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ABSTRACT 
Retinex was introduced by E.Land to explain and solve a problem of color constancy in human visual system 
(HVS). In this paper, we propose a novel Retinex model based on sparse source separation problem. Different 
from the existing models, we can explain a relation between the modeling and the effectiveness of Retinex de-
composition with the proposed model. We demonstrate the performance of our model by experimental results. 
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1. INTRODUCTION 
The color of object which is determined by machine 
visual system (MVS), such as a digital camera, is 
based on the amount of reflected light on the object. 
However, when human visual system (HVS) deter-
mines the object color, it also considers the amount 
of detail in the surrounding area and the variation of 
overall illumination. With this complex system, we 
can automatically discount the variation of illumina-
tion and so easily recognize the color of object which 
is same under varying illumination conditions 
[Pal09][Riz07]. This feature of the HVS is called 
color constancy [Ebn07], and it has been studied over 
the forty years. 
Land’s Retinex theory is the first computational 
model to simulate and explain the color constancy of 
HVS [Lan71]. He simulated and explained how the 
HVS perceives color, based on experiments using 
Mondrian patterns. With this result, he proposed 
path-based Retinex algorithm to solve the discrepan-
cy problem between the MVS and HVS [Lan83]. 
This algorithm extracts the reflectance components 
from the original image which is obtained by MVS. 
The extracted reflectance image is so clear and quite 
similar to the image of HVS because it has no illumi-

nation components in the image. After Land’s pio-
neering studies of Retinex theory, there have been 
many researches to interpret, improve, and imple-
ment the Retinex algorithm.  
The Retinex algorithm is usually categorized into 
four areas: path-based algorithms, recursive algo-
rithms, center/surround algorithms and physics-based 
algorithms[Mor09] . Among these areas, the physics-
based algorithms are widely studied in recent years 
because they can efficiently remove the global illu-
mination from the images. Based on the main as-
sumptions that the illumination varies smoothly and 
the reflectance is piecewise constant, the physics-
based Retinex algorithms set models of the reflec-
tance and the illumination firstly, and then decom-
pose image intensity as a product of the reflectance 
and the illumination.  
In [Kim03], Kimmel et al. proposed a variation mod-
el for Retinex which set the illumination as the varia-
tional framework. This algorithm can simply extract 
the illumination using the steepest descent method, 
but the reflectance model is not considered. To im-
prove this algorithm, Michael et al. proposed a total-
variation model for Retinex [Mic11]. This algorithm 
uses the total-variation model for the reflec-
tance[MaW10], and also considers the illumination 
model using the assumption of spatially smoothness. 
This algorithm makes the decomposition of image 
more appropriate and reasonable than the previous 
works. However, there still remains a problem in the 
total-variation model that the mathematical relation 
between the modeling and the effectiveness of de-
composition is not clear. 
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In this paper, we propose a sparse source separation 
model of Retinex theory. Using the properties that 
the gradient of reflectance is spatially sparse and the 
gradient of illumination is sparse in frequency do-
main, we apply the sparse source separation algo-
rithm to the Retinex model. With our model, we can 
explain the effectiveness of Retinex decomposition 
and can decompose the reflectance and illumination 
more accurately. Some experimental results are pre-
sented to show the effectiveness of the proposed 
model.  

2. VARIATION/TOTAL-VARIATION 
MODEL FOR RETINEX 
As mentioned above, the variation and total-variation 
model for Retinex are categorized in the physics-
based Retinex algorithm. The algorithms in this cate-
gory decompose the image intensity  as a product of 
the reflectance  and of the incident illumination 
intensity  as follows [Mor09] :   =  ∙ 																																						(1) 
,where 0 <  < 1 and 0 <  < ∞. In order to handle 
the product form, they are converted into the loga-
rithmic domain, i.e.,  =  + 																																						(2) 
where  = log ,  = log, and  = log . Based on 
the assumption that the illumination is spatially 
smooth, Kimmel et al. proposed the variation model-
ing for Retinex [Kim03], i.e., argmin [] =  (|∇| + ( − )+ |∇( − )|)  subject	to ∶ 		 ≥ , and	〈∇, ⃗ 〉 = 0	on	Ω				(3) 
where Ω is the support of the image, Ω its boundary, 
and ⃗  is the normal to the boundary.  and  are free 
non-negative real parameters. This model is a quad-
ratic programming problem which can be solved by 
many methods such project normalized steepest de-
scent method as in [Kim03]. However, this model 
has some limitations because the reflectance piece-
wise constant assumption is not considered in its 
model.  
To improve the variation model of Retinex, Michael 
et al. proposed the total-variation model for Retinex 
[Mic11], i.e.,  argmin, (, ) =  |∇| + 2 |∇| + 2  ( +  − )+ 2  																																		(4) 

