose information provided
by the sensors to overlay the virtual content. Amongst
many available sensors, camera and Inertial measure-
ment units (IMUs) are complete sensors, as they pro-
vide position and orientation in both indoor and out-
door applications. Also, these sensors can be compared
closely with the humans vision (camera) and vestibu-
lar (IMU) system [Corke07]. The vision and vestibular
systems provide key information about spatial orienta-
tion, body posture, equilibrium, reflex behaviours such
as eye movement coordination, and navigation. This
vestibular system that does inertial sensing is protected
in the inner ear. The proper fusion of the camera and the
IMU data can help us to mimic the human way of per-
ceiving the environment. In this work, pose estimation
is carried out by fusing camera and IMU data.
Camera based vision algorithms are very well suited
for the AR application. However, based on the avail-
able processing power, the computation time for a vi-
sion based algorithm (other than fiducial marker track-
ing) can vary from several milliseconds to seconds. It
is well known that the IMU provides faster pose up-
dates than camera image based pose estimation. The
next obvious measure to know about is the accuracy in
terms of rendering an AR virtual content. The major
disadvantage of IMU is that they typically suffer from
drift. One well known method to overcome this drift is
to use other low drift data (for example pose computed
from the vision images) and then fuse the two data to-
gether. The fusion of vision relative pose and IMU ab-
solute pose data will help to predict the object location
assuming that the camera and IMU are very well cal-
ibrated. There have been different methods proposed
in AR community for camera and IMU related sensor
fusion [Azuma94, Chai99, Davison03, Hol06]. Never-
theless, one of the aspects that significantly affects the
registration error for AR applications is the pose update
rate from vision algorithm that will efficiently minimize
the IMU drift. The focus of this paper is to define the
different parameters that affect the rendering registra-
tion error and also to determine the pose update rate
from the vision algorithm required to reduce the IMU
drift and the registration error for an AR application.
The experimental results show the impact of pose up-
dates from the vision algorithm on IMU drift and regis-
tration error.

2 RELATED WORK
The usage of camera and IMU sensors is very well
known in augmented reality applications for pose esti-
mations. Starting from [Azuma94], there have been dif-
ferent work that discussed about the fusion of the pose
from the camera and the IMU to reduce the registra-
tion error [Chai99, Davison03, Hol06]. IMU data has

also been used in boosting vision feature matching and
these features are used as an individual measurement
as opposed to the more traditional approaches where
camera pose estimates are first extracted by means of
feature tracking and then used as measurement updates
in a filter framework as in [Oskiper12]. Recently, Kriti
et al [Kumar14] highlighted the usage of IMU data for
the occlusion problem in vision algorithm by defining
the fusion techniques. Another interesting application
of augmented reality is binoculars [Oskiper13] using
stereo camera, GPS and IMU for pose estimation. Their
results show that the vision tracking algorithm compu-
tation takes 30 milliseconds which is more acceptable
even without the need of an IMU. One different appli-
cation of an IMU is used in sensing the user movement
to correct the registration errors [Lo10].

In this work, the application of our interest is a mainte-
nance operation in a complex and an extreme environ-
ment. A most recent work on a similar application is
[Zhu14], which presented a whole system from tracking
to rendering with the delay measurements at different
modules. In this work IMU data was fused with vision
algorithm pose using Extended Kalman Filter but there
was limited highlight on the vision pose updates used
for fusion and its effect on the registration error. The
goal of our work is to find a trade-off between vision
algorithm pose updates and the IMU drift to efficiently
reduce the registration error. This will help to use only
the required number of pose updates from the vision al-
gorithm to have a good visualization of AR content at
the correct location. Hence this optimizes the use of
processing power that is required for vision algorithm
computation.

In this paper, the different parameters affecting regis-
tration of AR visualization is discussed in section 3. In
the subsequent sections, pose estimation using a cam-
era and an IMU is elaborated. In section 6, the sensor
fusion using extended kalman filter is explained. The
experimental evaluation of determining the correct pose
update rate from a vision algorithm required to reduce
the drift and further the registration error is illustrated
in section 7. The findings from this work and future
direction is summarized in conclusion.

