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ABSTRACT

Global variational methods for estimating optical flow are among the best performing methods due to the sub-
pixel accuracy and the ‘fill-in’ effect they provide. The fill-in effect allows optical flow displacements to be
estimated even in low and untextured areas of the image. The estimation of such displacements are induced by
the smoothness term. The L! norm provides a robust regularisation term for the optical flow energy function with
a very good performance for edge-preserving. However this norm suffers from several issues, among these is the
isotropic nature of this norm which reduces the fill-in effect and eventually the accuracy of estimation in areas
near motion boundaries. In this paper we propose an enhancement to the L! norm that improves the fill-in effect
for this smoothness term. In order to do this we analyse the structure tensor matrix and use its eigenvectors to
steer the smoothness term into components that are ‘orthogonal to’ and ‘aligned with’ image structures. This is
done in primal-dual formulation. Results show a reduced end-point error and improved accuracy compared to the

conventional L1 norm.
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1 INTRODUCTION

Optical flow is an important cue in image processing
applications. It can be defined as the estimation of im-
age point displacements over time [1], [2]. Such images
are taken for the same scene at successive moments in
time. Methods for finding optical flow can be classified
in many ways. An early classification can be found in
the work of Barron et al. [3], which classified optical
flow algorithms into four main groups. One of these
groups relies on the computation of optical flow using
the calculus of variations and is thus denoted as ‘Vari-
ational methods’. Variational methods for estimating
optical flow belong to the highest-accuracy methods.
These methods find the optical flow displacement field
by minimising an energy function mainly comprising
data and smoothness terms:

E = 0Eqata + Esmootn (D
where o controls the weight between the two terms.
The data term Eg,, is based on the brightness con-
stancy assumption, where it is assumed that illumina-
tion between images does not change over time:

L(x+ur+1)=1(x,1)

where u = (u,v) is the displacement for each pixel in
the x and y directions respectively, x = (x,y) is the pixel
coordinates, and ¢ € [0,7] is the time reference. This
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term is linearised using the ‘Taylor Expansion’ to ob-
tain what is known as the ‘optical flow constraint’ [4]:

Lu+Iyv+1I; =0 )

where subscripts denote partial derivatives. The bright-
ness constancy assumption does not always hold, as it
gets violated when illumination changes between the
two images, for example due to shadows and shading.
The smoothness (or regularity term) on the other hand
is based on the spatial constancy assumption, where it
is assumed that the neighbouring pixels in the first im-
age are still neighbours in the second image. Hence
diverse displacements are penalised. This assumption
also does not always hold as it gets violated in some ar-
eas such as motion boundaries, where pixels in the first
image are no longer neighbours in the second image
due to motion or occlusion. One example of an opti-
cal flow energy function can be found in the early work
of Horn-Schunck [1], where they proposed to minimise
the following energy function:

= [, by
where Q is a 2D image domain and Vu = (u,,u,) and
Vv = (vy,vy). The solution is found using the Euler-

Lagrange equations, which results in a couple of si-
multaneous equations. The displacements then can be

Ed ata Esmooth

/—/A
o (L + Iy + 1) + |V, Vv Ydxdy  (3)
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easily found by solving the resulting system of equa-
tions. In that algorithm a quadratic norm is used in
the smoothness term. The quadratic norm penalises the
flow field severely in all directions, hence it produces
blurry motion edges due to this penalisation.

The displacement field is piecewise in nature, hence a
good choice for a smoothness term is a piecewise func-
tion that characterises the piecewise nature of such a
displacement field. The total variation L' is an exam-
ple of such functions. Indeed this piecewise function
can characterise the flow field efficiently. However, this
norm suffers from two main issues. First, it is not con-
tinuously differentiable. This issue was addressed by
Chambolle [5]. Later Zach et al. [6] used this solu-
tion to propose an optical flow estimation algorithm in a
primal-dual formulation. Primal-dual algorithms, in ad-
dition to their accuracy and good edge-preserving qual-
ities (due to the use of the L! norm in the smoothness
term), can be easily parallelised using modern graphics
hardware [7], [8], [9].

The second issue is that the L! norm is isotropic, hence
the fill-in effect [10] reduces along motion boundaries.
In this paper we propose to improve L' by the use of
eigenvectors of the local structure tensor. We derive
the formulation for this in the primal-dual settings. The
eigenvectors of the structure tensor were used by Zim-
mer et al. [11] to improve the fill-in effect using robust
functions which approximate the behaviour of the L'
norm as a smoothness term. In the current work we ap-
ply it directly to the total variation L' norm, which is
non-trivial due to the non-continuous differentiability
of the L! norm. Additionally we use a data term in-
spired by the delayed linearisation data term proposed
by Brox et al. [2].

