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ABSTRACT

Approximation of surfaces plays a key role in a wide variety of computer science fields such as graphics or CAD
applications. Recently a new algorithm for evaluation of interpolating spline surfaces with C? continuity over
uniform grids was proposed based on a special approximation property between biquartic and bicubic polynomials.
The algorithm breaks down the classical de Boor’s computational task to reduced tasks and simple remainder ones.
The paper improves the reduced part’s implementation, proposes an asymptotic equation to compute the theoretical
speedup of the whole algorithm and provides results of computational experiments.

Both de Boor’s and our reduced tasks involves tridiagonal linear systems. First of all, a memory-saving optimiza-
tion is proposed for the solution of such equation systems. After setting the computational time complexity of
arithmetic operations and clarifying the influence of modern microprocessors design on the algorithm’s remainder
tasks, a new expression is suggested for assessing theoretical speedup of the whole algorithm. Validity of the

equation is then confirmed by measured speedup on various microprocessors.
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1 INTRODUCTION

The paper is devoted to effective computation of tridi-
agonal systems. Since evaluation of such systems be-
longs to challenges of computer science and numerical
mathematics, designing fast algorithms for their com-
putation is a fundamental task. One of many appli-
cations of tridiagonal linear systems is construction of
spline curves and surfaces that pass through the pre-set
input points.

Our reduced algorithm is based on an interre-
lation between bicubic and biquartic polynomi-
als that has been proved in [Szal6a], [Minl6a]
and its application was thoroughly described
in [Minl6a], [Minl5a], [Minl5b]. This interrelation
was inspired by a similar property between cubic and
quartic polynomials uncovered in [Tor14a]. A proof of
this interrelation both in 2D and 3D is based on the IZA
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representation [Torl3a], [Szal3a] which incorporates
both interpolation and approximation. The IZA repre-
sentation was obtained using an r-point transformation
that is a generalization of three point model introduced
by Dikoussar [Dik97a]. A three point transformation
was successfully applied to various approximation
problems such as the assessment of unknown degrees
in regression polynomials [Tor0Oa], [Mat0O5a] or a
method for detecting piecewise cubic approximation
segments for data with moderate errors [Dik(06a].

An idea, based on which the IZA representation has
been ultimately derived, appeared in [Rev07a]. The pa-
per [Tor09a] showed how to properly use the IZA repre-
sentation’s reference points for segment connection and
their relation to derivatives. Papers [Dik07a], [Szal3a]
contain results on approximating 3D data utilizing the
reference point approach. The basis for the quartic-
cubic interrelation makes up a two-part model, which
was first thoroughly studied in [Rev13a] and [Tor13a].
These works proved the validity of the two-part ap-
proximation model, which led first to approximation
of a quartic polynomial by two cubic ones in [Tor14a]
and then to approximation of a biquartic polynomial
by two bicubic ones in [Minl6a]. The reduced sys-
tem approach to spline curve construction was proposed
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in [TorTA] and afterwards it was generalized for case of
spline surface construction in [Min15b]. The main goal
of this work is both the theoretical and practical confir-
mation that the reduced algorithm for spline surfaces is
faster than the de Boor’s original algorithm which we
refer to as full algorithm.

The structure of this article is as follows. Section 2 is
devoted to a problem statement. To be self-contained,
Section 3 briefly describes de Boor’s algorithm and
our recent algorithm based on reduced systems. Sec-
tion 3.1 shows the standard way of solving tridiago-
nal linear systems and proposes a modified approach to
solve such systems with lesser memory requirements.
The next section analyses the architecture of micropro-
cessors in search of a way to speedup the algorithms.
The assessed speedup stated in Section 5 is confirmed
by real-world measurements summarized in Section 6.

2 PROBLEM STATEMENT

This section defines inputs for the spline surface and
requirements, based on which it can be constructed.

Consider a uniform grid

[to,ur,- . up—1] % [Vo,vi,---5vi-1], (1)
where
ui=ug+ihy, i=12,....1-1, I=2m+1,meN,
vi=vo+jhy, j=12,...,0-1, J=2n+1,neN.