3 AR VIRTUAL CONTENT REGIS-
TRATION

Augmented reality (AR) is user centric, where the user
evaluates the system based on what he/she sees in the
display device (either hand-held or head mounted dis-
play). Most common problem in rendering the AR vir-
tual content is the registration between a real and a vir-
tual object in the scene. The misalignment of the AR
virtual content with their desired real world object is
referred to as registration error. Figure 2 shows the reg-
istration error between real screws (dark gray) and the

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 212 ISBN 978-80-86943-65-7



Figure 2: Augmented reality video display showing
registration error in rendering the virtual object (red)
on real object (dark gray) is shown.

virtual screws (red). This registration error must be kept
quite minimal even during fast movements. Otherwise
the system will not provide any help to the user. As-
suming that the camera, IMU and the display device
are calibrated to perfection, the registration error can
be expressed as,

E = f (Pcam,DIMU ,D,S) (1)

where, Pcam is the accuracy of vision algorithm pose
estimation, DIMU is the drift developed in the IMU
over time, D is the distance between the system (cam-
era+IMU) and the target object (refer Figure 2 ) and S
is the size of the object of interest.

If the vision algorithm detects object A as object B (for
example, blue cable detected as red in Figure 1) from
the captured images, this will result in highlighting a
different object. If the pose update from the vision al-
gorithm is at every 1s, then between t0 to t0 + 1s the
drift accumulated in the IMU (DIMU ) can influence the
registration error. If the distance (D) is increasing the
error is also increasing, this can result in pointing A ob-
ject (say red cable) as B (say blue cable) to the user. If
the object of interest and the AR content is large (vir-
tual box lid over the FPIAA box in Figure 1), a small
registration error can be acceptable by the user. In other
case, if the object of interest and virtual content is small,
say highlighting a cable where there are identical cables
next to each other, a small registration error can point a
different cable to the user.

The main goal of this paper is to study the IMU drift
related registration error developed over time and effi-
ciently reduce that error using vision pose update. In or-
der to have an accurate pose measurement from the vi-
sion algorithm, this work uses marker tracking instead
of real object pose estimation. This will also help us
to use marker pose as the ground truth and evaluate the
error from other parameters (i.e. from the IMU drift).

As a foundation to the above discussed point, it is re-
quired to have pose estimation from a camera, IMU and
sensor fusion to carry out the experiments. In the next
sections, pose estimation using a camera and an IMU is
discussed.

4 POSE ESTIMATION USING CAM-
ERA IMAGES

In order to have accurate pose estimation from the
vision algorithm, a prepared environment with fiducial
markers are used. There are several libraries mainly
used to resolve the marker tracking issues in the given
scene. Most well known marker tracking libraries are
ARToolKit [Kato99], osgART [Looser06], DWART
[Bauer01], ARTag [Fiala04], Ubitrack [Ubitrack04]
etc. In this work, marker tracking from Ubitrack5

library is used. The precise marker tracking is possible
when it is provided with the camera parameters (intrin-
sic and extrinsic) calculated using camera calibration6

[Salvi02].

5 POSE ESTIMATION USING IMU
An inertial measurement unit has three accelerometers,
three gyroscopes to measure acceleration and angular
velocity along X, Y and Z axis. Some of the IMU
also include three magnetometers to calibrate against
earth’s magnetic field. The cost and size of inertial sen-
sors increase with the accuracy and reduced drift range.
Following subsections detail the calculation of orienta-
tion and position from angular velocity and acceleration
data from IMU.

5.1 Orientation calculation
The orientation in terms of quaternions was calculated
using explicit complimentary filter (ECF) discussed
by M. Euston et al in [Mahony08]. Please refer
[Mahony08] for more details on orientation calcula-
tion. In the next section, position calculation from
accelerometer data is explained.

5.2 Position calculation
The process of integrating acceleration data twice to
calculate position is not so direct, since the accelerome-
ter data contains the body acceleration and gravity com-
ponent. As a first step, the gravity component was re-
moved and the resulting linear acceleration was used for
further processing. The absolute position is then calcu-
lated by double integrating this linear acceleration. The
relative 6Dof pose from camera and absolute 6Dof from
IMU is fused using the Extended Kalman Filter detailed
in sensor fusion section.