This paper is organised as follows, Section-2 examines
some related work. Section-3 includes a brief intro-
duction for the notion of ‘Structure tensor’. Section-4
introduces the method. Section-5 discusses the imple-
mentation and results. Section-6 concludes this paper
and proposes several enhancements to be investigated
in the future.

2 RELATED WORK

Since the marquee work of Horn-Schunck [1], a lot of
research has been dedicated to improve the estimation
of global optical flow algorithms. Both the data and
the smoothness terms have undergone a lot of improve-
ments. The Horn-Schunck method belongs to what is
known as the ‘Global methods’. Lucas-Kanade [12]
proposed to calculate optical flow by assuming that the
displacement field is constant in a small local neigh-
bourhood, hence this type of method was called ‘Lo-
cal methods’. Bruhn et al. [4] proposed to combine the
global and local methods by integrating neighbouring
pixels in the data term using a Gaussian filter kernel, in
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what is known as the Combined Local-Global (CLG)
method. Brox et al. [2] proposed to delay linearisation
of the data term of the optical flow equation. This en-
abled the computation of high accuracy displacement
fields. Additionally to improve robustness several al-
gorithms extended the data term to include image gra-
dients, thus improving the robustness to illumination
changes [2], [13], [11]. Wedel et al. [8] proposed to
improve the robustness to illumination changes by in-
troducing a structure-texture decomposition step before
the minimisation.

In the smoothness term, Horn-Schunck [1] used a
quadratic function as a regularisation term. The
quadratic function penalises the flow field severely
regardless of the flow magnitude, thus introducing
blurriness across motion boundaries. To remedy
this, several methods used robust functions in the
smoothness term such as the Lorentzian function [14],
the charbonneir [4] and the robust L! approximation
function [4]. The total variation L' norm was also
used as a smoothness term. The problem with the
L' norm is that it is not continuously differentiable.
Chambolle [5] proposed a numerical scheme to solve
the TV — L' minimisation and applied it to image
denoising and zooming. Zach el al. [6] used this
scheme under primal-dual formulation minimisation
to estimate optical flow. Drulea et al. [9] used this
scheme to find the optical flow field and used a CLG
data term. In addition to that [9] used a diffusion
tensor [15] to improve the fill-in effect in low and
untextured areas. However a drawback of using a
diffusion tensor is that it produces over-segmentation,
this is because this diffusion tensor is a function of
image gradients. To improve the fill-in effect, Sun et
al. [16] and later Zimmer et al. [11] analysed the image
structure tensor to obtain eigenvectors, and used these
eigenvectors to improve the fill-in effect. Hence the
direction of penalisation is adapted to the direction of
the local image structure, while the magnitude of this
penalisation depends on the flow field magnitude.

Despite the recent advances in estimating optical
flow fields using methods that are not variational, the
variational methods are still needed. Probabilistic
methods for example, despite their popularity, lack
the sub-pixel accuracy of the variational methods.
Hence variational methods are generally used as a
final stage to refine the estimation of the displacement
field [17], [18], [19], [20].

3 STRUCTURE TENSOR AND STEER-
ING IMAGE DERIVATIVES

The structure tensor of a 2D image is a 2 X 2 matrix
that contains information about the structure orientation
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in a certain neighbourhood in that image. The initial
structure tensor Jy can be expressed as follows [21]:

Ll
. T X Xty
Jo=VIVI" = [ley Iy2 1

where [ is a 2D image, VI is the image gradients
(I;,1,)T in the x, and y directions. The structure ten-
sor J is obtained by integrating information in a cer-
tain neighbourhood. This is done by convolving the
initial structure tensor Jy with a Gaussian filter kernel
Gy, where p is the standard deviation. The structure
tensor is expressed as follows:

J =Gy @)

where ‘x’ denotes convolution. This structure ten-
sor can be analysed and two orthonormal eigenvectors
with corresponding eigenvalues are obtained. The first
eigenvector can be formulated as (cos ¢,sin¢@) and the
second as (—sin¢,cos@) [22]. The eigensystem ob-
tained can be used to give information about the local
image structures. The eigensystem can be written in the
following form:

Je= e

where e are the set of eigenvectors (e, €;...e,), and A
are the corresponding eigenvalues (41, Az,... A,), and n
is the size of the square matrix J.

