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Abstract: This paper presents discrete mathematical model for linear mechanical system composed of a steel  

cantilever beam with added mass at the beam's free end and further mass suspended on the beam by means         

of a tension spring. System parameters were first obtained by their direct measurement and then by identifying 

the input-output transfer function model. Dynamics of the model with various acquired parameters is compared 

with measurement on the real mechanical system. 
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1 Introduction 

Dynamics of the real mechanical system with infinite degrees of freedom (DOF) is in engineering 

practice described by continuous or discrete mathematical models. Continuous model has large 

number of DOF and its mathematical representation is a system of partial differential equations (PDE). 

Solution of this model gives accurate results but is time and computationally consuming. In many 

cases it is possible to describe the dynamics of real system by a simple discrete mathematical model 

with several dominant DOF. Moreover, if we assume the linear behaviour of the mechanical system 

the mathematical model is simplified to a few 2
nd

 order linear ordinary differential equations (ODE) 

with constant coefficients.  

This paper presents discrete mathematical model for mechanical system shown in Figure 1.  

System is composed of  a steel  cantilever beam with added mass at the beam's free end and further 

mass suspended on the beam by means of a tension spring.  

 
Figure1: Mechanical system and measuring equipment.  
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System parameters for the model were directly measured and also identified from experimental 

testing. Dynamics of the model with various acquired parameters is compared with measurement on 

the real mechanical system.  

2 Discrete model of the mechanical system 

Schematic diagram of the mechanical system is shown in Figure 2. If we are interested in vibration 

of the beam free end and hanging mass, then the system can be represented by a linear discrete 2 DOF 

model under certain assumptions: 

 tension spring is massless with linear stiffness k1, 

 small beam's deflections caused by lateral forces, therefore the beam is replaced by spring 

with equivalent linear bending stiffness k2 (1
st
 bending vibration mode), 

 the mass m1 hanging on the tension spring k1 moves only in vertical direction (1
st
 DOF: 

coordinate y1), 

 mass m2 is sum of the added mass M and the equivalent beam mass mbeam and moves only 

in vertical direction (2
nd

 DOF: coordinate y2), 

 it should be note that every mechanical component has an internal structural damping but 

for simplicity the damping properties of the spring and the beam are described by linear 

viscous damping c1 and c2, respectively. 

 
Figure2: Mechanical system and its discrete 2 DOF model. 

Differential equations of motion for a discrete 2 DOF model are defined as follows: 

 𝑚1𝑦 1 𝑡 + 𝑐1𝑦 1 𝑡 + 𝑘1𝑦1 𝑡 = 𝐹1 𝑡 + 𝑐1𝑦 2 𝑡 + 𝑘1𝑦2 𝑡  (1) 

 𝑚2𝑦 2 𝑡 +  𝑐1 + 𝑐2 𝑦 2 𝑡 +  𝑘1 + 𝑘2 𝑦2 𝑡 = 𝐹2 𝑡 + 𝑐1𝑦 1 𝑡 + 𝑘1𝑦1 𝑡  (2) 

where 𝑦 , 𝑦  and 𝑦 is acceleration, velocity and displacement, respectively and F1 and F2 are 

excitation forces acting on mass m1 and m2, respectively. 

In control system theory, transfer functions are a standard form for describing the dynamics of 

linear systems instead differential equations in time domain. Transfer function is generally defined as 

the ratio of the system output to system input in Laplace s-domain. Transfer functions derived for 

differential equations (1 and 2) are: 
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where indexing Fi  yj (i, j = 1,2) means: excitation on mass i causes displacement of mass j. 
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3 Determining system parameters by direct measurement  

Mechanical system was divided into two separate subsystems: 

 1
st
 subsystem  mass m1 hanging on tension spring k1, 

 2
nd

 subsystem  cantilever beam with added mass M. 

Parameters of both subsystems were determined by direct measurement or calculation based on 

physical principles and they are indexed "real". 

Parameters of 1
st
 subsystem (Table 2): 

 mass m1_real  weighting the mass, 

 stiffness k1_real  tensile test of the spring, 

 damping c1_real  free vibration test (Figure 3): logarithmic decrement method [1], 

 eigenfrequency f1_real  free vibration test (Figure 5): spectral analysis.    

 

 

 

 

 

 

 

 

 
 

Figure3: Free vibration test - 1
st
 subsystem. 