According to [Boo62a], a spline surface is defined by
given values

zij, i=0,1,...,0-1, j=0,1,...,J-1 2)
at equispaced grid-points, and given first directional
derivatives

d;;, i=0,1-1, j=0,1,....J-1 3)
at boundary verticals,
dzj, i=0,1,....,/-1, j=0,J-1 “

at boundary horizontals and cross derivatives

v j=0,J-1 )

W i=0,1-1,

at four corners of the grid.

The task is to define a quadruple [z;;,d};,d; ;. d;7]
at every grid-point [u;,v;], based on which a uniform
bicubic clamped spline surface S of class C can be con-
structed with properties

S (ui,v;)
S(ui,vi) =z ), T]:dzﬁ
aS(ui,v;) '
o dxdy b7

where the adjacent spline segments are twice continu-
ously differentiable.
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3 FULL AND REDUCED ALGO-
RITHMS

This section is devoted to the description of two algo-
rithms for computing the unknown first derivatives of a
C?-class uniform spline surface’s unknown first deriva-
tives. The classic de Boor’s algorithm is based on solv-
ing tridiagonal linear systems of equations that are fur-
ther described in [Boo62a]. Henceforward we will refer
to the de Boor’s algorithm as the full algorithm. The re-
cently proposed reduced algorithm based on the special
approximation property between biquartic and bicubic
polynomials breaks down the classical de Boor’s com-
putational task to reduced tasks and simple remainder
ones as proposed in [Minl5a], [Minl5b]. The cen-
tral part of the reduced algorithm comprises three new
model equations and five new explicit formulas. Cross
derivatives at the boundaries are computed using the
classic de Boor’s approach. Both algorithms are de-
scribed in Appendix, thus the paper is self contained
and the reader can count the number of mathematical
operations for precise comparison.

3.1 Tridiagonal LU factorization

The standard way of solving tridiagonal linear systems

by 1 0 d ri—dp
1 by 1 d rn
0 1 b3 d3 |=]| nr3
bx dg rg —dg 11
A d r

uses the LU factorization Ad =L Ud = r, where

——
y
1 0
L 1
L = |0 1 1 ,
g 1
ui 1 0
0 up 1
U = uy s
ug

the u; and /; elements are computed as, see [Bjol5a],

1
LU: uj Zb, {l,': %,u,‘:b—l,‘},izz,...,K, (6)

i—1

and the forward (Fw) and backward (Bw) steps of the
solution are

Forward: Ly-=r, 7
where yy =ry, {yi=ri-Lyi-1},i=2,...,K;

Backward: Ud =y, )
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where dg = i—’;

{di= 3 i=dim)}i=K=1,...,1.

Input: b, r[1..K]
Output: d[1..K]
I[2.K]
u[1..K]
y[1..K]
u[2] < b
y[1]« r[1]
for i from 2 to K do
I[i] < 1/uli-1]
uli] < b-1[i]
ylil < rli] = 1i]-y[i-1]
d[K] < y[K]/u[K]
: for i from K — 1 downto 1 do
d[i] < (s[i] ~d[i+ 1])/u[i]

Algorithm 1: LU factorization

D AN R

—_ o =
L

Input: b, r[1..K]

Output: 7[1..K]

p[1..K]

m< 1/b

p[1]<m

r[1] < m-r[1]

for i from 2 to K—1 do
m<1/(b-pli-1])
pli]<m
rli] «m-(r[i]-rli-1])

: m<1/(b-p[K])

p[K] < m

r[K] < m-(r[K]-r[K-1])

for i from K — 1 downto 1 do
rli] < r[i] - p[i]-r[i+1]

Algorithm 2: LU factorization

R A A S ol s

I T =
D AW = O

Tridiagonal systems of equations for full and reduced
algorithms are solved by LU factorization. All the sys-
tems of these algorithms are diagonally dominant with
elements 1,4, 1 or 1, —14, 1.

The process of computing a tridiagonal system is indi-
cated in Algorithm 1. Since by = by =--- = by_1, where
T =K in case of the full algorithm or 7 = K — 1 in case of
the reduced algorithm, this method can been improved,
see Algorithm 2, requiring less memory as stated in the
lemma below.

