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THE MEASUREMENT OF SINGLE MYOSIN HEAD IN
FOKKER-PLANCK FRAMEWORK AND INFORMATION
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Abstract: Muscles on a molecular level are created by actin and myosin filaments. In this scale, it is necessary to take into
an account thermal fluctuations – describe in terms of Brownian motion. Due to the motion, it is impossible to predict exact
position of a single myosin head. Nevertheless, for obtaining some physical parameters – like information gain, a knowledge of
the myosin head position is necessary. For this purpose, we developed a model, in the Fokker-Planck framework, which allows
us to numerical determination of the myosin head location (measurement) from probability densities of mechano-chemical
states of the myosin head.
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1 Introduction
Every muscle in the human body is created by actin and myosin filaments. They are slipping to

each other and can be connected mutually by myosin heads [1]. The head position is thus important for
mechano-chemical state determination of the whole system. In our model, a continuous movement of
the myosin head in cytoplasm solution is replaced by three discrete states, they are called the unbound
state, the weakly bound state and post-power stroke [2].

The myosin operates in nanoscale [1] in muscle cells, where it is important to take into an account
thermal fluctuation (Brownian motion) [3]. Due to this unpredictable chaotic movement inside the whole
muscle cell, it is impossible to have an exact determination of state and position, respectively. Thus,
it can be helpful to use a statistical description of the myosin head movement along the actin filament
[4]. In our model, it is described with the overdamped Fokker-Planck equation [5] which solving the
probability densities distribution of the myosin head position in given mechano-chemical state. This
approach is used also by others authors [4, 6].

In biological processes, it is necessary for the appropiate function to have precise state and at least
approximate position of the organelles [7]. The information about it is used for a feedback controlled
mechanism. So far, it has not been precisely determined, what the control mechanism is [7] and some-
times it is compared with Maxwell’s demon [8]. On the other hand, the control mechanism is included
into myosin and then the whole myosin itself acts as a Maxwell’s demon [9]. Maxwell’s demon is usually
described as a hypothetical being which is able to influence microscopical system - for example, separate
hot particles from the cold one [10].

The aim of the presented paper is to numerical determination of the myosin head location (measure-
ment). According to the measurement outcome, we want to determine the information gain to the system
of the actin-myosin complex.

2 A comparison of actin-myosin complex with a classical mechanical system
For better imagination, it is possible to think about myosin like an anchored spring with a weight

with a magnetic properties, the ”magnetic weigth”. The spring represents a myosin neck, which is
elastic part of the myosin. The weight represents the myosin head. And the ”magnetic” property is due
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to an occasional connection between two filaments - the myosin and the actin, respectively. Thus from
this point of view, the myosin head could be considered like a ”paramagnetic” material, which behaves
”magnetically” only in certain circumstances. An external magnetic field turns randomly oriented spin
moments to its direction [11]. In the actin-myosin system, the situation is a little bit more complex.
A lot of chemical substances decide about attachment and detachment of the myosin head to the actin
filament. The most important are Ca2+, Mg2+ and adenosine triphosphate (ATP), which provides energy
to muscle contraction [12]. For visualization of the simplification see figure 1.
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Figure 1: The mechanical simplification of the actin-myosin complex by a spring. The red ellipse de-
notes ”magnetic weight” with paramagnetic property due to the ability to detach to the actin filament.
The other colours ellipses represent some important chemical substances for muscle contraction in sur-
roundings – beige is Ca2+, green is Mg2+ and blue stands for an ATP molecule.

3 Mathematical description of myosin head movement
As we have mentioned before in section 1, the myosin head continuous movement is replaced to the

three state discrete model. These states are called the unbound state, the weakly bound state and the
post-power stroke [2], see figure 2.

(a) The unbound state (b) The weakly bound state (c) The post-power stroke state

Figure 2: A schematic representation of three state model of the myosin head (red ellipse) in relation to
the actin filament (long black line). In unbound state, fig. 2a, the myosin head is detached from the actin
filament, and the myosin neck (spring) is relaxed. In the weakly bound state, fig. 2b, the myosin head
is touching actin filament. The myosin neck is stretched. In the post-power state, fig. 2c, the myosin
moved together with the actin filament.

Due to the Brownian motion, the overdamped Fokker-Planck equation (sometimes called the Smolu-
chowski equation [13]) is used for mathematical description, which provides probability density ρi of
the myosin head location along actin filament for a given state i [4]. The equation has a form

∂ρi(x, t)
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(1)
where t is time variable, D = 5.47 · 107 nm2/s diffusion coefficient which represents the myosin head
ability to move among surrounding molecules in the aqueous solution. The parameter kB is the Boltz-
mann constant, T is the temperature. The function ϕ(x) is called the effective potential [14], that is the
potential energy [4]. It is primarily caused by Ca2+ concentration. The transition rates kij and kji are
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primary depending on ATP concentration. These rates determine a shift between the distinguished chem-
ical states. The allowed shifts are from unbound to weakly bound and vice versa, from weakly bound
to post-power stroke states, which is also reversible, whereas the last transition is irreversible – from
post-power stroke to unbound state. The model uses parameters kij , not the concentrations themselves.

The potential ϕ makes the difference among mechano-chemical states. For the unbound state, the
ϕ1(x) = const., while in the rest of the states, the potential is shaped by Fourier series
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for the weakly bound state and
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for the post-power stroke state, respectively. The parameter L = 36 nm, which is characteristic length
for myosin movement [1, 6].

