ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes

http://www.WSCG.eu

Increasing diversity and usability of crowd animation
systems

Ciprian Paduraru

University of Bucharest and Electronic Arts
Bucharest, Romania

ciprian.paduraru2009@gmail.com

ABSTRACT

Crowd systems are a vital part in virtual environment applications that are used in entertainment, education, training
or different simulation systems such as evacuation planning. Because performance and scalability are key factors,
the implementation of crowds poses many challenges in many of its aspects: behaviour simulation, animation, and
rendering. This paper is focusing on a different model of animating crowd characters that support dynamically
streaming of animation data between CPU and GPU. There are three main aspects that motivate this work. First,
we want to provide a greater diversity of animations for crowd agents than was possible before, by not storing any
predefined animation data. Another aspect that stems from the first improvement is that this new model allows the
crowd simulation side to communicate more efficiently with the animation side by sending events back and forth at
runtime, fulfilling this way use-cases that different crowd systems have. Finally, a novel technique implementation
that blends between crowd agents’ animations is presented. The results section shows that these improvements are

added with negligible cost.
Keywords

animation, crowd, skeleton, GPU, blending, memory, compute shader, vertex shader

1 INTRODUCTION

Crowd simulations are becoming more and more
common in many computer graphics applications. It is
a critical component nowadays in video games industry
(games like Fifa 2017®, Ubisoft’s Assassin’s Creed®,
RockStar’s Grand Theft Auto® series), evacuation
planning software (e.g. Thunderhead’s Pathfinder
software®) or phobia treatments applications, where
it is being used to create realistic environments.
However, crowd simulation and rendering is a costly
operation and several techniques were developed to
optimize CPU, GPU or bandwidth usage to have as
many agents as possible. In our paper, by agent, we
mean an individual visible entity in the crowd. Entities
can be humans, cars or every other instance the client
desires to configure and use. We split a crowd system
implementation into two logical parts: simulation and
render side. The simulation usually deals with driving
behaviours, actions, and events for crowd agents, while
the render side deals with animation and rendering

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Full Papers Proceedings

of the crowd’s agents. The focus of this paper is on
the render side, and especially on how to deal with
the agents’ animations. The main motivation to study
animation systems for crowds is that realistic motion
and diversity of animations are important aspects of
user perception. There are three contributions that
this paper adds to the field of animations for crowd
systems:

* We do not require to store all animations pose data
on the GPU side as similar solutions does. In-
stead, we use a streaming model of poses which
has insignificant performance overhead; This allows
crowd systems to have a greater diversity of anima-
tion data than before ([Rud05], [Ngu07], [ShoO8],
[Beal4]).

* Fulfill the requirements of modern crowd systems,
where the simulation side often needs to request
complex blending between the motion of groups or
individual agents, by feeding dynamic input states
or events. The inverse communication is also possi-
ble: animations can trigger events to the simulation
side (more details on Section 3).

* At the moment of this paper, the first documented
method to perform blending between animations of
agents that share the same animation data streams
with different time offsets.

ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD)

Overall, we consider that by using our approach, ani-
mation systems for crowds can get more usability and
variation with minimal performance loss.

The rest of the paper is organized as follows. Related
work in the field is presented in Section 2. A deeper in-
troduction into current techniques and some other tech-
nical requests that are driving our work are presented
in Section 3. Section 4 describes the usability of our
framework and strategies that we use to implement it.
Comparative results are shown in Section 5. Finally,
conclusions are given in the last section.

2 RELATED WORK

The ability to adjust the skin mesh of a character with-
out having to redefine the animation is highly desir-
able, and this is possible using a technique called vertex
skinning [Ryd05], [Beal6]. By using vertex shaders, a
lot of the computation that was previously done on the
CPU side is now moved on GPU side, which proves to
be faster for this kind of computations [Sho08]. The
main technique applied for rendering animated charac-
ters using vertex skinning in crowd systems is called
skinned instancing, which significantly reduce the num-
ber of draw calls needed to render agents. The way
skinned instancing work in [Rud05], [NguO7], [ShoO8],
[Beal4] is by writing all the animations data on a GPU
texture at once, then have the vertex shader perform
skinning operations by extracting the correct pose from
that texture for each individual instance. In our ap-
proach, the difference is that the GPU texture doesn’t
have to be filled at initialization time with all anima-
tions data. Instead, with some bandwidth cost, we send
the poses of some template animations from CPU to
the GPU, facilitating this way client driven blending be-
tween motions.