5 http://campar.in.tum.de/UbiTrack/WebHome
6 http://www.vision.caltech.edu/bouguetj/
calib_doc/

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 213 ISBN 978-80-86943-65-7



6 SENSOR FUSION
The fusion of pose data is performed with an Extended
Kalman filter (EKF) [Bishop01] approach, a technique
widely used in state estimation problems such as pose
estimation in robotics, aviation and augmented reality
[Azuma94, Chai99, Davison03, Hol06]. The kalman
filter can be either used at the output of a pre-built sen-
sor [Azuma94, Chai99] or as an integral part of the vi-
sion algorithm for pose estimation [Davison03]. The
difference is based on the orientation representation, as
in [Azuma94, Davison03] it is quaternion and [Chai99]
uses euler representation. Most importantly the filter
should cope up with unsynchronized pose data coming
from the different sources particularly IMU and camera
in our work. In this paper, marker tracking is used as
vision algorithm since it provides accurate pose estima-
tion which can serve as ground truth to measure the reg-
istration error developed by an IMU drift. Further for
other applications this marker tracking can be replaced
by any real object pose estimation algorithms within the
same sensor fusion frame work detailed below.

6.1 Extended Kalman Filter (EKF)
A nonlinear version of the Kalman filter that linearizes
an estimate of the current mean and covariance is re-
ferred as an Extended Kalman filter (EKF). This filter-
ing technique allows us to estimate the parameters from
multiple measurements without completely discarding
information from previous sensor readings.

Let us assume that the process has a state vector x ∈ Rn,
and is governed by the non-linear stochastic difference
equation

xk = f (xk−1,uk,wk−1) (2)

with a measurement z ∈ Rm that is

zk = h(xk,vk) (3)

where the random variables wk and vk represent the pro-
cess and measurement noise. In this case the non-linear
function f in the difference equation 2 relates the state
at the previous time step k−1 to the state at the current
time step k. It includes driving function uk and the zero-
mean process noise wk as parameters. The non-linear
function h in the measurement equation 3 relates the
state to the measurement zk. In this case, the state vec-
tor consists of pose from camera and pose from IMU
transformed to the camera coordinate frame using the
camera-IMU calibration.

To estimate a process with non-linear difference and
measurement relationships, we begin by writing new
governing equations that linearise an estimate about
equation 2 and equation 3

xk ≈ x̃k +A(xk−1− x̂k−1)+Wwk−1 (4)

zk ≈ z̃k +H(xk− x̃k)+V vk (5)

where x̂k is a posteriori estimate of the state at step k.
A is the Jacobian matrix of partial derivatives of f with
respect to x, that is

A[i, j] =
d f[i]
dx[ j]

(x̂k−1,uk,0) (6)

W is the Jacobian matrix of partial derivatives of f with
respect to w,

W[i, j] =
d f[i]
dw[ j]

(x̂k−1,uk,0) (7)

H is the Jacobian matrix of partial derivatives of h with
respect to x,

H[i, j] =
dh[i]
dx[ j]

(x̃k,0) (8)

V is the Jacobian matrix of partial derivatives of h with
respect to v,

V[i, j] =
dh[i]
dv[ j]

(x̃k,0) (9)

The complete set of EKF equations is given in equa-
tions below,
EKF Time update

x̂−k = f (x̂k−1,uk,0) (10)

P−k = AkPk−1AT
k +WkQk−1W T

k (11)

the time update equations project the state and covari-
ance estimates from the previous time step k−1 to the
current time step k. Ak and Wk are the process Jacobians
at step k (see equation 6 and 7) and Qk is the process
noise covariance equation at step k. Careful selection of
process noise is a must to have good performance. The
high value causes old measurements to decay quickly
and new measurements are given a higher weighting.
EKF measurement update

Kk = P−k HT
k (HkP−k HT

k +VkRkV T
k )−1 (12)

x̂k = x̂−k +Kk(zk−h(x̂−k ,0)) (13)

Pk = (1−KkHk)P−k (14)

The measurement update equations (12 to 14) corrects
the state and covariance estimates with the measure-
ment zk. Hk and Vk are the measurement Jacobians at
step k (see equation 8 and 9). Rk is the measurement
noise covariance at step k.
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Figure 3: Error calculation over time at a target distance
of 25cm. RGB is the marker pose (ground truth) and
CMY is the sensor fusion pose after 500ms, 1s, 2s, 5s
and 10s.

