
Accelerating Radiosity on GPUs

Alexandr Shcherbakov
Lomonosov Moscow State University

GSP-1, Leninskie Gory
119991, Moscow, Russia

alex.shcherbakov@graphics.cs.msu.ru

Frolov Vladimir
Lomonosov Moscow State University

Keldysh Institute of Applied Mathematics
(Russian Academy of Sciences)

GSP-1, Leninskie Gory
119991, Moscow, Russia

vfrolov@graphics.cs.msu.ru

ABSTRACT
We propose a novel approach to implement radiosity on GPU with specific optimizations via form-factor matrix
transformations. The proposed transformations enable to reduce the amount of computations for multiple-bounce
global illumination and apply DXT compression (with subsequent hardware decompression when reading form-
factors on GPU). Our implementation is 10 times faster running and requires 3 times less memory than the naive
radiosity GPU implementation.

Keywords
Global illumination, radiosity, real-time applications.

1 INTRODUCTION
The main difficulty of real time global illumination in-
volves accurate evaluation of reflected light. Precise
value can be computed only through the lighting in-
tegral evaluation, which becomes much more compli-
cated with each new reflection. Therefore, in practice
different approximate methods are used. Today, there
are a variety of popular techniques for global illumi-
nation evaluation. Each of them represents the evolu-
tion of some basic method of global illumination with
several modifications, which make it more suitable for
specific conditions and hardware.

2 INTERACTIVE GLOBAL ILLUMI-
NATION METHODS

2.1 Instant Radiosity
Despite its name, instant radiosity [1] is not a variation
of radiosity method [4]. The idea behind this method
is to approximate indirect illumination with the direct
light from a large number of "secondary" point light
sources placed on the surface. The Reflective Shadow
Maps (RSM) algorithm [3] is the most popular exten-
sion of instant radiosity method for GPU applications.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

RSM creates a set of secondary light sources from mip-
mapped texture of shadow map [9]. These lights are
used further in the fragment shader just like any other
lights. The shadows from indirect light sources are not
included in this case. The RSM method is the fastest
and requires the least amount of memory over all exist-
ing methods of real-time global illumination solutions.
However, its main disadvantage is poor accuracy.

2.2 Light Propagation Volumes
The main idea of Light Propagation Volumes (LPV) is
to represent the lighting in a scene sampled on the lat-
tice or grid. The algorithm consists of the four main
steps:

1. Generate a radiance point set by rendering the scene
into the reflective shadow map;

2. Inject virtual light sources into the radiance field;

3. Propagate radiance by iteratively solving a differen-
tial scheme inside the grid;

4. Apply a result radiance volume to the scene.

The disadvantage of LPV is O(n3), where n is the size
of grid, complexity and memory consumption. The sig-
nificant performance disadvantage appears in the prop-
agation light through large empty spaces. Through, the
Cascaded LPV [2] algorithm amortizes some of these
problems, the accuracy of this method is not enough
for many cases (especially for architecture-related ap-
plications).

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 99 ISBN 978-80-86943-49-7



2.3 Voxel Cone Tracing
Voxel Cone Tracing (VCT) [5] allows for voxelized ap-
proximation of the scene and trace cones via ray march-
ing through the different mip-map levels of 3D texture.
The key idea of VCT is to pre-integrate the incoming
light via mip-mapping: gather the nearby light from the
detailed mip level and the far light from the coarse mip
level which averaged the emitted light from many sur-
faces. Therefore, distant areas are used with less preci-
sion.

The main disadvantage of VCT is a computational cost,
because it traces several cones per pixel. The algorithm
also suffers from light leaks due to coarse approxima-
tion of geometry by voxels.

2.4 Spherical Harmonics
The method of Spherical Harmonics [7] is a popular
global illumination method based on the approximation
of complicated functions by decomposition into a sum
of simple spherical functions. For each vertex in scene
polygons (or grid positions called light probes [8]) its
own representation of lighting function is computed and
approximated by spherical harmonics. The next stage
of evaluating the global illumination is relatively cheap.
Thus, the large part of computation is executed on a
precomputing stage.