The first eigenvector corresponds to the largest
eigenvalue points across the dominant structure in
the neighbourhood, while the second eigenvector
corresponds to the smaller eigenvalue points along that
structure. Figure-1 depicts two eignevectors obtained
by analysing the structure tensor at a certain location.
The first eigenvector is depicted here in green, while
the second eigenvector is depicted in red. This image is
obtained from the Middlebury dataset [23].

Figure 1: Eigenvectors directions of a structure tensor.
The green line corresponds to the first eigenvector
pointing across area with high gradient, while the red
line corresponds to the second eigenvector pointing
along area with high gradient.
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are steered from the conventional x and y direction to
directions ‘orthogonal to’, and ‘aligned with’ the local
image structures [22], [24]. This can be written in the
following form:

I, =cos¢.I;+sin@ 1, (@)
I, = —sin¢.Iy+cos ¢ .1, (6)

where ¢ is the angle of the first eigenvector and it is
obtained via the structure tensor matrix.

4 STEERED-L' OPTICAL FLOW

It is desired in this paper to use the robust L' norm
known for its edge preserving performance in the com-
putation of an optical flow field. To this end it is re-
quired to minimise the following equation:

E= | (0Bl Io)+[Vul)dsay ()

where Eju,(,1,u) will be introduced later. The
minimisation of this equation is non-trivial since the
smoothness term used (the L! norm) is not continu-
ously differentiable. Hence, following the primal-dual
formulation [6], an auxiliary variable @ is introduced
and the energy function takes the following form!:

1
E= [ (0Eaaali o)+ 55 (=02 +Vul)  ®)

where 0 is a small constant. This equation is split into a
dual and a primal equation, the dual equation is written
as follows:

Euat = /Q (%(u—ﬁ)ﬁ Va) ©)

and the primal equation is written as:
1 _
Eprimal = /Q (aEdatu(117]27u)+ %(u_u)Z) (10)

The minimisation of this system of equations is per-
formed in primal-dual steps. In the following subsec-
tions we discuss the primal and the dual steps in detail.

4.1 The Dual Step

The aim of the dual step is to minimise u while keeping
i fixed. We propose to steer the derivatives of the dis-
placement fields according to the local structure. Hence
Equation-9 is written as follows:
1

Egual = / (\eTVu| + —(u—i)*+
Q 26
1 (1)
le" V| + 20 (v— 17)2)

The eigenvectors can be used to obtain whatis known as ! Starting from this point, the notation ‘dxdy’ is omitted for

the ‘Steered image derivatives’, where image gradients
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where:

o7 [ cos ¢

- —sin@

sin @
cos (])}
are the eigenvectors of the structure tensor, and Vu, Vv
are expressed here as (uy,uy) " and (vy,vy) 7. In this way
the directions of the smoothness term is adapted to the
direction of the local image structure, while the mag-
nitude of the penalisation is adapted to the flow field
itself [11].

To solve the minimisation, Euler-Lagrange equations
are obtained [9]. The first equation obtained is the fol-
lowing:

Vu 1

fdiv(eT.W)Jrg(u—ﬁ):O (12)
which can be re-written as follows:
u=0.div(e".p,)+i (13)
where p, = %, it follows that:
Pu|Vu| =Vu=0, [p, <1 (14)

Substituting Equation-13 in Equation-14, the following
equation is obtained:

plt'

V(div(e.p,) +/0) ‘ —V(div(eT.p,) +1ii/0) =

Adding p,, to both sides of the above equation yields the
following fixed-point iteration to find p,:

o Pk + r.v(div(eT.pﬁ) + a/e)
1+ ‘L‘.‘V(div(eT.p’;,) +ii/6) ‘

Py (15)

where k is the iteration count, and 7 is the step size. In
the same way p, can be obtained, and it is calculated
using the following fixed-point iteration:

ph+7. v(dw(eT.p’;) + v/e)

1+ ‘L‘.‘V(div(eT.p’;) +v/9)’ '

k+1 _
p,

(16)

The terms e'.p¥, and e'.p can be replaced by the al-
ternative notations pg, and py,, where:

A7)
(18)

Psu = eT-[Plu, PZM]T
Psyv = eT-[PIVa P2v]T

Hence, Equation-15 and Equation-16 can be written in
the following way:

Pkt v <div Pou+ a/e)

pit = : (19)
1+ 2|V (div pou+/6)|
k . -
ps+1.V(divps+7/6

plvcﬂ: v ( ) (20)

1+r.’V(divpsv+ﬁ/9))'
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4.2 The Primal Step

The aim of the primal step is to minimise @ while keep-
ing u fixed. Starting from a non-linearised data term,
we propose to minimise the following data term:

Eprimal = /Q(a|12(x+u)—11(x)\2+

VI (%) +

YV (x+u) - Tl

ufﬁ)z) Q1)

where o here is the weight of the data term, and ¥ is
the weight of the image gradient term which is added
here to improve the robustness to illumination changes.
This robustness can be further improved using the ro-
bust function ¥(s?) = /52 4 €2, where ¢ is a small con-
stant.