While the skinned instancing and skeletal animation are
highly desirable for rendering high-quality agents for
crowds, mainly because of the current GPUs capabil-
ities nowadays, there are other techniques that can be
used to limit the number of polygons rendered with-
out having users notice artifacts. These methods are
described below and are used in our framework to de-
cide how to render characters at a lower level of details
(LOD). Even if the focus of our paper is to use skele-
tal animations using instancing for crowds, these tech-
niques can reduce substantially the resources needed
to render and animate agents at lower LODs. Image-
based approaches have been used to simplify render-
ing of large crowds in an urban simulation [Tec00]. A
discrete set of possible views for a character is pre-
rendered and stored in memory. A single quad is then
used when rendering the character by using the clos-
est view from the set. Also, as mentioned in [Mil07],
impostors present great advantages in current graph-
ics hardware when rendering crowd characters using

Full Papers Proceedings

CSRN 2701

Computer Science Research Notes
http://www.WSCG.eu

instancing. In the shader program, the current view-
ing frustum and character heading can be obtained to
compute the texture coordinates that are most similar
to the current view and animation pose. In the same
category of optimizations, but targeted for simplifying
the work of content creators (animators), is the cage-
based method mentioned in [Kim14]. This method can
be used for lower level of details in parallel with our
technique, to increase the number of animations avail-
able for lower LODs.

In our approach, we consider that blending between
motions of individual or larger groups of agents can
be requested by the simulation side (e.g an agent ex-
iting from a boids behavior because an emergent event
started). This means that a decision mechanism at simu-
lation layer (e.g. a finite state machine, a behaviour tree
or even a neural network) feeds our animation blend-
ing mechanism with concrete parameters. Several pa-
pers presented below provided an inspirational point for
our work and can be used in conjunction with our tech-
niques as plugins.

Motion warping [Wit95] is one of the core techniques
used to create whole families of realistic motions which
can be derived from a small subset of captured motion
sequences and by modifying a few keyframes. [Kov02]
presents a method that automatically blends motions in
the form of a motion graph. This method can be used by
the locomotion system of a crowd to choose the anima-
tions needed at runtime from an initial database of as-
sets. The main strategy is to identify a portion between
two motion frames that are sufficiently similar such that
blending is almost certain to produce a nice looking
transition. The identification process compares the dis-
tances between the pairs of frames of the two motions
to identify the best points for transition. The concept
of registration curve was introduced by [Kov03]. Con-
sidering the problem of blending two motions, the reg-
istration curve creates an alignment curve which aligns
the frames for each point on the timewarp curve. A sta-
tistical model that can do unsupervised learning over
a motion captured database and generate new motions
or resynthesize data from it, is introduced by [Bra00]
under the name of Style Machines. Finally, an interest-
ing survey of the animation techniques used by several
games engines is presented by [Gregl4]. This proved
to be a motivation for this paper, due to the complex
requirements of different game engines.

Compression techniques have also been studied in sev-
eral papers. One that can be adapted to the same use
case as our paper, is [Ari06] where the author is mainly
using PCA and clustering (along other tricks, such as
virtual markers per bone instead of angle) to compress
clips of a motion database that is to be streamed at
runtime. The same problem is also tackled in [HijO0]
and [Sat05]. Another technique to reduce the memory

ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD)

needed to store animations is to use dual quaternions
representation [Kav07]. These memory footprint opti-
mization techniques can be used independently of the
methods described in this paper to allow even more va-
riety. A study for improving crowd simulations in VR
is described in [Pell6].

3 METHODS

This section provides an introduction on how skeletal
animation works, how the existing solutions are imple-
menting this technique for crowd animations and the
new requirements for different crowd systems that ap-
peared over the few past years.