It generates acceptable global illumination. On the edge
of light and shadow, it can create some artifacts caused
by rough approximation of illumination functions.

2.5 Radiosity
Despite the considerable effort of researchers in real-
time global illumination, an original radiosity method
[4] has some advantages over the previously discussed
methods. The first advantage is the conservation of en-
ergy and sufficiently high accuracy of the solution. The
second one is low computational cost for a small num-
ber of patches, because the main evaluation runs on the
precompute stage. However, it is difficult to use radios-
ity directly due to the fact that in modern 3D-scenes
there are millions of polygons.

One of the modern versions of radiosity is the "En-
lighten" [11] graphics engine in which simplified geom-
etry is used for global illumination computing. Simpli-
fication is provided manually by 3D artists using some
tools in 3D content modeling programs. Their imple-
mentation uses CPU for computing and updates indirect
illumination once per 5-10 frames.

3 PROPOSED SOLUTION
3.1 GPU Radiosity
There were several works related to the implementa-
tion of radiosity on GPU. In [6] the progressive refine-
ment radiosity algorithm running completely on GPU

is presented. The work is mostly focused on form-
factors computation with adaptive subdivision and us-
ing fixed functionality of GPU (like Rasterizer). In [13]
an extended GPU progressive radiosity is presented.
Their solver integrates ideal diffuse as well as specu-
lar transmittance and reflection and is capable to handle
multiple specular reflections with correct mirror-object-
mirror occlusions. In [14] another adaptive subdivision
implementation on GPU is presented.

Unlike those discussed above, the work [10] is focused
on the efficient linear system equation solution and ma-
trix operations. It deals with the performance of differ-
ent floating point format for matrix of form-factors and
investigates the differences between GPU and CPU per-
formance on matrix operations; it also explores a hier-
archical radiosity approach via multiresolution meshed
atlas. The authors of [10] pack 4 sequential form fac-
tors to a single color of texture. However, they didn’t
explore hardware compression and didn’t propose al-
gorithmic optimizations (except hierarchical radiosity).
The work [10] also suggests sub surface scattering com-
putation possibility via radiosity.

We believe that all the GPU radiosity works discussed
above can be significantly improved. In this paper, we
propose a new multibounce method based on special
modifications of the radiosity algorithm [4] for global
illumination computing. Our extensions are aimed to
accelerate radiosity, reduce the required memory for
form-factors storing and increase the accuracy of com-
putation in comparison to popular global illumination
methods.

3.2 Automatic Geometry Simplification
It is impractical to use radiosity for scenes that consist
of millions of polygons, due to the high computational
complexity of this problem. Therefore, in practice, ra-
diosity is applied to a simplified scene and the produced
result is used for original scene. We used the geometry
simplification method based on the voxel representation
of original scene [12].

3.3 Key Terms and Definitions
Global illumination computing is performed according
to the following scheme. For each patch, initial lu-
minance is computed or set. These values form vec-
tor emission. Each element of this vector is a three-
component vector, one component per color.

emissioni = (red,green,blue) (1)

Vector excident consists of colors that are sent from
patches. It can be computed using emission.

excidenti = emissioni ∗ colori (2)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 100 ISBN 978-80-86943-49-7



colori is the color of i-th patch. Then, form-factors ma-
trix F is multiplied by excident. The result of this op-
eration is the lighting received by patches from light
sources incident.

incidenti =
n

∑
j=0

Fi j · excident j (3)

n is the number of patches.

excident(1)i = incident(0)i · colori (4)

excident is the lighting sent from patches after first re-
flection.

Then we repeat multiplication of form-factors matrix
and excident vector for computing lighting after first re-
flection. We can repeat these operations for an arbitrary
number of reflections.