EPrimal = /Q (a ‘P(|]2(x+u) =1 (X)|2)+

YW (VL (x+u) = VI (X)) + 5o (@-0)?). (22)

1
70"
The second image I»(x+u) can be written in the fol-
lowing form using the Taylor Expansion:

L(x+u)=hL(x+ug)+ (u—uy)Vh(x+uy) (23)
where ug = (ug,vo) is the initial displacement of the
flow field. Similarly image gradients can be linearised,
and the image gradients term can be rewritten as fol-
lows:

Ly(x+u) =bhy(x+ug) + (u—ug)Vh(x+ug). (24

Ly(x+u) = by(x+ug) + (u—uy)Vhy(x+ug).  (25)

Plugging all these terms together yield the following
equation:

Eprzmal—/ (XLP ‘110+ u—u V12| )

Y‘P(|(I,X+(u7u0)V12X), (I,_,V (u—uy Vlzy ) (26)

1

E(ufu)
where the notation (x+uy) was omitted from
VI,V VI, for brevity. The solution requires the

minimisation of E(i1). Hence Equation-26 is written as
follows:

Eprimal—/ (XT(|I,0+ a—ug VIZ} )+

YO (| (I + (@ —09) V), (I + (8 — up) V) | )+ @7

%(uf v)?
with the following abbreviation used:
Lo = h(x+ug) — I (x)
d d
Iy = alg(x—&-uo) — %Il (x) (28)
d d
Ity = a—ylg(x + llo) - aiyll (X)
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The minimisation of Equation-27 can be easily per-
formed by setting the derivatives of the equation with
respect to i, v equal to zero. This leads to the following
set of equations:

/ / I,
(@ W\ L, + 7Y (L, +15,,) + 5] i

!/ /
+[a W) bxby + Y ¥y Ly (b + Dyy) | 7

/ ! ! u
= —[o ¥ rioh + ¥ ¥ornohw + ¥ Warnoly ] + 9
(29)

Similarly derivation with respect to v yields the follow-
ing equation:

[0 W) Lol + 7 ol (I + Doy) ]

a4y Y. (By +1By,)]0

=— [Oc ‘P/l riohy +7v ‘Plzrtxolzxy +v lIl;rt)vOIZy}'] + g
(30)

where W' is the derivative of P. ¥, and ¥, are defined
as follows:

¥ = ‘P(Vzo +(u - “0)V12|2)
¥, = lP(‘ (I;x + (l_l — U())Vlzx), (Ity + (l_l — ll())VIQy) }2)

The values of r;9, 71x0, 71y0 are given as follows:

€19}

110 = Iro — uolox — volzy
T1x0 = Irx — uoloxy — VOIny

riyo = Iy — uoloxy — volayy

4.3 Colour Image Realisation

The algorithm discussed so far can work on grey-scale
images. Colour images offer richer photometric infor-
mation compared to gray-scale images [25], [26]. It is
possible to extend this algorithm to work with colour
images. In RGB images, which is an additive colour
model, colour is encoded in three channels (Red, Green
and Blue). In order to be able to extend the work in
our algorithm to colour images, the primal step is ex-
tended to incorporate the three colour channels. Hence
Equation-29 and Equation-30 are written in the follow-
ing form:

i€

o (95 (15 + 7 (%) (0)? + (15,%) + ]

o (9) L5y +y (W) Lo (I +15,,)] 7

’ . ! c ! c Uu.c
= —[o (W) riols, + 1 (¥5) rivolone + ¥ (¥5) riyolse ) + (5)
(32)

(o (W) 5,05, + 7 (¥5) I s + 15,0 &€

+ o (W) (15,2 + 7 (¥5) ((15,)* + (15,,) )]

’ ’ ’ v

= o (¥5) rig5, + 7 (¥5) risol5 +7 (¥5) B8] + ()¢
(33)
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where ¢ € {cy,cp,c3} are the three colour channels in
the RGB colour model. The values of u and i are repli-
cated at each iteration to cope with the three colour
channels, and thus to obtain u® and @“. Additionally
the values of u® and @ are averaged before starting the
dual step (see Algorithm-1).