where , , and  are positive numbers for regulari-
zation parameters, the term ∫ ( +  − )  is used 

for the fidelity, and the term ∫   is used only for 
the theoretical setting. As shown in (4), they consid-
ered the both sides: the reflection function is piece-
wise constant, and the illumination function is spa-
tially smooth. Using these properties, the total-
variation model makes more appropriate and reason-
able for the decomposition of Retinex than the previ-
ous variation model.  
Nevertheless, there still remain some problems in the 
variation/total-variation model. The variation and 
total-variation model do not explain the mathematical 
relation between their modeling and the possibility of 
decomposition. So we do not know whether the mod-
eling is suitable or not for the Retinex decomposition. 
They also have some halo effects in their decom-
posed reflectance images because they consider both 
the reflectance and illumination in the spatial domain. 
Due to the fact that the illumination was modeled as 
smooth in the spatial domain, the results of reflec-
tance images lead to the creation of local halos, such 
as those around the letters. 

3. PROPOSED RETINEX MODEL 
In order to improve the previous model of Retinex, 
we present a sparse source separation model of Reti-
nex. In this section, we introduce the sparse source 
separation algorithm firstly, and then we present a 
novel Retinex decomposition model using the sparse 
source separation algorithm. 

Source separation algorithm in mixed two 
sparse signals 
Suppose that there is a mixed signal  ∈ ℝ  of the 
superposition model, i.e.,  =  + 																																		(5) 
We assume that a vector  ∈ ℝ is sparse if the most 
of its entries are equal to zero. Similarly, a vector  ∈ ℝ  is sparse in frequency if its discrete cosine 
transform (DCT)   is sparse, where  ∈ ℝ×  is 
the matrix that encodes the DCT. Using these proper-
ties, we can separate the  into  and  to search for 
the sparsest possible components [McC14], i.e., [, ] = argmin,∈ℝ {‖‖ + ‖‖:  =  + }	(6) 
Where the ℓ-norm measures the sparsity of its input, 
and  > 0  is a regularization parameter that trades 
the relative sparsity of solutions.  
In [Don01], Donoho et al. proved that if  ‖‖ + ‖‖ ≤  2⁄ ,																							(7) 
then the solution to equation (6) is unique. In other 
words, we can perfectly separate  and  from  if  
and  are sufficiently sparse. 
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Unfortunately, solving (6) involves an intractable 
computation problem. So we replace the ℓ  penalty 
with the convex ℓ-norm to solve a classical sparse 
approximation program as follows : [, ] = argmin,∈ℝ {‖‖ + ‖‖:  =  + }	(8) 
In [Don01], Donoho et al. also proved that if  ‖‖ + ‖‖ ≤ 12 2⁄ ,																							(9) 
then the solution to equation (8) is also unique. In 
other words, we can also perfectly separate  and  
from  using the ℓ-norm if  and  are sufficiently 
sparse.  
The change to the convex ℓ-norm offers a benefit 
that we can use a number of highly efficient convex 
program algorithms for solving (8).  

A sparse source separation model of  
Retinex theory 
At first, we convert the equation (2) into a gradient 
domain, i.e.,  ∇ = ∇ + ∇																																	(10) 
, because the reflectance  is piecewise constant, the 
gradient of reflectance ∇  is spatially sparse. And 
because the illumination   is spatially smooth, the 
gradient of illumination ∇  is piecewise constant in 
spatial domain, so it is sparse in frequency domain. 
As we explained in the previous subsection, we can 
efficiently decompose the superposition signal which 
is mixed the spatially sparse signal and the sparse-in-
frequency signal. So, applying this fact to the sparse 
source separation problem, we can decompose the ∇ 
into ∇ and ∇, solving the follow problem :  ̌ , ′ = argmin,∈ℝ {‖‖ + ‖‖:  = ′ + ′}			 (11) 
where  = ∇,  = ∇,  = ∇, and 	is the size of 
image. Using the decomposed  and , we can get 
the reflectance   and illumination   with the simple 
inverse process of equation (10). 
Based on the equation (7), we can perfectly decom-
pose  into  and   if ‖′‖ + ‖′‖ ≤  2⁄ 																			(12) 
So, if   and   satisfy the above sparse condition, 
then we can accurately decompose the reflectance 
image from the original image.  
However, as we mentioned before, it is difficult to 
solve the equation (11) because the ℓ optimization 
problem is NP-hard. So we replace the ℓ penalty of 
(11) with the ℓ-norm, i.e.,  ̂ , ′ = argmin,∈ℝ {‖‖ + ‖‖:  = ′ + ′}			 (13) 
Based on the equation (9), we also see that the equa-