3.4 Optimizing radiosity for multi-bounce
global illumination

First, we define color form-factors matrix Fc. Element
of this matrix on row i and column j are defined in the
following way:

Fc
i j =Fi j · color j =

= (red j ·Fi j,green j ·Fi j,blue j ·Fi j)
(5)

Then, we can change the computing of patches lighting
after the first reflection using equations (3), (4) and (5).

incident(1) = Fc · emission (6)

Furthermore, we can generalize this equation for com-
puting lighting received by patches after arbitrary re-
flection.

incident(h) = Fc · incident(h−1) = (Fc)h ·emission (7)

Total lighting of the patch for k reflections is summa-
rized from values of lighting received after each reflec-
tion.

incidenttotal =
k

∑
h=0

incident(h) =

=
k

∑
h=0

(
(Fc)h

)
· emission) =

=

(
k

∑
h=0

(Fc)h

)
· emission =

= Fk−re f lection · emission

incidenttotal = Fk−re f lection · emission

(8)

So, we can use matrix Fk−re f lection to perform multipli-
cation only once for k reflections. However, this matrix
needs 3 times more memory than the original one.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

matrix values

100

101

102

103

104

105

106

107

0.000 0.005 0.010 0.015 0.020

matrix values

0

500000

1000000

1500000

2000000

2500000

Figure 1: Distribution of form-factors values on the test
scene (logarithm and linear scales).

3.5 Using DXT1 compression for form-
factor matrix compression

For the form-factor matrix values less than 0.005 are
prevailed (see Fig. 1). Since the contribution of these
values in result is less than the others, they can be ef-
fectively compressed with losses.

For this reason, we split a form-factor matrix in two
parts.

The first part contains 4% biggest numbers for each
color channel for each row in the matrix. This value
is based on the experimental results shown on figure 2.
It provides a high quality of image.

Figure 2: Total compression error for different parts of
uncompressed values.

The second part has the same shape as the original ma-
trix, but values from the first part are set to zero. Since
these values fail to make significant contribution, accu-
racy for exponent is more important than accuracy for
mantissa. Therefore, we apply some transformations to
them.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 101 ISBN 978-80-86943-49-7



30 25 20 15 10 5 0
0

50000

100000

150000

200000

250000

300000

350000

Figure 3: Distribution of lower form-factors values af-
ter normalization and logarithmization.

Firstly, values for each channel are divided on the max-
imum value for this channel. Secondly, the logarithm
function is applied to the values (see Fig. 3).

0 50 100 150 200 250 300
0

50000

100000

150000

200000

250000

300000

350000

Figure 4: Result distribution of values in form-factors
matrix.

Since the computed values are lie between -30 and 0
(see Fig. 3), we add a positive constant to them (in this
case we add 25, because the values that remain negative
are not important for computation). Then these values
become to range from 0 to 255 (see Fig. 4).

Figure 5: Form-factor matrix before reordering.

DTX1 compression is applied to a transformed form-
factor matrix (see Fig. 5). To reduce the losses, we
swap some rows of matrix. In this process, we also
swap columns and patches matched these rows (see Fig.
6).

Figure 6: Scheme of columns/rows swapping.

Since we make matrix reorganization to reduce com-
press losses, we want to store similar values closer and
hence we strive to place similar rows and columns next
to each other. We use Euclidean distance as a measure
of similarity.
In general case, if we represent columns or rows of ma-
trix as vertices of full graph and set the measure of sim-
ilarity as edges weights, then the problem of finding of
the optimal order of rows and columns is the problem of
finding of the shortest path in the graph, which includes
all vertices. This problem is assigned to NP class.
Since the number of patches is the number of the order
of several thousand, we use a heuristic approach. The
first row always stays in the place. Most similar to the
first row is put in the second place. Most similar to the
second of the remaining row is put in the third place,
etc. These matrix transformations decrease compres-
sion losses about 5 times (see Fig. 7).

Without
reordering

Reordering
by rows

Reordering
by rows &
columns

Avg. error 1,28E-06 8,13E-07 5,88E-07
Max error 0,4622 0,4684 0,1524
Total error 47,12 18,86 9,40

Figure 7: Comparison of error for reordering.

Then, we apply second reordering, but measure is com-
puted for columns.
After all reorderings, resulting texture is saved using
DXT1 compression. Matrix after compression is pre-
sented in the figure 8. It is difficult to tell the difference,
so the difference for the red component of the texture is
shown in the figure 9. For green and blue channels, dif-
ference is similar in structure.