3.1 Basics

One of the most used techniques for animating 3D char-
acters is skeletal animation [Mag88]. Using this tech-
nique, a skeleton (represented by a hierarchy of bones)
and a skin mesh must be defined for an animated char-
acter (a skin mesh is a set of polygons where vertices
are associated with their influencing bones and their
weights; the process is called rigging). A pose is a
specification that assigns for each bone of the skele-
ton a geometric transformation. The process of skele-
ton and mesh authoring is defined in a reference pose
(usually called bind pose). An animation can be de-
fined by a series of keyframes, each one defining a pose
and other metadata attributes or events (as described be-
low). When playing an animation for a given charac-
ter, the vertices of its skin mesh will follow the associ-
ated bones (also called skin deformation). The formula
for computing each vertex transform is given in Eq. 1.
Consider that each vertex with the initial transform v
in the reference pose is influenced by n bones. Mr;]l,i is

the inverse transform matrix of the i/ bone’s reference
pose transform. This moves the vertex multiplied on the
right from model space to the bone’s local space. Mul-
tiplying this with M;, the world space bone’s transform
in the current pose, returns the vertex transform with re-
spect to bone i at the current pose. Finally, multiplying
this with the associated weight w;, and summing up all
results give the final vertex transform in world space.

n n
V = Zw,-M,-Mr;;QV, where Zwi =1 €))]
i . 7

3.2 Current Techniques

The common pattern in animating crowds is to store the
entire animation data set on the GPU memory [Ngu07],
[Sho08], [Beal6]. The memory representation is a tex-
ture where animations are contiguously stored on tex-
ture’s rows, each row representing a single pose for a
single animation. Since the bone’s transformation can
be stored as a 4x3 float matrix, and knowing that a texel
(a cell in a texture) can store 4 floats, then each bone

Full Papers Proceedings

CSRN 2701

Computer Science Research Notes
http://www.WSCG.eu

transformation for a pose can be stored in 3 columns of
a texture. The skin mesh geometry is stored on GPU
memory, in vertex buffers. A vertex shader program
created for skinning transforms each vertex according
to equation 1. The weights and Mr;.;ﬁ matrix are con-
stant and provided at initialization time. Knowing the
current time and animation index assigned to each ver-
tex, transform M;, is sampled from the texture men-
tioned above.

The animations must be shared between agents since
the memory requirements and processing power won’t
allow playing individual animations per each agent on
large crowds at a reasonable framerate (e.g. have a set
of normal walk animations being shared by all agents
having a walking speed). To break repetition, an off-
set system is usually used: if two agents A and B are
sharing the same animation 7', then agents can have dif-
ferent time offset in this animation, randomly assigned.
If offsets are different, then the user could hardly no-
tice the sharing since the postures of agents A and B are
different at each moment of time [Ngu07].

3.3 Current limitations and requirements

In the past few years, the requirements for animation
systems have evolved significantly [Gregl4], and the
current documented implementations of crowd systems
described above are not able to satisfy these require-
ments. A collection of these are defined below:

1. Animation state machines instead of simple anima-
tion clips are more and more common, with tran-
sitions between clips decided by a decision-making
layer on the simulation side.

2. Generalized two-dimensional blending depending
on input parameters feed at runtime.

3. Animation clips can be authored with event tags
such that when the playback gets at certain points
on their timeline it triggers an event to the simula-
tion side (e.g play a sound when an agent is hit at
correct timing).

4. Partial skeleton blends depending on state and ani-
mation layering: agents should be able to play mul-
tiple animations at the same time (e.g. walking and
waving hands only when observing the human user).

Since the animation data is statically stored in a GPU
texture for performance reasons, the above require-
ments can’t be satisfied because input feed and deci-
sions dynamically taken from the simulation side can
have only a limited effect on the agent’s animations (i.e.
the system could allow only simple blending between
existing poses). Also, storing the entire animation data
set on GPU would significantly limit the number of pos-
sible animations that a crowd system can use. These

ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD)

two main limitations are addressed by our solution and
described in Sections 4 and 4.3.

3.4 Animation controllers in our frame-
work

As stated in Section 3.2, a visual animating charac-
ter definition can be represented as a pair AnimDef =
(Skeleton, Skinmesh). Additionally, the implementa-
tion of its animation needs a pose buffer and a root ani-
mation controller: Animy = (AnimDe fs, Ps,Ctrly)

The pose buffer represents the transformation data for
each bone at the current time of the animation: Py (i) =
transform of the i bone of the animation A’s skeleton.
The concept of animation controller used in our frame-
work is similar to the one presented in [Gregl4] and
[Unil6]. Usually, every animation framework system
has a visual editor that let users customize a controller
and its internal evaluation operation. A base use case
is to define an animation controller as representing a
single motion clip (no child). Its evaluation returns the
pose data at the specified time parameter, and it could
involve decoding the animation clip data and perform-
ing interpolations between keyframes. Controllers can
be represented as trees of operations. Evaluating a con-
troller at time ¢, means evaluating recursively its chil-
dren nodes then combining the pose buffer from each
child into its own pose buffer (the one attached to the
animation it is controlling).