Lemma 1 Let K be the number of equations in a linear
tridiagonal system with constant diagonals. Then Al-
gorithms 1 and 2 require SK and 2K of memory space,
respectively.
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4 MICROPROCESSOR’S DESIGN IN-
FLUENCE

In Section 3 we described the full and reduced algo-
rithms for computing the unknown derivatives of spline
surfaces. Their time complexity is O(1J). When de-
termining the asymptotic time complexity it is com-
mon to ignore the speed of the algorithm’s individual
steps, arithmetic operations, etc. Since the asymptotic
time complexity is equal for both aforementioned al-
gorithms, it is vital to consider the influence of their
individual steps.

One should also keep in mind that larger numbers of
operations don’t necessarily mean slower completion
times as computation time also depends on the type of
performed operations. In case of floating point opera-
tions it holds that additions and multiplications are sim-
ilarly fast, but divisions are multiple times slower, see
Table 1 and Table 2. In this section we briefly discuss
some technical principles how modern CPUs work with
data and how one can utilize this in implementation of
algorithms. Results of computational experiments are
presented in the last section.

Nowadays a performance increase cannot be achieved
by just increasing the clock speed. The architectures of
modern CPUs use other ways to improve performance,
such as superscalar designs, pipelined instructions or
thread parallelism.

4.1 Caching

One of the most important ways for a programmer to
optimize the algorithm’s implementation is the choice
of proper data structures. To store input and output val-
ues of the two suggested algorithms we use matrices.
A matrix can be represented as a jagged array or as a
single continuous array where the element of the i-th
row and j-th column has an index n-i+ j, where n is the
number of columns.

The main system memory is slower than the CPU which
has to wait tens or hundreds of machine cycles to load
a value from the main memory. To address this la-
tency issue, modern microprocessors are equipped with
small and fast caches that preloads both data and ma-
chine instructions of programs from the main memory.
Caching is an automated process controlled by the CPU
[Pat15a].

Consider an m x n matrix represented by jagged arrays.
When element ay g is loaded from the matrix, the micro-
processor might also cache elements aq 1, ap, ..., but
not element a; o. Therefore an evaluation of ag o +ao.1
will be faster than the one of ag o +aj .

In our case the jagged array representation proved to be
more effective as most operations are evaluated on rows
and so we do not need to cache the entire matrix which
can be unfeasible considering large values of m and n.
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4.2 Evaluation time of arithmetic opera-
tions

Microprocessor cores consist of several execution units
specialized in different types of operations with varied
instruction latencies. Values of latencies and through-
puts can be found in CPU micro-architecture documen-
tations. The x86 instruction set has many extensions
and because it is not practical to include all instruc-
tion sets to this test, we chose the most commonly
used instruction set extension, namely the Streaming
SIMD Extensions 2 (SSE2) as all 64 bit x86 micro-
architectures supports these. The sets got a more mod-
ern replacement in Advanced Vector Extensions (AVX)
whose main advantage lies in the improved vector oper-
ations. However vector operations require independent
calculations on each particular vector element [Pat15a]
and this isn’t the case of the considered full and reduced
algorithms.

The speedup measurement of the reduced algorithm
compared to the full one was conducted on five x86
CPUs covering the generations from AMD K10 to Intel
Skylake. In the Table 1 we present four basic arithmetic
instruction speeds on these four micro-architectures.
The first column contains the name of the architecture
and the year of its release to the market. The archi-
tectures are ordered alphabetically by the manufacturer
and then by the year of release. Instruction latency is
the number of CPU clocks it takes for an instruction
to have its data available. Instruction throughput is
the number of CPU clocks it takes for an instruction to
execute. Some instructions have greater latency than
throughput, meaning that the execution unit can pro-
cess another instruction before the data from a current
one are available for further processing. This is referred
as pipelining which is one form of the instruction paral-
lelism. The table confirms the expectation that addition
and subtraction are equally fast. Therefore these oper-
ations will be jointly denoted as +. Hereafter when we
mention the operation of addition we are meaning the
subtraction as well. It is clear from the table that divi-
sion is the slowest operation.