3.6 Implementation Details
All computations are executed on GPU using OpenGL
framework. Form-factors matrix stored as a com-
pressed texture. Other data stored in array buffers. The
order of computation is the following:

1. Rendering of shadow maps for all light sources;

2. Running compute shader. This shader uses shadow
maps for computing emission on the patches. Emis-
sion is square of illuminated part of patch;

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 102 ISBN 978-80-86943-49-7



Figure 8: Compressed form-factor matrix after two re-
ordering.

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 9: Form-factor matrices difference in red com-
ponent.

3. Next, we run another compute shader for radiosity.
On this step compressed form-factor matrix is used.
The form-factor matrix is multiplying by emission
vector;

4. And the last compute shader transfers indirect illu-
mination from the simplified scene to the original;

5. The final step is the scene rendering.

4 EXPERIMENTAL RESULTS
In this paper, Naive Radiosity and Path Tracing are
compared with our approach.

4.1 Comparison with naive radiosity im-
plementation

4.1.1 Computation speed comparison
Our multibounce radiosity implementation is asymptot-
ically faster than both naive radiosity and the algorithm
described in [10]. Presented method can be used with
other optimization techniques for radiosity (for exam-
ple, hierarchical radiosity).

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Figure 10: Form-factor matrices difference in all com-
ponents.

Figure 11: Speed comparison.

It can be seen in the figure 11, our method significantly
superiors the naive implementation of radiosity. In ad-
dition, using the compressed by DXT1 form-factor ma-
trix is faster due to decreased memory amount that we
need to transfer between DRAM and GPU multiproces-
sor.

4.1.2 Memory Requirements Comparison

Figure 12: Memory comparison.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 103 ISBN 978-80-86943-49-7



In figure 12 we show the sizes of files containing form-
factor matrices. After compression, matrix requires sig-
nificantly less memory. Thus, our modifications reduce
the amount of data being stored and loaded into video
memory.

4.1.3 Images Comparison
Our approach generates an image with similar qual-
ity as naive radiosity implementation, but we use less
amount of memory and execute the radiosity algorithm
faster.

4.2 Comparison with Light Propagation
Volumes

Light Propagation Volumes generates image with vi-
sually perceptible inaccuracy as can be seen on figure
13. A column in selection (green rectangle) is pink,
but on reference image this column painted with a gra-
dient. Both images (our approach and LPV) rendered
with 40 FPS. The size of voxel grid for LPV was cho-
sen to reach the same fps with our implementation of
radiosity.

4.3 Comparison with Path Tracing
In comparison with Path Tracing (see Fig. 13) we show
that our method generates a similar image. Meanwhile,
our image was generated less than 17ms. Path Trac-
ing needs more than 5 minutes to generate a reference
image on the same GTX670.

5 CONCLUSION
In this paper, we present a practical approach for real-
time global illumination on GPU using radiosity. First,
we reduced the multiple bounce computation cost by in-
troducing color information to a form-factor matrix and
powering it. Second, we apply rows/columns reorder-
ing and DXT compression to both save memory and
increase speed when reading form-factors from DRAM
on GPU (because radiosity is memory-bound). Our im-
plementation runs 10 times faster than naive radiosity
and requires 3 times less memory. The resulting image
hardly differs from the path-traced reference and has
comparable FPS to other real-time global illumination
algorithms.

6 ACKNOWLEDGMENTS
This work is supported by RFBR 16-31-60048
mol_a_dk.

7 REFERENCES
[1] Alexander Keller. 1997. Instant radiosity. In

Proceedings of the 24th annual conference on
Computer graphics and interactive techniques
(SIGGRAPH ’97). ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 49-56.
DOI=http://dx.doi.org/10.1145/258734.258769

[2] Anton Kaplanyan and Carsten Dachsbacher.
2010. Cascaded light propagation volumes for
real-time indirect illumination. In Proceed-
ings of the 2010 ACM SIGGRAPH sympo-
sium on Interactive 3D Graphics and Games
(I3D ’10). ACM, New York, NY, USA, 99-107.
DOI=http://dx.doi.org/10.1145/1730804.1730821