4.4 Extended Intermediate filtering

Median filtering is used in optical flow algorithms to
improve the computation of the displacement fields.
The use of median filtering was found especially to be
useful in the algorithms following the primal-dual for-
mulation [8]. A Median filter is applied in each warp
to the estimated flow field u,v to remove outliers. Me-
dian filters work by replacing the value of a certain pixel
with the median pixel value in a certain neighbourhood.
One can say that the use of median filters in this case
encourages smoother solution (i.e. without outliers) in
the estimated flow field. In this context we propose to
extend the intermediate filtering by adding another fil-
tering step. In the intermediate filtering stage we opt
to use a bi-lateral filter [27] in addition to the median
filter. Bi-lateral filters are known to have a good edge
preserving performance. Unlike the Gaussian filter, the
bi-lateral filter changes weight according to spatial dis-
tance and the colour (or intensity) difference.

Z glxi—x)s(I(x;) —1(x)).I(x) (34)

Ir(xi) = —

where [ is the original image, I is the filtered version
of the image, K is a normalising term, €, is the neigh-
bourhood region, g(x; —x) is the kernel determining the
weight based on spatial distance (which can be Gaus-
sian), and s(I(x;) — I(x)) is the kernel determining the
weight based on colour difference.

The intermediate filtering proposed here is a two stage
filtering that includes both the median and bi-lateral fil-
ters (see Algorithm-1). We call the new intermediate
filtering ‘Extended Intermediate Filtering’ (EIF). Ap-
plying this filtering in each warp was found to improve
the accuracy of the optical flow computation.

S EXPERIMENTS

5.1 Implementation

The algorithm is written in MATLAB. Since this al-
gorithm is variational, it can only detect small dis-
placements. Hence the minimisation is performed in
a Coarse-to-Fine (C2F) framework. To this end, the
image sequence is downscaled several times to obtain
a pyramid of images. The optical flow is first found
in the coarsest version of the image sequence, the esti-
mated flow is then propagated to the next finer layer and
used as an initialisation for the solution in that layer. At
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each layer, the second image is warped towards the first
image using the flow estimated in the previous pyramid
layer. A fine resolution pyramid is chosen for the min-
imisation [2] with 80 layers and downscaling ratio® of
0.95. Image and flow field resize is performed via bi-
cubic interpolation. Image gradients are obtained via
the kernel [—1, 9, —45, 0, 45, —9, 1]/(60) [4]. The
divergence and derivative for the variable p are approx-
imated using the three point kernel [—1, 0, 1]. At each
layer the second image and its derivatives are warped
six times. At each layer the structure tensor is com-
puted, with image derivatives computed using a 5 X 5
optimised derivative filter D [22]:

D = (0.0234,0.2415,0.4700,0.2415,0.0234) T

(0.0838,0.3323,0,—0.3323,—0.0838)  (35)

After calculating the structure tensor, eigen-
decomposition is performed to find the two eigenvec-
tors. To obtain (div pg,) and (div py) the following
filter kernels are used [29]:

L [3 0 -3

h=—110 0 —10 (36)
203 0 3
L3 10 -3

h=55]0 0 0 37)
310 3

The minimisation of the aforementioned formulation
is done in primal-dual and C2F frameworks [6]. The
parameters of the algorithm were set to the follow-
ing values (a = 1/4700,y = 1,7 = 1/10,6 = 1/10,
€ =0.001). The minimisation pseudo-code is depicted
in Algorithm-1.

5.2 Results

Several datasets are available to use for assessment of
optical flow methods [23], [30]. In this section we use
some of these datasets to assess the work of our algo-
rithm. We highlight the improvement that the steered-
L! norm introduces over the use of the L' norm.

5.2.1 Middlebury Dataset

The Middlebury dataset has been used in assessing
the performance of optical flow algorithms for many
years [23]. It contains synthetic and non-synthetic im-
age sequences, and it includes some image sequences
with known ground truth which can be used for train-
ing. To examine the performance differences that the
steered-L! has made to the accuracy of optical flow esti-
mation, optical flow displacement field is computed for
the eight sequences that have a known ground truth, and

2 In general the number of layers in the pyramid can be chosen
such that the discrete derivative filter kernel can be applied at
the coarsest layer [28]. However 80 layers was enough to give
good results in our experiments.
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Algorithm 1: Implementation Algorithm of steered-L! norm.