Latency/Throughput
Architecture (year) + - X +
AMD K10.5 Llano (2011) | 4/1 4/1 4/1 20/15
Intel Westmere (2010) 3/1 3/1 5/1 7-22/7-22
Intel Sandy Bridge (2011) | 3/1 3/1 5/1 16-22/22
Intel Haswell (2013) 3/1 3/1 5/0,5 | 14-20/13
Intel Skylake (2015) 3/1 | 4/0,5 | 3/0,5 14/4

Table 1: Number of machine cycles for SSE2 dou-
ble precision floating point arithmetic operations on
different x86 generations by [Intl6a], [Amd11la] and
[Fogl6a].

In Table 2 operations were measured in an array con-
taining 512 random elements with the calculations re-
peated 500 000 times. The last two columns represent
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measured time ratio of multiplication to addition and
ratio of division to addition. For the last two columns
we define the following notations:

Definition 1

 Value y* is the execution time ratio between multi-
plication and addition. It means the performance of
one multiplication is equivalent to y* additions.

* Value y* is the execution time ratio between divi-
sion and addition. It means the performance of one
division is equivalent to Y™ additions.

Operations were in the form of a[i] = a[i]oa[i—1],
where o € {+, x,+} to simulate the form of calculations
in Algorithm 2.

A reason to perform measurements instead to rely on
processor documentation is the fact, that given latencies
and throughput for division of some microarchitectures
depends on the input values which are not usually de-
scribed in documentations. The rows of Table 2 corre-
sponds to the rows of Table 1 but instead of architecture
they indicate names of concrete microprocessors.

CPU + x + e e

A6-3420M 368 | 336 | 1747 || 0.91 | 5.20
Corei5430M | 253 | 347 | 544 || 1.37 | 2.15
Core i3 2350M | 227 | 341 | 907 || 1.50 | 4.00
Core 17 4790 144 | 207 | 488 || 1.44 | 3.39
Core i7 6700K | 135 | 136 | 422 || 1.01 | 3.13

Table 2: The speed of arithmetic operations on specific
CPUs measured in milliseconds.

Comparing the second and fourth columns of Table 1
with the second and third columns of Table 2 we can
say that addition and multiplication are similarly fast.

4.3 Parallelism of arithmetic operations

It remains to emphasize another property of the mi-
croprocessor’s architecture called the instruction level
parallelism (ILP). Modern processors are pipelined, su-
perscalar and support vectorized computations as we
briefly mentioned in the part 4.2. While the vector-
ization is not the concern for us due to form of Al-
gorithm 2, the superscalar pipelined nature of modern
CPU’s is to be considered.

Consider the equations in Lemmas 3 and 4 in Sec-
tion 9. The right-hand sides of the equation contain
more than one arithmetic operation. Such expressions
are broken automatically into more mutually indepen-
dent subexpressions and evaluated automatically in par-
allel [Pat15a].

Table 3 shows how the increase in number of operations
will extend the calculation time. For example from
the second column in Table 3 it follows that evaluating
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ali]=ali]+a[i—1]+a[i-2] will be 1.61 times slower
than a[i] = a[i{] +a[i—1]. Operations were measured in
an array containing 512 elements with the calculations
repeated 500 000 times. Table 4 then shows similar val-
ues also for other CPU’s, but for the sake of readability
only for expressions containing ten numeric operators.

Num. of ops. + x +

2 1.61 | 1.61 | 2.00
3 2.15 | 2.16 | 3.00
4 259 | 2.6 | 4.01

5 3.03 | 3.04 | 5.01

6 343 | 345 | 6.02

7 385 | 386 | 7.02

8 425 | 427 | 8.03

9 468 | 469 | 9.03

10 5.09 | 5.11 | 10.04

Table 3: Evaluation times of arithmetical operation on
Intel Core i7 6700K depending on the number of oper-
ations.

The results of this section will be used in Section 6.

CPU + x + px | B

A6-3420M | 6.56 | 7.19 | 2.40 1.52 | 1.39
15 430M 3.84 | 531 | 10.03 || 2.60 | 1.88
i32350M | 5.10 | 593 | 9.99 || 1.96 | 1.67
i7 4790 6.43 | 6.17 | 10.00 || 1.56 | 1.62
i76700K | 5.09 | 5.11 | 10.04 || 1.96 | 1.96

Table 4: Evaluation times multiples for mathematical
expressions containing ten operations of said type com-
pared to those expressions containing only a single op-
eration.