[3] Carsten Dachsbacher and Marc Stamminger.
2005. Reflective shadow maps. In Proceed-
ings of the 2005 symposium on Interac-
tive 3D graphics and games (I3D ’05).
ACM, New York, NY, USA, 203-231.
DOI=http://dx.doi.org/10.1145/1053427.1053460

[4] Cindy M. Goral, Kenneth E. Torrance, Donald P.
Greenberg, and Bennett Battaile. 1984. Model-
ing the interaction of light between diffuse sur-
faces. In Proceedings of the 11th annual con-
ference on Computer graphics and interactive
techniques (SIGGRAPH ’84), Hank Christiansen
(Ed.). ACM, New York, NY, USA, 213-222.
DOI=http://dx.doi.org/10.1145/800031.808601

[5] Cyril Crassin, Fabrice Neyret, Miguel Sainz,
Simon Green, and Elmar Eisemann. 2011.
Interactive indirect illumination using voxel-
based cone tracing: an insight. In ACM SIG-
GRAPH 2011 Talks (SIGGRAPH ’11). ACM,
New York, NY, USA, , Article 20 , 1 pages.
DOI=http://dx.doi.org/10.1145/2037826.2037853

[6] Greg Coombe, Mark J. Harris, and Anselmo Las-
tra. 2004. Radiosity on graphics hardware. In Pro-
ceedings of Graphics Interface 2004 (GI ’04).
Canadian Human-Computer Communications So-
ciety, School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada, 161-168.

[7] Ian G. Lisle and S.-L. Tracy Huang. 2007. Al-
gorithms for spherical harmonic lighting. In Pro-
ceedings of the 5th international conference on
Computer graphics and interactive techniques
in Australia and Southeast Asia (GRAPHITE
’07). ACM, New York, NY, USA, 235-238.
DOI=http://dx.doi.org/10.1145/1321261.1321303

[8] Jaroslav Krivanek, Pascal Gautron, Sumanta
Pattanaik, and Kadi Bouatouch. 2008. Ra-
diance caching for efficient global illumina-
tion computation. In ACM SIGGRAPH 2008
classes (SIGGRAPH ’08). ACM, New York,
NY, USA, , Article 75 , 19 pages. DOI:
https://doi.org/10.1145/1401132.1401228

[9] Michael Wimmer, Daniel Scherzer, and Werner
Purgathofer. 2004. Light space perspective
shadow maps. In Proceedings of the Fifteenth
Eurographics conference on Rendering Tech-
niques (EGSR’04). Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 143-151.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 104 ISBN 978-80-86943-49-7



Figure 13: Our method (left-bottom), Light Propagation Volumes (Unreal Engine 4) (left-top), naive radiosity
(right-top) and Path Tracing (right-bottom).

Figure 14: Comparison with Light Propagation Vol-
umes and Path Tracing

DOI=http://dx.doi.org/10.2312/EGWR/EGSR04/143-
151

[10] Nathan A. Carr, Jesse D. Hall, and John C. Hart.
2003. GPU algorithms for radiosity and sub-
surface scattering. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware (HWWS ’03). Eurographics
Association, Aire-la-Ville, Switzerland, Switzer-

land, 51-59.
[11] SamMartin, Per Einarsson. A Real Time Radios-

ity Architecture for Video Games. Siggraph 2010.
http://advances.realtimerendering.com/s2010/
Martin-Einarsson-RadiosityArchitecture
(SIGGRAPH%202010%20Advanced%20
RealTime%20Rendering%20Course).pdf

[12] Shcherbakov, A., and Frolov, V. Automatic ge-
ometry simplification for computation of indi-
rect lighting using radiosity. In Graphicon-2016
(2016), NNGASU, pp. 34-38

[13] Wallner, G. Vis Comput (2009) 25: 529.
doi:10.1007/s00371-009-0347-z

[14] Wallner, G. GPU radiosity for triangular meshes
with support of normal mapping and arbitrary
light distributions. J. WSCG 16(1-3), 1-8 (2008)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2701 Computer Science Research Notes
http://www.WSCG.eu

Full Papers Proceedings 105 ISBN 978-80-86943-49-7