Listing 1: Pseudocode for evaluating a controller
ControllerA :: Evaluate (t)
ChildrenList = {C; |
C; is the i child controller}

Evaluate (t, ChildrenList)
Py = Combine(Fg,).

Another base use case is to use a controller to blend
between two animations (A and B). Such a controller
can have two children controllers: Ctrl4 and Ctrig. As
shown in Eq. 2, the resulting pose of evaluating Ctrlc is
an interpolation between the resulting poses of its two
children by variable s (normalized blend time; 0 means
start, 1 end).

Pc(t):Pa(t)+(Pb(t)*Pa(t))*S7 SE[O,l]. (2)
Complex trees of controllers can be customized for an
animation. For instance, one could use a blend mask
to consider only parts of the bones from each children
controller. Eq. 3 presents a controller evaluation with
three children: from Ctrls it takes only the pose for
head, Ctrlp gives the pose for arms, and finally Ctric
provides the pose for legs of a biped character. A blend
mask is defined as an array of O — 1 values and has the

Full Papers Proceedings

CSRN 2701

Computer Science Research Notes
http://www.WSCG.eu

same length as the pose array. The dot product be-
tween the two cancels the pose for bones that are not
interesting for the mask (e.g. only the set of bones
S = {i|Byask (i) = 1} are considered).

Pr(t) :Bheud*Pa(t) +Barms*Pb(t) +Blegs*Pc(t)- (3)

Another example of common animation controller are
state machines ([Gregl4]) where the transitions are
generated / evaluated by triggers / values set from the
simulation side (e.g. an Al system). If the controllers
above can be implemented on GPU side using shaders
for optimizing performance, the ideal running place
for the controller representing a state machine would
be CPU because of the tight communication between
simulations and online data that are usually provided
on the CPU side. Another motivation for running
controllers on the CPU side instead of GPU, is the use
case of authoring motion clips with certain events on
their timeline that need to be communicated back to
the CPU side. The frequent communication from GPU
to CPU would cause serious performance problems
that could eliminate the benefits of doing the math
operations in shader programs. Usually, modern
animation frameworks allow users to customize their
own controllers and inject them into the animation
system using a provided editor.

4 IMPLEMENTATION

Our solution to solve the requirements 1-4 described in
3.3 and the memory limitation of having all animation
data set in memory is addressed by using a mixed model
between streaming animations data from CPU to GPU,
and storing only a part of the animation data set on the
GPU memory.

4.1 User authoring and control

In our framework, an animation
sents an extension to the tuple definition of
an animation (A), as given in Section 3.4
AStreamy = (AnimDefy,Ps,Ctriy,PHy). The last
parameter added is a circular buffer storing the history
of the last M values evaluated for Py. Parameter M
can be configured by user and represents the number
of frames to be saved in the PH, buffer - many
applications typically consider sampling at 30Hz or
60H?z).

The user input for our framework system can be
defined as a tuple: UserConfig = (StreamPool :
AStream||,UniquePool : Anim[|,NT,M). The Stream-
Pool array contains streams of animations that can be
shared by multiple agents. As a demo setup example
for a crowd animation system, three types of animation
streams could be defined: one playing a walk controller

stream repre-

ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD)

CPU side

CPU pose storage

CSRN 2701

Computer Science Research Notes
http://www.WSCG.eu

GPU side

Animation Backend

StreamPool

GPU pose storage

update

Controllers evaluation

UniquePool

(Similar to the CPU one)

(sync)

Transition slots

read poses

Skinning using vertex shader programs

Figure 1: Overview of the CPU-GPU data flow on each frame.

animation, another playing an idle, and finally one
waving hands to the user when approaching the camera.
Initially, the agents are assigned to one of the streams
in the StreamPool array, and one offset value in the
space of the history poses of that animation stream
(random normal distribution or customized by user).

More specifically, if each crowd agent has a unique id
assigned, then its animation reference can be defined as
a tuple: AgentAnimyp = (IDg;,IDo), where the first ar-
gument is its stream index in StreamPool, and the sec-
ond is the offset in the history of that stream’s saved
poses (PHsy). The offset value is relative to the PH’s
head (i.e. an offset value of 0, means the head of the
ring buffer, while an offset N, represents N frames be-
hind head - PH(N)). The purpose of the pose history
buffer is to allow multiple agents that share the same
animation stream look differently by having different
offsets. From a quality perspective, having randomiza-
tions both at stream index and offset levels decreases
significantly the probability of user observing agents
that play the same animation at any point in time. This
probability can be controlled by adding more or fewer
streams of animations and by modifying parameter M.