Input: Images 11 & I,

number of pyramid layers L = 80, current layer /

Create pyramid of images with L layer, and a downscale ratio
of 0.95;

initialization;

I=1;

initialise (u;,v;) to (0,0) ;

while [ < L do

Up-scale size of (u;_1,v;—1) to (uy,vy);

Find eigenvectors of the structure tensor of /1;
while No. of Warps < 6 do

Warp by, oy, Iy towards Iy, Iy, I1y;

while No. of iterations < 20 do

Replicate the terms and update the auxiliary
variable ¢, 7 by solving the simultaneous
equations (Equatin-32, 33) ;

Average i, 7¢ to yield i, V;

Update u; using Equation-13, and similarly
update vy;

Calculate py,, psy via (Equation-17, 18);
Update p,,, py (Equation-19, 20);

Apply median filter to u;,vy;
| Apply bi-later filter to uy,v;

Oiltput: (Displacement field («,v))

the Average End-Point Error (AEPE) [23] is computed
for these sequences. Table-1 depicts the difference in
AEPE using the two norms. Table-1 shows clearly im-
proved results obtained via using the steered-L' norm
as the smoothness term.

Our method currently has an average rank of (57.5) on
the AEPE Middlebury benchmark ranking table, and an
average rank of (57.8) on the Average Angular Error
AAE table. Figure-2 depicts a segment of the AEPE
ranking table’.

To further asses the performance of the proposed al-
gorithm, we compare the results of this method with
other methods sharing similar principals in the Middle-
bury ranking table. The first method to compare with
is the improved TV — L! algorithm [8]. This algorithm
follows a similar minimisation framework in a primal-
dual formulation. However, it differs in the data term
where a structure-texture decomposition is used to im-
prove the robustness to illumination changes. In addi-
tion to that, there is a difference in the smoothness term
where we steer it in accordance with the local struc-
ture. The second algorithm is the Large Displacement
Optical Flow LDOF [28]. The third method to com-
pare with is the CLG-TV [9], where the authors use a
combined local-global data term (CLG). Additionally,
the authors in this paper use an anisotropic diffusion
filter to improve the fill-in effect. Table-2 illustrates the

3http://vision.middlebury.edu/flow/eval/
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RubberWhale Dimetrodon Urban2 Urban3 Venus Grove2 Grove3 Hydrangea Average
LT 0.09 0.15 0.55 0.49 0.32 0.18 0.57 0.17 0.32
Steered-L! 0.08 0.14 0.53 0.46 0.31 0.17 0.57 0.16 0.30

Table 1: AEPE for colour images of the Middlebury dataset depicting the difference between the total variation L'
and the steered-L' smoothness terms.

Average Army Mequon Schefflera Wooden
endpoint (Hidden texture) (Hidden texture) (Hidden texture) (Hidden texture)
error awvg GT im0 im1 GT im0 im1 GT im0 1im1 GT im0 im1
rank all disc untext all disc untext all disc untext all disc untext
EpicFlow [103] 550 1 0.127v4 0.3622 0.0960 | 0.2562 0.8570 0.2172(|0.3954 1.006=2 0.2566 )| 0.1955 1.0164 0.11 51
ComplO[Fa-sF]ED-GPU 56101154 029558 0107802130 07858 01415 |0.3242 07945 0.1715| 01955 09953 011 51
Classic++ [32] 57.4 | 0.08 30 0.25356 0.07 15| 0.2351 0.7858 0.1953 1 0.4360 1.0063 0.2257] 0.2051 1.1172 0.10 46
Steered-L1 [120] 57.5 1 0.09z0 0.2215 0.0842|| 0.141 0492 0.12s5 [0.2824 0.69 22 0.1612| 0.18s0 1.06867 0.09 25
HBM-GC [106] 579 101429 02851 01291 | 02668 06927 0227503445 07539 0225702167 OFF22 0.157s5
Aniso. Huber-L1 [22] 585 | 0.1044 0.2851 00842 | 0.3151 0.8875 02856 |0.5679 1.1372 0.2975| 0.2051 09255 0.13 65
TF+OM [100] 59.3 | 0.1044 0.2642 0.07 15| 0.22 37 0.6630 0.1953 | 0.3649 0.7¥8 44 0.39s6 | 0.2051 0.8953 0.13 65
Average Grove Urban Yosemite Teddy
endpoint (Synthetic) (Synthetic) {Synthetic) (Stereo)
error avg GT im0 im1 ST im0 imi ST im0 imi T im0 im1
rank all disc untext all disc untext all disc untext all disc untext
EpicFlow [103] 550 08964 1.3174 06955]0.5358 1.31532 0.3440| 0.104a 0.111 0.17 12| 0.67 54 1.43 57 0.87 50
Cc’mplo'[::,:g]ED’GpU 56.1 | 08964 12966 D 7356312590 174587 06485 |0 1447 01332 0308006451 15061 08353
Classic++ [32] 57.4 | 0.8757 1.30e68 0.6653|0.4742 16276 0.3342(0.1781 0.1454 0.3200|0.7975 1.6471 0.9265
Steered-L1 [120] 57.5 | 08964 12455 09176] 11 1651 094 | 026 5455, 071 | 40690 18084 16498
106 101 112 115
HBM-GC [106] 57.9 | 0.6720 0.972s 0.5235|0.6370 0.817 0.4dss| 222 019 0 360s|0.5438 1.2148 07848
Aniso. Huber-L1 [22] 58.5 | 08454 1.2052 0.7058|0.3923 12347 02818017581 0.1564 02764 | 06451 1.3650 0.79 49
TF+OM [100] 593 |0.98s2 1.3174 1.03e5]|0.5662 1.5572 0.3342 01672 0.17 82 0.2764|0.7667 1.5960 0.9872