7 EXPERIMENTAL EVALUATION
The framework is implemented in C and C++ and
executed in Advantech MIO-5271 with Intel corei5-
4300U CPU and 8GB of RAM. The sensors consist of
a Logitech C920 camera and an Xsens MTi-100 IMU.
Camera images are captured at 640x480 pixels reso-
lution at 30fps and the IMU data at 100Hz frequency.
The AR virtual content rendering is implemented using
Unity3D7 game engine.

This work concentrates on AR for a maintenance ap-
plication as shown in Figure 1, the operating distance
between system and target object can vary from 0.25
meter to 1.5 meter. The size of the object over which
the AR content is rendered vary from 2cm to 8cm for
the considered maintenance use case. The IMU drift re-
lated registration error was studied by varying one pa-
rameter and keeping all other constant. For example,
the pose update rate from the vision algorithm to sen-
sor fusion was varied to see the registration error pro-
duced due to the IMU drift under static conditions and
at a fixed distance. The pose obtained from the marker
remains as the ground truth pose that can be used to
measure the drift from the IMU. The marker pose from
camera images is taken at a fixed rate for fusing with
the IMU data. The IMU pose through EKF is used
to know the object location between the intermediate
marker pose updates. The IMU drift developed in this
duration is corrected using the upcoming marker pose
from the camera. This drift over time was measured by
comparing the marker pose with the sensor fusion pose.
Since the camera and IMU are in a static condition (at
25cm away from the marker), the deviation between the
marker pose and the sensor fusion pose is caused by the
IMU drift. In the experiments, the marker pose is taken
at 0.5s, 1s, 2s, 5s and 10s update rates. The drift be-
tween these updates are shown in the Figure 3 where the

7 http://unity3d.com/

(a) Error in position over time at a target distance of 25cm.

(b) Error in position at different target distance with the 2Hz
marker pose update.

Figure 4: Position error over time and at different target
location.

marker pose is shown in RGB and sensor fusion pose is
shown in CMY. The drift increases with the decrease in
marker pose update rate, i.e. the drift is higher for every
5s update than the 2s marker pose update. As it can be
seen in Figure 3, the deviation in orientation between
marker pose (RGB) and the sensor fusion pose (CMY)
is considerably lower than the position (XYZ) values.
The closer look for the deviation in position (XYZ) val-
ues for different marker pose update rate is shown in
figure 4 (a). This deviation in position is measured at a
target marker placed 25cm away from the camera and
the IMU. The registration error in terms of percentage
along the three axis is given in Table 1.
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As mentioned in equation 1, the registration error is
also related with the distance between the system and
the target object. The influence of the different target
distance and the related registration error is shown in
Figure 4 (b). As the distance increases the registra-
tion error along all the three axis also increases steadily.
These results are measured with the vision algorithm
pose update of 0.5s to the sensor fusion since 2Hz pose
update is possible in most real object pose estimation
algorithms. Thus the careful selection of a vision al-
gorithm is required to efficiently reduce the IMU drift
and this in turn reduces the AR content registration er-
rors. Further, this reduces the computation required for
vision based algorithms to process several images per
second to the number that is sufficiently enough to cor-
rect this registration error.

Marker pose update (s) X(%) Y(%) Z(%)
0.5 0.64 0.82 0.02
1 1.23 1.54 0.067
2 2.4 2.69 0.147
5 5.9 6.99 0.29
10 12.2 14.33 0.686

Table 1: Registration error in percentage along X, Y, Z
axis for different pose updates from marker.