UniquePool is an array of simple animation definitions
that are not meant to be shared between agents - e.g.
users can inject at runtime live motions recorded which
they want to replicate for the agents in the crowd. Using
a streamed animation for this use-case would generate
a useless memory footprint for storing the PH param-
eter. Finally, parameter NT defines the number of pre-
allocated transition slots. Transition slots are internal
customizable components that can be used to blend the
animation of a single agent from his current animation
(and offset) to another one (more details about them in
Section 4.3). At runtime, user can request a transition
from the current animation of an agent to one of the
animations from the stream or unique pools:

» TransitionToStreamed(ID, streamlIndex)

» TransitionToUnique(ID, uniquelndex)

Full Papers Proceedings

4.2 CPU-GPU data flow

The data flow between CPU and GPU on each frame
is presented in Figure 1. The Inputs block is respon-
sible for gathering the inputs for the animation sys-
tem (e.g. decision making systems deriving states for
animation controllers executing state machines or live
recorded motions providing online data). Component
AnimationBackend executes all registered animation
controllers and updates their pose information. The
CPU pose storage object contains the history poses
for StreamPool, and only the current pose for unique
animations and transition slots. If the pose data for
UniquePool and transition slots look like an array (one
component for each used animation), the StreamPool
has a more complex representation, presented in Figure
2.

Bone 0 Bonel Bone T-1

Stream 0

Stream 1

Stream N-1

Array size = ring buffer size (M)

Figure 2: StreamPool storage representation for both
CPU and GPU, having N pooled animations, 7 max-
imum number of bones and M slices. Each row of a
slice represents a pose buffer and has enough capacity
to store all skeletons used in the animation system.

At each frame F, for each streamed animation (S), the
root controller attached to these animations is evaluated

ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD)

and writes data on slice (array index) F' mod M, on row
IndexOf(S). All these updates (plus the unique and
transition slots’ poses) are packed and sent to GPU to
keep in sync both pose storages. The GPU needs the
pose data for skinning purposes, since the shader knows
for each vertex the global animation index (unified in-
dex system between streamed, unique pools and tran-
sition slots), the offset (valid in the case of streamed
animations) and fetches the transformation matrix asso-
ciated with the bones that affect that vertex. The CPU
side needs the same pose data because of the blending
system explained in the next section.

4.3 Blending between animations

The blending operations in the crowd animation
systems is different from the traditional blending
mainly because of the opportunities that appear in
reusing computations, sharing strategies, and the
offset system added to support variety. The transition
slots from Figure 1 are responsible for blending
between animations, and support transition requests
between any animations A and B, with both of them &€
{UniquePool, DynamicPool}. A transition slot T can
be defined formally as a tuple:

Trr = (Pr,Ctriy,A,B,04,0p,Ty,L,StartPr, TargetPr).

As with the previous definitions, Ctrlr is the controller
attached to this animation and needs to be evaluated
to write the output - Pr, representing the current pose
of the transition. Skinning is performed using this
current pose, similar to the system described in 4.2
(but considering the offset as 0 since only the current
pose is written). A,B are the source respectively the
target animation for blending, while O4 and Op, are
the offsets that the agent using this transition slot has in
each animation (because animations can have different
lengths, or for variety purposes, the user can request
to blend the agent to a different offset than his current
one). Tp is the start time when the transition started,
while L represents the transition duration. Finally,
the last two components are explained in the next
sub-section.