Following the results of the Tables 3 and 4 we define
the following notation:

Definition 2

* Value B* denotes performance effect of instruction
level parallelism on expressions containing more
than one addition or subtraction. It means that an
expression containing enough number of said oper-
ations will be evaluated in ﬁ% time compared to a
CPU without such a feature.

* Analogous, the value B> denotes performance ef-
fect of instruction level parallelism on expressions
containing more than one multiplication.

Remark 1 Since both considered algorithms doesn’t
contain expressions with more than one floating point
division, value B~ is not necessary.

S THEORETICAL SPEEDUP OF THE
ALGORITHM

In this section we count the number of operations and
their cost for full and reduced algorithms and provide
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our main result about the speedup of the latter. In Ta-
ble 5 we have the cost of arithmetic operations for LU
factorization of tridiagonal systems covering both de
Boor’s and the reduced algorithms. In summary we
have the cost of operations for solving one tridiagonal
system with K being the size of a matrix. The cost is
defined as the sum of arithmetic operations where val-
ues for multiplications and divisions are multiplied by
their execution time ratios of y* or ¥* respectively. The
expressions containing more than one addition or mul-
tiplication operand were also multiplied by ﬁ% or ﬁ% to
accommodate the ILP effect on such expressions.

Expression + X +
LU (6) + Fw (7) + Bw (3) 3K 27K 7K
= | RHS (11), (12), (13), (14) K YK 0
5 Summary full al. 4K 37K YK
LU (6) + Fw (7) + Bw (8) 3K 27Y°K 'K
RHS d*, d” (15), (17) 5ok ETK 0
32 | Summary d*, d” 3(l+ﬁ%)l( 2(I+B—lx)yxl( YK
% RHS d* (21) Ak Ty K 0
& | Summary d** B+3K | 2+§)rK | rK

Table 5: Cost of operations for LU factorization of full
and reduced algorithms in regards to the number of un-
knowns K.

Full + X +

dr (11) a1y | 3y*1J | ylJ
d’ (12) AlJ | 3y*LJ | Yyl
da* (13) 81 6yl | 2y°1
d* (14) AlJ | 3y*1J | Yyl
Summary | 121J | 9y*1J | 3y°1J

Table 6: Cost of operations for the full algorithm.

Reduced + X +

d* (15) gl | (4 )Yl I
d* (16) zb%“ VUl 0

& (17) %(1+B%)IJ (1+Bix)yw X
d (18) 2,3%11 B%YXIJ 0
4 (19), (20) 8(1+J) 6y (I+J) |2y (I+J)
4 (21) e AR A
4" (22), (23), (24) gl = 0
Summary gl [ Grgry | 3ru

Table 7: Cost of operations for the reduced algorithm.

Remark 2 Let us consider I being the number of grid-
points along the x-axis, J is the same along the y-axis.
The cost of operations has the form alJ +bl +cJ +d, but
we provide the count for 1J only.

Tables 6 and 7 show the cost of operations for individual
steps and imply the following result.

Lemma 2 Consider a uniform grid of size [ and J. The
total costs of operations are

(12497 +3y")1J
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for the full algorithm and

E+B+ §+ 4 X+§ 17
4 g \aTapx )V T4

for reduced algorithm.

We are ready to provide our main result about the speed
increase achieved by the reduced algorithm in compar-
ison with the classical full algorithm.

For measuring the expected speedup of the reduced al-
gorithm with respect to the full one, the next theorem
proposes an asymptotic expression.

Theorem 1 Consider a uniform grid of size I and J. If
1,J — oo, then the expected asymptotic speedup of the
reduced algorithm is

1249y +3y*
15 19 5 41 X 1 D (9)
T+ﬁ7+(§+4ﬁX)7 tIv

Proof. Consider a uniform grid of size I and J. From
Lemma 2 we get the following costs of operations

o (12+9y* +3y7) 1J for the full algorithm,

15,19 (5. 41
(e (e
rithm.

) Y+ %y* ) 1J for reduced algo-

The speedup is expressed as a cost ratio of both algo-
rithms

(12+9y*+3y")1J
(St e (i) reiv)u

what completes the proof.

41
4B%

We underline that the asymptotic expression was
derived in accordance with Remark 2.

6 MEASURED SPEEDUP

In the previous section, an asymptotic expression for
the theoretical speedup has been derived. In this one
we show the results of real measurements.