The drift cannot be the same for different IMU. To test
this statement, the above mentioned experiment was re-
peated again with another Xsens IMU and the measured
registration error over time is shown in Figure 5. The
result shows that the registration error developed over
time due to IMU drift is purely random. The direc-
tion along which the error was happening is opposite
in both the cases. The registration error was happening
more in north east direction using the first IMU and it
was moving in south west for the second case. Having
said this, a method that reduces the registration error in
the first case may not really serve as a solution for the
other case. Thus, it is wiser to use other sources of in-
formation (vision algorithm in our work) to eliminate
this error.

The maintenance application of our interest has a work-
ing distance of 0.5m to 1.5m. For this working distance,
the IMU drift is 0.3mm to 2mm along the X axis with
0.5s marker pose updates and slightly less in other two
axis. These measurements are taken under static condi-
tions, but in real situation the system will be moved dy-
namically by the user. The size of the object on which
the virtual rendering has to be shown is 2cm (screw in
Figure 1). Considering these facts, we select the marker
pose updates of 4Hz to be fused with the IMU data. The
marker tracking pose at 4Hz frequency along with the
sensor fusion pose is shown in Figure 6 . There is a slow
and smooth transition of the sensor fusion pose between
the two marker poses as shown in Figure 7 . The appli-

Figure 5: Error calculation over time at a target dis-
tance of 25cm. RGP is the marker pose (ground truth)
and CMY is the sensor fusion pose after 500ms, 1s, 2s,
5s and 10s. Experiment performed with different IMU
from Figure 3.

cation of this pose data for a maintenance operation in
ATLAS environment is shown in Figure 1. First two
images show a cable operation and in next two images
the box closure is highlighted by pointing the screw lo-
cations.

The camera and IMU together with the processor board
mentioned above and a handheld video display showing
the AR content was demonstrated to the users. They
were asked to try with two similar setups, first one with
only the marker tracking pose on all images (30Hz) and
the second one with the marker pose at 4Hz and the
IMU fused pose. The feedback was equal for both the
setups with an advantage observed in fused pose setup
during fast movements. This is because the motion blur
in camera image due to the fast movements affected
marker detection and the AR content was lagging be-
hind or swimming around the corresponding real ob-
jects. Thus the efficient selection of marker pose up-
dates rate for the fusion with the IMU data is perform-
ing better even in fast movements.

8 CONCLUSION
In this paper, the factors affecting the registration er-
ror in an augmented reality (AR) application was dis-
cussed. The real object pose estimation using camera
and IMU was detailed with the formulation of sensor
fusion using Extended Kalman filter (EKF). The advan-
tage of having IMU data was to have fast pose updates.
This data was rather affected by drift and needs to be
corrected by the pose from a vision algorithm. Between
this periodic correction of poses from a vision algo-
rithm, the virtual object rendering was based on IMU
data and the drift causes the registration error. This er-
ror in rendering can be defined as a function of pose ac-
curacy from the vision algorithm, drift from IMU over
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(c) Marker tracking pose at 4Hz. (d) Sensor fusion with 4Hz marker pose and IMU data.

Figure 6: Marker tracking and sensor fusion results.

Figure 7: Close comparison of marker pose 4Hz (RGB)
pose updates with the Sensor fusion pose (CMY).

time, size of the real object on which virtual content is
overlaid and the distance between the target object and
the system. Experimental evaluation detailed the effect
of IMU drift on registration error over different pose
update rates from the vision algorithm. The results also
showed the effect of registration error over the distance
and size factors. Based on the studies, a vision algo-
rithm pose update rate that efficiently reduces the IMU
drift was selected for the AR maintenance application.
As a result, the registration error was minimized and
secondarily that also optimized the processing power
required for the vision algorithm computation.

The AR maintenance application was demonstrated
to the end-user for their feedback with two setups,
one with only marker tracking and the other using
IMU fusion with fixed pose updates from the marker.
Both the setup’s performance was satisfactory during
slow movements with the IMU fused marker pose
setup showing a clear advantage during dynamic
movements. In future work, the IMU drift during
dynamic movements and its effect in registration error
is in the pipeline to be studied by performing different
experiments.
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