The equation (1) is modified to the Master equation according to the WPE algorithm [15]

d
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where upper indexes denote position in the computation mesh (node number), p ≈ ρ∆x represents the
probability of finding the motor at the node n at time t. Parameters Bn+1/2 and Fn+1/2 describe the
forward and backward transition fluxes between nodes n and n+ 1, respectively.
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where
∆ϕ

n+1/2
i = ϕ(xn+1)− ϕ(xn). (7)

The equation (4) is solved in MATLAB by ode15s function.

n-1 n

Bn-1/2 Bn+1/2
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Figure 3: Transition fluxes between node n and its neighbours in the computation mesh. Fluxes B and
F describe the forward and backward transition fluxes.

4 Measurement and information gain
The importance of measurement in molecular biological systems was mention in section 1. In our

model, we do not have a precise position of the myosin head, only its probability densities in three given
chemical states, see section 3. To perform a measurement, we find a way of measuring the mechano-
chemical state and the position of the myosin head at once.
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The key role in our model of measurement has a pseudorandom number generator, which is included
in MATLAB. It generates a single number between 0 and 1, which describe both, the state and the position
of the myosin head. These interval limits are clear due to the definition of probability value [16]. The
probability distribution function for the generator is created by the total (one for all three states) cumula-
tive probability density function. Thus, the generated number represents the state and the position of the
myosin head, see fig. 4.
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Figure 4: Illustrative total cumulative probability density distribution function. The dashed black line
denotes the transition between two states.

Although the generator provides us with a precise position x̃, the measurement is not error-free
procedure. We presume the error has the Gaussian form

ρe(x|x̃) =
1√

2πσ2
exp

[
−(x− x̃)2

2σ2

]
, (8)

where σ2 is called the standard deviation and corresponds to measurement precision.
The result of the measurement ρm(x̃), is obtained as the convolution of probability density function

before measurement ρ0(x) and measurement error ρe(x|x̃)

ρm(x̃) =

∫
ρ0(x)ρe(x|x̃)dx. (9)

If we make a comparison between the measurement error and particle’s probability density via the
Bayes’ theorem[17] (ρe(x|x̃) has a meaning of conditional probability)

ρ1(x̃|x) =
ρe(x|x̃)ρ0(x)

ρm(x̃)
. (10)

It can serve as a new initial condition for numerical simulation after measurement.
After measurement, we are able to calculate Kullback–Leibler distance, or relative entropy [17].

I(x̃) =

∫
ρ1(x̃|x) log2

ρ1(x̃|x)

ρ0(x)
dx. (11)

It quantities the distinguishability of these two distributions, ρ0 and ρ1 obtained before and after mea-
surement, respectively. The I(x̃) is always positive [17]. The used logarithm determines information
units, in our case binary logarithm produces bits. If we used natural logarithm, the result is in nats [18].

The mutual information 〈I〉 can be defined as the average value of the relative entropy

〈I〉 =

∫
I(x̃)ρm(x̃)dx̃ =

∫∫
ρm(x̃)ρ1(x|x̃) log2

(
ρ1(x̃|x)

ρ0(x)

)
dxdx̃. (12)
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The parameter 〈I〉 measures the amount of information obtained by the measurement [17], that is the
information gain.

5 Results
Some possible values of relative entropy I and mutual information 〈I〉 are shown in table 1. They

are generated for a single measurement after short time (5 · 10−7 s) if simulation. The standard deviation
σ2 is set equal to 10 for this case. It represents a kind of error which can be done by a real measurement,
for example, tiny human mistake or error of an used equipment.

Measured state unbound weakly bound post-power stroke
Relative entropy I [bits] 4.680 2.120 2.125
Mutual information 〈I〉 [bits] 0.217 0.098 0.098

Table 1: The values for relative entropy I and mutual information 〈I〉. The precise values depend on the
generated position. Thus, they can variate.

If we stoped the random generator, we use the same mechano-chemical state and position of the
myosin head. In this case, the relative entropy and the mutual information also vary, see figure 5 and 6,
respectively. The values have the maximum at σ2 = 3.557. Thus, the maximums are I = 1.869 bits
and 〈I〉 = 0.111 bits. The fact why for some values of σ2 (σ2 < 3.557) do not exists, provides us with
a prove, every measurement is influenced by an error. Otherwise the measurement is unphysical. And
the Gaussian distribution cannot close enough to Dirac impulse to be replaced with. The decrease of
both values is logical. The most precious information is the exact position which is allowed. If we are
unable to determine position with reasonable precision, it is not too valuable. The qualitative difference
between I(σ2) on figure 5 and 〈I〉(σ2) on figure 6 is caused by the Gaussian shape of the probability
density ρm(x̃), which is in the definition of 〈I〉, equation (6).
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Figure 5: Dependence of relative entropy I
on standard deviation σ2. The σ2 lies in an
interval from 0 to 100. The I does not exist
for values σ2 < 3.557.
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Figure 6: Dependence of mutual information
〈I〉 on standard deviation σ2. The σ2 lies in
an interval from 0 to 100. The 〈I〉 does not
exist for values σ2 < 3.557.

6 Conclusion
In this paper, we presented a simplification of myosin head as a spring with a ”magnetic weight”,

which can serve for the better imagination of the actin-myosin movement problem. Then, we showed the
possibility of the mechano-chemical state and the position measurement with just one pseudo-random
number. The probability density distribution function was obtained by overdamped Fokker-Planck equa-
tion solved with the WPE algorithm and MATLAB function ode15s. The main result of the presented
paper is information gain in form of mutual information and its dependence on the measurement error.
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In next work, we will focus on multiple measurements of our system and also add a feedback control
mentioned in the introduction.
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