4.4 Evaluation dependency graph

A typical blend operation between animations A and B
using controllers would follow the steps defined in Sec-
tion 3.4: evaluate controllers for both animations then
combine the resulted poses. In the crowd animation
system presented in this paper, and knowing that most
of the agents are transitioning between streamed anima-
tions, blending can be done faster by reusing evaluation
results on each frame. The strategy used by our imple-
mentation is to create a dependency graph, where tasks
(nodes) are the set of all active controllers, and links
between them represent dependencies. There is a link
between Ctrly and Ctrly, if controller Ctrl; needs the

Full Papers Proceedings

CSRN 2701

Computer Science Research Notes
http://www.WSCG.eu

evaluation results (pose) from Ctrl,. In the case of an-
imations € {StreamPool,UniquePool}, there is no de-
pendency. If the transition T is used to play a blending
animation between A and B, then Ctriy depends only
on Ctrlg. The reason why it doesn’t depend on Ctriy
too is that a snapshot of A can be saved, as shown be-
low. Parameter Target Pr represents the target pose and
is evaluated per frame, as follows:

e If B € UniquePool, then TargetPr = Py (the pose
evaluated in the current frame)

e If B € StreamPool, it must take the value from the
pose history of B corresponding to the agent offset
in the target animation: TargetPr = PHg(Op).

Parameter StartP represents the pose that the agent
had at the moment of transition request in animation A
(fixed during transition and internally initialized at the
request moment of time):

e If A € UniquePool, then StartPr = P4

o If A € StreamPool, StartPr = PHA(Oy).

Practically, the blending operation is done on each
frame between StartPr and TargetPr, by using an in-
terpolation that considers the current time of transition
(t — Tp) and total transition time (L). Since the starting
pose is static, an additive blending method is suitable.
Listing 2 shows the pseudocode for evaluating the
transition controllers.

Listing 2: Pseudocode for transition controller with §
representing the normalized blend time, and P the re-
sult of evaluation. Note that, according to the definition
given above, when transitioning from animation A to
animation B, the StartP variable holds the current pose
of animation A at the moment of the transition request.
TransitionController :: Evaluate (t)
wait Ctrlp job to finish
g = =)
if B € UniquePool then
TargetP = Pp
else
TargetP = PHp(Op)

DiffPose =
P =

(TargetP — StartP)=S
StartP + DiffPose

4.5 Parallelization on CPU and GPU

The dependency graph described in the previous
subsection can be parallelized efficiently since only
the evaluations of transition controllers have depen-
dencies. More, there is one subtle observation that
can remove the dependency if the target animation is
in StreamPool: the wait on Ctrlg is needed only if

ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD)

PHp(Op) is not already computed (there is a good
change to avoid the wait since agent’s offsets are
statistically behind the head of the pose buffer). For the
same use case, the biggest parallelization improvement
in our implementation was to move the transition
controllers evaluation on the GPU side (i.e using
compute shaders). These computations are suitable for
compute shaders since the only job of the evaluation is
to perform a straight interpolation between poses, and
these are already cached on the GPU memory in sync
with the CPU storage (Section 4.2).

S EVALUATION

The animation techniques described in this
paper were used in the FIFA17® game
(https://www.easports.com/fifa). The

purpose was to animate a crowd of over 65000 agents
displaced in a football stadium, representing different
categories of football fans (home, away or ultras).
Their animations involved: scoring celebrations, dis-
appointing reactions, anticipation of goals, disagreeing
the referee or players’ decisions, walking around
chairs, etc. Each of these were considered templates
and in our tests, we had 256 animations defined in
StreamPool, and a maximum offset (M) of 60 frames.
The number of transition slots allocated was 800, and
this number was mainly targeted to support the mexican
wave celebration in the stadium (i.e. characters in a
specified stadium’s area were supposed to stand up and
raise their hands at specified moments of time).

For the first purpose of this paper, we are analyzing be-
low the variety of animations in the stadium’s crowd
that was possible using the techniques described in
[Ngu07], [Sho08], [Beal6] (and used in the previous
editions of our game) compared against our new imple-
mentation. The mixed technique between sending pose
data from CPU to GPU and storing only a part of the
animations data on the GPU memory increases the va-
riety of supported animations for crowd agents.

On top of this optimization, our new animation sys-
tem supported dynamic input events as the ones de-
scribed in Section 3. We were able to make the crowd
more realistic with event driven behaviors. One exam-
ple was agents waving hands or performing different
animations on specific bones when a goal scorer was
close to them, which was not possible before using pre-
processed animations data stored on the GPU memory.

For each skeletal motion clip, on each sampled frame,
data must store the SQT (scale, quaternion and trans-
form) of each bone. Denoting by NBones the number
of bones of the skeleton and by SizePerBone the av-
erage compressed data for storing the SQT per bone,
then the pose data size for a single frame is PoseSize =
NBones x SizePerBone. Denoting by MotionLength the

Full Papers Proceedings

CSRN 2701

Computer Science Research Notes
http://www.WSCG.eu

average number of motion keys per animation, the av-
erage size of a clip is: ClipSizeorp = MotionLength x
PoseSize. The memory allocated for animation data
must fall under a GPU budget specified by the appli-
cation. If this variable is denoted by MemBudget, then
the number of clips that can be used with the previous

.. . MemBudget
methods is: NumClipsorp = LMJ.