Figure 2: A segment of the Middleburry ranking table for end-point error. The proposed method is denoted as

‘Steered-L!".
Average rank  Army  Mequon Schefflera Wooden  Grove Urban  Yosemite  Teddy
LDOF 80.5 0. 12(74) 0'23(84) 0'43(60) 0~45(98) 1.01 (86) 1. 10(86) 0.12(27) 0'94’(86)
CLG-TV 69.5 0.1 1(54) 0'32(84) 0.55(77> 0'25(78) 0.92(71) 0.47(42> 0'17(8]) 0'74(65)
Improved TV — L! 63.8 0.09(30) 0-20(28) 0453(73> O~21(67) 0-90(67) 1.5](101) O~]8(88) O~73(62)
Steered-L! 57.5 0.09(30) 0.14(1) 0.28(24) 0.18(50) 0.89(64) 1~71(106) 0.26(112) 1‘06<90)

Table 2: AEPE comparison for four algorithms including the algorithm proposed in this paper.
Numbers in brackets indicate the ranking of the specific image sequence results, for example the results of the
‘Mequon’ sequence of our algorithm is ranked first. Numbers in blue indicate the highest rank.

AEPE for those methods at the time of writing this pa-
per, the AEPE values are copied directly from the rank-
ing table. Numbers between brackets indicate the rank- 1
ing position for the particular image sequence.

Figure 3: Colour code used to visualise the optical
It can be noticed that our algorithm performs better flow displacement fields.
on non-synthetic image sequences. This can be seen
clearly by comparing the AEPE and rank of individual
non-synthetic image sequences like ‘Mequon’ (ranked
Ist.) and ‘Army’ (ranked 30th.) in comparison with

‘Urban’(ranked 106th.) and ‘Yosemite’ (ranked 112th.).

The estimated optical flow can be qualitatively assessed
by visualising the displacement field. The colour code
used in this paper is depicted in Figure-3 [23], where
the direction of displacements is coded by the hue, and
the magnitude of the displacements is coded by the sat-
uration. Figure-4 depicts several examples for colour-
coded results of the estimated optical flow field along-
side their colour-coded ground truth for comparison.

dataset are rendered in three ‘passes’. The first pass
is ‘albedo’ which is the simplest rendering and does not
contain illumination effect and has a piecewise constant
colour. Hence, the data (brightness) constancy assump-
tions holds across the whole image. The second pass
is the ‘clean’ pass which includes illumination effects
(e.g. shading, specular reflections). The final pass is
the one that matches the ‘final’ version of the film. This
pass includes more complex effects and adds motion
blur, atmospheric effect, colour correction, etc. This
dataset is more challenging due to the inclusion of large
motion and occlusion.