tion (13) is perfectly decomposed if 

‖′‖ + ‖′‖ ≤ 12 2⁄ 																			(14) 
With our Retinex modeling, we can explain the rela-
tion between the modeling and the efficieny of Reti-
nex decomposition that the sparsity of ∇  and ∇ 
are proportional to the accuracy of Retinex decompo-
sition, and if they satisfy the equation (14), then we 
can perfectly decompose the reflectance and illumi-
nation from the original image. 
To solve the equation (13),  we change this equation 
to the unconstrained form, i.e., ̂, ′ = argmin,∈ℝ ‖‖ + ‖‖+ 2 ( −  − )			 (15) 
,where  is the axis of image, and  is the positive  
regularization parameter. To solve the equation (15), 
we use the alternating minimization scheme as ′() = argmin∈ℝ ‖‖ + 2  −  − () 																		 ′() = argmin∈ℝ ‖′‖ + 2  − () −   (16) 
In order to get the  and  directly without the inverse 
process of equation (10), we apply the split Bregman 
method [Gol09] in each subproblems in (16), i.e., () = argmin,∈ℝ ‖‖ + 2 ∇ − ∇ − ∇() 															 () = argmin,∈ℝ ‖‖ + 2 ∇ − ∇() − ∇  (17) 
,where  = ∇ and  = ∇. With the iteration of 
each sub-problems, we can get the decomposed re-
flectance and illumination image. 

4. EXPERIMENTAL RESULTS 
In our implementation, we use the HSV Retinex 
which considers the intensity layer (V) only. We 
compare the results of our model with those of Kim-
mel’s model [Kim03] and the Michael’s model 
[Mic11]. The parameters of previous models set the 
same as their papers. In our model, we fix  =4	and	 = 0.1 which apply to weight the illumina-
tion cost.  
Figure 1 and 2 show the experimental results of the 
previous works and our proposed model with two 
Retinex test images. In these figures, we can see that 
the reflectance image of our model is the most clear 
in the edge of image.  
In the next experiments, we apply the Retinex algo-
rithms using the color circle images we made. As 
shown in figure 3, our proposed model restores the 
edge and intensity of reflectance more accurately 
than the other Retinex algorithms. Figure 4 shows the 
differences of S-CIELAB image [Zha97] between the 
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original color circle and the reflectance image which 
is obtained with Retinex algorithm. The brightness of 
S-CIELAB image means the amount of errors. As 
shown in figure 4, our Retinex model shows the less 
S-CIELAB differences than the other Retinex algo-
rithms.  
With the results in figure 5, we can also see that our 
model is almost free for the local halo effect, yet the 
results of previous model in figure 5(b)(c) lead to the 
creation of local halos.  
With these results, we can say that our model is ef-
fective for the Retinex decomposition. 
 
 

5. CONCLUSIONS 
In this paper, we propose a sparse source separation 
model of Retinex algorithm. Based on the sparse 
source separation problem, we use the properties of 
illumination and reflectance in the source separation 
model that the gradient of illumination is sparse-in-
frequency and the gradient of reflectance is sparse in 
spatial domain. Unlike the previous physics-based 
Retinex models, our model is able to explain the 
modeling and the efficiency of model for Retinex 
decomposition. Some experimental results show that 
our Retinex model is effective to decompose the 
reflectance components from the original images.  
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image by the proposed model. 
 

Fig 3 The results of Retinex algorithms with ‘color circle’ test image. (a) The illuminated image; (b) The 
original image; (c) reflectance image by the variation model in [Kim03]; (d) reflectance image by the total-
variation model in [Mic11]; (e) reflectance image by the proposed model. 
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