By wusing our new approach, the GPU data
that needs to be stored for each clip size is
ClipSizengw = M X PoseSize (recall that M rep-
resents the configurable parameter for the maximum
offset value that an agent can have in its shared
animation stream). This means that the number of clips
that can be stored now relative to the old method is:
NumClipsygw = LMW#W X NumClipsorp|. The
left term is always in (0,1] since the maximum offset
cannot exceed the number of frames in the animation.

Figure 3: Image showing a side of a stadium in a foot-
ball match

Analyzing this in the context of our application, where
a skeleton with 82 bones was used and with the help of
the techniques presented in [Ari06], [Hij00], [Sat05],
the resulted PoseSize was reduced from 3.2KB to
0.8KB. MotionLength was 300 since the average
clip length was 10 seconds, and the sampling rate
30 frames per seconds (fps). In these conditions, the
ClipSizeorp = 246KB. With a GPU memory budget
of 520MB, if the previous version of application sup-
ported only 216 clips, by using a particular maximum
offset value M of 60 frames, resulted in supporting up
to 1080 different animation clips at the same time. The
value used for M was high enough to let the 65000
agents in the crowd look like they perform different
animations with only 256 animation streams, and a
maximum offset (M) of 60 frames (the number of
bones used was 82). The quality of the animations (i.e.
if agents animations look different from each other)
was evaluated by a quality assurance team who also did
some tuning over the variables such that we get good
enough results without stressing performance.

ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD)

In terms of performance, the only theoretical problem
could be the bandwidth between CPU and GPU, to
keep the pose buffers in sync for the animations driven
from the CPU side. However, with modern GPUs and
computer architectures, a theoretical bandwidth of 32
GB/s (as specified by PCle 3.0 standard) between CPU
and GPU, would allow our application to send data for
more than 100.000 animations on each frame consider-
ing our current setup and the other resources compet-
ing for the same bandwidth. The techniques described
are scalable and can be used on any GPU as long as
it satisfies the memory requirements and computational
power (shader units) given by the configuration param-
eters and application’s budgets.

Regarding to reactions, consider the case when the ball
hits the crowd (i.e one or more agents). In this case, the
agents which are effected would blend between their
current animation and a hit by ball animation by using
a transition slot. The target blend animation could be ei-
ther a pooled one (hit by ball animation being shared by
multiple agents) or a unique one (specific to one agent,
client application having custom for the agent using the
animation).

6 CONCLUSION

This paper presented some techniques for increasing the
diversity and usability of animation systems in appli-
cations that use crowds of agents. To increase the di-
versity, this work changed the strategies used in previ-
ous approaches by not storing all the animations data
on GPU memory, and by creating a data flow between
CPU and GPU. Having animation controllers that can
be evaluated using this strategy provides several advan-
tages for the client system in terms of usability: the
client is now able to send events back and forth between
a simulation layer (e.g. a decision-making system) and
an animation system. The techniques presented are
used for skeletal animations that target a high level of
details and can be combined with existing rendering
and animation techniques targeted for a lower level of
details. Then, the paper describes a blending technique
that is able to perform an efficient transition between
agents’ animations, considering the sharing strategies
specific to crowd systems. Also, a way to parallelize
the controllers’ evaluation both on CPU and GPU side
was sketched. The crowd source code is currently in-
side a commercial package that we plan to decouple
and make it open source for future research. We also
want to invest more time in improving the parallelism
of the computations and on the Al side of the agents
since now we support better animations and instant re-
action events.

Full Papers Proceedings

CSRN 2701

Computer Science Research Notes
http://www.WSCG.eu

7 REFERENCES

[Ari06] Arikan, O. Compression of motion capture
databases, In Proceedings of SIGGRAPH, ACM,
pp- 890-897, 2006.

[Beald4] Beacco A, Pelechano N, CAVAST: The
Crowd Animation, Visalisation, and Simula-
tion Testbed, Proceedings of Spanish Computer
Graphics Conference, CEIG, pp: 1-10, 2014.