5.2.2 MPI-Sintel Dataset

MPI-Sintel [30] is another dataset used to test opti-
cal flow methods. It is a synthetic image sequence
taken from an animated 3D short film, it contains com-
plex motion with varied textures. Images used in this

Full Papers Proceedings

87

It was reported in [30] that methods with high-ranking
on the Middlebury dataset have more difficulty estimat-
ing optical flow on this dataset. For example on the
Middlebury ranking table the method ‘Improved-TV-
L' has an average rank of 63.8, which is much higher
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Figure 4: Results of Steered-L' optical flow. Image sequences from top to bottom ‘RubberWhale’, ‘Urban3’,
‘Grove3’. Left column: First frame of the image sequence taken from the Middlebury dataset. Middle Column:
Colour-coded ground truth. Right column: Colour-coded results.

than the ranking for LDOF [28] which has an average
rank of 80.5. However, the same methods have an op-
posite order in the MPI-Sintel table, where LDOF is
ranked higher than the Improved-TV-L!. In this sub-
section we try to examine the effect of different levels
of rendering on the estimation of optical flow using the
proposed method in this paper. To this end the algo-
rithm is applied to several image sequences at the clean
and the final passes. The results of the estimation are
compared both qualitatively and quantitatively. Table-
3 illustrates the results of applying the algorithm for
several examples from the training dataset of the MPI-
Sintel benchmark.

Image clip clean final
alley_1 0.18 0.19
ambush_5 1.72 2.78
bamboo_1 0.23 0.23
’ Average | 0.71 | 1.07 ‘
Table 3: AEPE for selected frames from MPI-Sintel
dataset.

The AEPE results of our method now on the MPI-Sintel
is 10.864 for the clean pass and 12.277 for the final
pass. The relatively high AEPE in the case of this
benchmark rate can be attributed to the complex motion
and the effects included in this sequence, such as shad-

Full Papers Proceedings

ing, specular reflection, motion blur, etc. The ‘stair-
casing’ effect, which is induced by the use of the L'
norm, also contributes to the error rate. To deal with
these issues and to improve the performance of this al-
gorithm several suggestions are discussed in Section-6.

6 CONCLUSION AND FUTURE
WORK

In this paper we have introduced a modified total
variation L' norm to estimate optical flow denoted as
‘Steered-L!’, which can be used to enhance the fill-in
effect and hence the estimation accuracy in algorithms
following the primal-dual formulation. In the proposed
algorithm, the eigenvectors of the structure tensor
are used to steer the displacement field derivatives
into two components, one orthogonal and the other
parallel to the local structure. This improves the fill-in
performance of the total variation L' optical flow which
reduces the error rate and improves the accuracy of
estimation. It was shown experimentally that the util-
isation of this steered norm improves the performance
of the optical flow estimation and decreases the error
in computation. Additionally, a high accuracy data
term is used in the spirit of the delayed linearisation
data constancy term proposed by Brox et al. [2]. This
data term is augmented with image gradient to improve
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Figure 5: Results on selected frames of MPI-Sintel. [30] Displacement field computed between the first frame
(frame_0001) and the second (frame_0002). Top to bottom rows: alley_1, ambush_5, bamboo_1.
Left column to right: First frame (frame_0001), ground truth, clean, final.

the robustness to illumination changes. Moreover an
‘Extended Intermediate Filtering’ EIF is proposed to
enhance the displacement field estimation.

Despite the improved performance that this algorithm
provides, it still suffers from a high AEPE in some sce-
narios. Further improvements are being investigated to
render a more accurate optical flow estimation. In the
next step of this research, other colour spaces are to
be investigated such as the HSV (hue, saturation and
value) colour space. The different channels of the HSV
offer a more robust photometric performance [11]. This
is expected to help deal with the illumination effects
such as shadows and shading, and improve the perfor-
mance especially in test benchmarks that include many
such effects (e.g. MPI-Sintel).

The total variation L! is a piecewise constant function,
hence it encourages a piecewise smooth solution for
the displacement field. This produces artificial bound-
aries in the estimated optical flow field, a phenomena
denoted as the ‘stair-casing effect’ [31]. In relatively
smooth areas the performance of the quadratic norm
is superior to the L' norm. To address this issue we
are going to investigate the proposed method using the
‘Huber-L'* norm [31]. The Huber-L! norm behaves
as the L' norm in areas with high gradients (i.e. mo-
tion boundaries), and behaves as a quadratic L% norm in
the areas with lower gradients, hence offering enhanced
performance [31], [32]. It will be interesting to inves-
tigate the performance of steering the Huber-L' norm
using the structure tensor as was done with the L' in
this paper.

Algorithms following the primal-dual formulation are
generally used if speed of implementation is needed.
These algorithms enable easy parallelisation on graph-
ical hardware [9], [6], [7]. The current algorithm was
implemented in MATLAB and the speed of implemen-
tation was not of concern. For example the time needed
to estimate the optical flow displacement field for a
colour image sequence of size 380 x 420 is around 457
seconds. A C/C++ and parallel implementation of this
algorithm is going to be investigated in the future.
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