The tested data sets comprises of uniform grid

[Lto,ul, .o ,Ltzo()o] X [V(), Vigeony Vz()oo] where up = —20,

uz000 = 20, Vo = —20, V2000 = 20 and values Zi,j» df»cj, d;"ij’
Xy : . .

d;}, see (2) - (5), are given from function siny/x% +y?

at equispaced grid-points. The speedup values were

gained averaging 50 measurements of each algorithm.

The benchmark was implemented in C++14 and com-
piled with a 64 bit GCC 6.3 using -Ofast optimization
level. Tests were conducted on five different computers
with microprocessors from Tables 1 and 8, all equipped
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with 8 — 32 GB of RAM and Windows 10 operating sys-
tem. The tests were conducted on freshly booted PCs
after 10 minutes of idle time without running any non-
system services or processes like browsers, database
engines, etc.

The two v* and ¥* columns of Table 8 contains the exe-
cution time ratios of arithmetic operations with respect
to addition taken from Table 2. For assessing the the-
oretical speedup from Theorem 1 we consider the in-
struction parallelism values 8* and > from Table 4.
The last column holds the values for the real measured
speedup of the sequential reduced algorithm with re-
spect to the full one.

Ratios Speed-up
CPU % Y p* B* | Asses. | Meas.
A6-3420M | 091 | 5.2 1.52 | 1.39 1.13 1.05
i5 430M 1.37 | 2.15 | 2.60 | 1.88 1.24 1.24
i3 2350M 1.39 | 343 | 1.96 | 1.67 1.15 1.15
i7 4790 144 | 339 | 1.56 | 1.62 1.07 1.10
i7 6700K 1.01 | 3.13 | 1.96 | 1.96 1.21 1.23
Table 8: Comparison of assessed and measured

speedups on a 2001 x 2001 grid.

As we can see, the theoretical speedup is comparable
with the measured one on the chosen CPU architec-
tures.

7 DISCUSSION

Let us discuss the results from the numerical and ex-
perimental point of view. The reduced algorithm works
with five types of tridiagonal system, see (15), (17),
(19), (20) and (21), that differ from each other with the
right hand sides similarly to the de Boor’s full systems.
Since three of these systems contains two times less
equations then the corresponding full systems and their
diagonal elements equal —14 instead of 4, from the the-
oretical view the reduced systems are diagonally dom-
inant and therefore computationally stable [Bjol5al].
The second half of unknowns are computed from sim-
ple explicit formulas, see (16), (18), (22), (23), (24) and
therefore do not present any issue from the computa-
tional view. The model equations of the reduced system
were derived to fulfil the requirement of class C2. The
maximal error between the full and reduced system so-
lutions is 10712, so we can conclude that the proposed
reduced method yields numerically accurate results.

Although the reduced one contains twice as many cheap
addition, subtraction and multiplication operations, it
also contains less than half of expensive divisions giv-
ing to new approach a speed increase of factor 1.05 to
1.24 on the rest of tested CPU micro-architectures.

In the future we aim to improve the reduced algorithm
for spline surfaces on a uniform grid with simpler equa-
tions and formulas for cross derivatives and so further
increase the speedup.
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8 CONCLUSION

We achieved performance increase of derivatives com-
putation at uniform grid-points for spline surfaces and
halved the memory space requirements.

The achieved speedup can be attributed to two inter-
esting facts. Firstly, the reduced algorithm contains
less than half the number of divisions. Depending on
the CPU microarchitecture a floating-point division is
several times slower than addition while floating point
multiplication and addition are similarly fast.

Secondly, microprocessor cores are pipelined and su-
perscalar. The reduced algorithm contains many ex-
pressions containing more than one arithmetic opera-
tion that can be and are evaluated in parallel on most
modern x86 CPUs.

Although the reduced one contains twice as many cheap
addition, subtraction and multiplication operations, it
also contains less than half of expensive divisions giv-
ing to new approach a speed increase of factor 1.05 to
1.24 on the tested CPU micro-architectures.