[Beal6] Beacco A, Pelechano N, Andujar C, A Sur-
vey of Real-Time Crowd Rendering, Computer
Graphics Forum 35(8), pp: 32-50, 2016.

[Bra00] Brand M, Hertzmann A. Style machines, Pro-
ceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co, pp: 183-
192, 2000.

[Gregl4] Gregory, J. Game Engine Architecture, Sec-
ond edition, Chapter 11: Animation Systems,
CRC Press, pp. 543-647, 2014.

[Hij00] Hijiri T., Nishitani K., Cornish T., Naka T,
Asahara S. A spatial hierarchical compression
method for 3d streaming animation. Proceedings
of Web3D-VRML ACM, pp. 95-101, 2000.

[Kav07] Kavan L., Collins S., Zara J., O’Sullivan C.
Skinnig with dual quaternion. In Proceedings
of the Symposium on Interactive 3D Graphics
(SI3D), pp 39-46, 2007.

[Kov02] Kovar Lucas, Gleicher Michael, Pighin F.
Motion graphs, ACM Transactions on Graphics
(TOG)., 21(3), pp: 473-482, 2002.

[Kov03] Kovar Lucas and Gleicher Michael. Flexi-
ble Automatic Motion Blending with Registration
Curves. In Proceedings of ACM SIGGRAPH, Eu-
rographics Symposium on Computer Animation,
pp. 214-224, 2003.

[Kim14] Kim J, Seol Y, Kwon T, Lee J, Interactive ma-
nipulation of large-scale crowd animation, ACM
Transactions on Graphics (TOG) - Proceedings of
ACM SIGGRAPH 2014, 33(4), 2014.

[Mag88] Magnenat-Thalmann N, Laperrire R, Thal-
mann D, Montreal U. D. Joint-dependent local de-
formations for hand animation and object grasp-
ing, Proceedings on Graphics interface’88, pp.
26-33, 1988.

[Mil07] Millan E, Isaac Rudomin. Impostors, pseudo-
instancing and image maps for GPU crowd ren-
dering. Proceedings of the The International Jour-
nal of Virtual Reality, Volume 6, Issue 1, pp.
35-44, 2007.

[Ngu07] Nguyen H. GPU Gems 3, Chapter 2: An-
imated Crowd Rendering. Addison-Wesley, pp.
39-52, 2007.

[Poi09] Poirier M., Paquette E. Rig retargeting for 3d

ISBN 978-80-86943-49-7

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701

animation. In Proceedings of the Graphics Inter-
face Conference ACM Press, pp. 103-110, 2009.

[Rud05] Rudomin I, Millan E, Hernandez Z. Fragment
shaders for agent animation using finite state ma-
chines.Simulation Modelling Practice and The-
ory, Volume 13, Issue 8 (November), Elsevier, pp.
741-751, 2005.

[RydO5] Ryder G, and Day A. M, Survey of Real-
Time Rendering Techniques for Crowds, Com-
puter Graphics forum 24(2), Wiley, pp: 203-215,
2005.

[Sat05] Sattler M., Sarlette R., Klein R. Simple and
efficient compression of animation sequences.
In Proceedings of Eurographics Symposium on
Computer Animation, pp. 209-217, 2005.

[Sho08] Shopf Jeremy, Joshua Barczak, Christopher
Oat, Natalya Tatarchuk , March of the Froblins:
simulation and rendering massive crowds of intel-
ligent and detailed creatures on GPU, Proceeding
of ACM SIGGRAPH, pp 52-101, 2008.

[Tec00] Tecchia F, Chrysanthou Y. Real-time render-
ing of densely populated urban environments. In
Proceedings of the Eurographics Workshop on
Rendering Techniques, Springer, pp. 83-88, 2000.
[Unil6] Unity engine manual - animation section
https://docs.unity3d.com/Manual/AnimationSection.html
[Wit95] Witkin A, Popovic Z. Motion warping, Pro-
ceedings of the 22nd annual conference on Com-

puter graphics and interactive techniques. ACM,
pp. 105-108, 1995.

[Pel16] Pelechano N. and Allbecky J. M., In Proceed-
ings of IEEE Virtual Humans and Crowds for
Immersive Environments (VHCIE), pp. 17-21,
2016.

Full Papers Proceedings 9

Computer Science Research Notes
http://www.WSCG.eu

ISBN 978-80-86943-49-7