 

width height length density beam mass added mass 
Young's 

modulus 

b [m] h [m] L [m]  [kgm
-3

] mbeam [kg] M [kg] E [GPa] 

0.025 0.0043 0.35 7609 0.286 0.56 200 

Table1: Beam dimensions and physical properties. 

Parameters of 2
nd

 subsystem (Table 2): 

 mass m2_real  added mass plus equivalent beam mass [2]: 𝑚2 = 𝑀 +
33

140
𝑚beam , 

 stiffness k2_real  beam bending stiffness [3]: 𝑘2 =
𝐸𝑏ℎ3

4𝐿3  

 damping c2_real  free vibration test (Figure 4): logarithmic decrement method [1], 

 eigenfrequency f2_real  free vibration test  (Figure 5): spectral analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure4: Free vibration test - 2
nd

 subsystem. 
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Figure5: Frequency spectrum of individual subsystems. 

1
st
 subsystem 2

nd
 subsystem 

m1_real 

[kg] 

c1_ real 

[Nsm
-1

] 

k1_ real 

[Nm
-1

] 

f1_ real 

[Hz] 

m2_ real 

[kg] 

c2_ real 

[Nsm
-1

] 

k2_ real 

[Nm
-1

] 

f2_ real 

[Hz] 

0.8 0.07 580 4.29 0.63 0.15 2318 9.55 

Table2: Real system parameters. 

4 System parameters identification 

Real mechanical system was subjected to experimental test (Figure 6). The excitation force (input 

signal - Figure 7) was applied on the beam's free end and accelerations of the masses m1 and M were 

measured, filtered and integrated to displacements y1 and y2 (output signals). Piezoelectric 

accelerometers and impact hammer were used for the measurement. Measured data was processed in 

System Identification Toolbox (SIT) in software Matlab. Identified parameters are indexed "ident". 

 

 
Figure6: Testing the mechanical system to identify parameters.  

Identified transfer functions derived from measured input/output signals are: 

 𝐺𝑖𝑑𝑒𝑛𝑡  𝐹2𝑦1 𝑠 =
2.331𝑠+1192

𝑠4+0.6069𝑠3+5331𝑠2+756.1𝑠+2.709×106 (7) 

 𝐺𝑖𝑑𝑒𝑛𝑡  𝐹2𝑦2 𝑠 =
1.561𝑠2+5.772𝑠+1136

𝑠4+0.6956𝑠3+5328𝑠2+942.5𝑠+2.717×106 (8) 

 

System parameters were then calculated using equations (6 and 8) and are presented in Table 3. 

 
1

st
 subsystem 2

nd
 subsystem 

m1_ident 

[kg] 

c1_ident 

[Nsm
-1

] 

k1_ident 

[Nm
-1

] 

m2_ident 

[kg] 

c2_ident 

[Nsm
-1

] 

k2_ident 

[Nm
-1

] 

0.76 0.16 555 0.64 0.16 2392 

Table3: Identified system parameters. 
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Differences of real and ident parameters are less than 7 % except the spring damping c1. 

Comparisons of the displacements y1 and y2 obtained from measured accelerations of real system and 

from model simulations with real and identified parameters are shown in Figure 8 and 9. Figure 10 

shows frequency spectrums of the system. Eigenfrequencies of the system obtained by measurement 

and simulations are identical: 1
st
 eigenfrequency is 3.77 Hz and 2

nd
 eigenfrequency is 10.76 Hz.  

 

 
Figure7: Input signal - force: F2. 

 

 

 
Figure8: Output signal - displacement: y1. 

 

 

 
Figure9: Output signal - displacement: y2. 
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Figure10: System frequency spectrum derived from displacements y1 and y2. 

5 Conclusion 

Dynamics of the real mechanical system was described by linear discrete 2 DOF model in the form 

of differential equations of motion as well as in the form of transfer functions. System parameters were 

obtained first by direct measurements and by calculations based on the physical principles. The other 

way of finding system parameters was based on the identification test performed on the real system. 

Parameters were identified from transfer functions which were compiled from measured input and 

output signals. Differences in parameters obtained through different approaches are less than 7 %.     

The only significant deviation is for the spring damping coefficient. This deviation is caused by 

considering over simplified viscous damping model for the spring as well as the beam. Nevertheless, 

the dynamics of the discrete model is in good agreement with measurement on the real mechanical 

system. 
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