9 APPENDIX

The full and reduced algorithms are given by two lem-
mas:

Lemma 3 (Full) If the z values and d derivatives are
given, see (2) — (5), then the values

d;, i=1,...,0-2, j=0,....,0-1,

dlyj, i=0,...,0-1, j=1,...,J-2, (10,

7, i=1,...,1-2, j=0,...,J-1,
andi=0,....1-1, j=1,...,J-2

are uniquely determined by the following 21 +J +2 lin-
ear systems of altogether 31J — 21 —2J — 4 equations:
for j=0,....0-1,

d:

VA +dE = (n

i1, (Zm,j—Zi—l,j)’
.X

wherei=1,.

fori=0

dyj+1+4dy

7I 27
I,

Y
+le1

12)

3
(Zi, 1= Zij-1),
hy

where j=1,... 2;

for j=0,J-1,

7J_

+4d, ’y+d >

X,y
d; i-1,j ~

i+1,j (13)

(1+1] llj)

where i=1,.

71 27
fori= 1

,1,

d

lJ+

1+4d” +d7 (14)

ij-1"— (dlj+1 di]—l)’

where j=1,...,J-2.
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Lemma 4 (Reduced) If the z values and d derivatives
are given, see (2) — (5), then the values dy , dl}j, df]y
from (10) are uniquely determined by the following

342045 ;. SI-1-J-23
=552 linear systems of altogether >=71=== equa-
tions and W formulas:

for j=0,1,...,J-1,
j‘+2] 14d +d, 2, =
(15)
:;(Zi+2,j_Zi—2,j)_I/T(ZH—I,j_Zi—l,j)a
X X
where i=2,4,... . 1-3;
" 3 1
di,jzﬁ(ziﬂ,j_zi—l,j)_z( 1+1,j+dz 11) (16)
X
wherei=1,3,....1-2, j=1,3,...,J-2;
fori=0,1,....1—-1,
dfj+2 14dl)j+dfj 5=
12 (17)
(e —zij2) — —(Zi i1~ Zi 1),
hy i,j i,j hy i,j i,j
where j=2,4,...,J-3;
y 3 1oy y
dij= - G =z jm1) = g (diy +diy ), (8)
y
wherei=1,3,...,1-2, j=1,3,...,0-2;
for j=0,J-1,
dszr)i ]+4dx}+dl7)lj = (dl+l] i- 1]) (19)
wherei=1,...,J-2;
fori=0,1-1,
dl]+1+4d”+dij1 (d,jH ’j 1, (20)
where j=1,2,...,J-2;
fori=24,6,....1-3,
dlj+2—14d”+dl’; 5=
(dl 2]+2+dj()éj 2) 2dtxy2]

3 ’
+ ﬁ (df—z.j+2 + di'v—z,j—z) + ﬁ (~dia jra+digj2)+

(dy ( Zi-2,j+2 + Zi-2,j- 2)+

9
1+2 1/2) 7hh

+7( dv —1,j+2 d,?;l j,z)"'ﬁy(df—z,jﬂ _d;c—Z,j—l)"'

+h*y(dfc,j+2—d;fj—2)+7;h (=zi j42 +2ij—2)+
36
7h hy
6
e
18

T hy b

(Zl 1,j+2 —Zi—1,j-2 + Zi-2 j+1 —Zi-2,j- 1)_

108
Thyhy

y

12
it h*(d;fjﬂ +d1{j—l)+ (zijr1 =i j-1)—
; y

24

M
(lej+l+zllj 1D+ dtlj’

144
Thihy
21
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where j=4,6,...,J-5;

X,y X,y
dH-]j dl]j]

d ——(d

i,j i+1,j+1

1+d

l1j+

——(diy g+l —diy J- | +di 1,j+1 dz—l,j—l)_

16h
16h —(d] i+ T z+1,j —di 1,j+1 dz—1,j—1)+
9
+W(Zi+1,j+1_Zi+l,j—1_Zi—l,j+1+Zi—1,j—1)a
xlly
(22)
wherei=1,3,....1-2, j=1,3,...,J-2;
xy _ 3
dJ 4h ( ij+1 " j 1) (d11+1 1] 1) 23)
)7
wherei=1,3,....,1-2, j=24,...,J-3;
dr = 3 d d 24
i7j_ﬂy(1]+l Jl) (lj+1+,j 1)7 ( )
wherei=2,4,....1-3, j=1,3,....J-2.
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