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ABSTRACT
Recently, low-cost and small RGB-D sensors appear massively at the entertainment market. These sensors can
acquire colored 3D models using color images and depth data. However, a limitation of the RGB-D sensor is that
sunlight interferes with the pattern projecting LED. The sensor is most suitable only for indoor scenes. Some RGB-
D sensors are available in outdoor scenes. However, the measurement range is limited because the light of LED
spreads in all directions. In this research, we developed a novel measurement method for RGB-D sensors, which
can measure shapes in outdoor scenes. This method uses several measurement data from multiple viewpoints, and
estimates the shape and the sensor poses using Structure from Motion (SfM). However, a conventional image-
based SfM cannot determine a correct scale. To determine the correct scale, our method uses the depth information
that is obtained from partially acquired area which is near to the viewpoints. Then, our method optimizes the
shape and the poses by a modified bundle adjustment with the depth information. It minimizes the reprojection
error of the features in the acquired images and the depth error between the estimated model and the measurement
depth. At last, our method generates dense point cloud using a multi-view stereo algorithm. Using both the
acquired images and depth data, our method reconstructs the shape which locates out of measurement range in
outdoor environment. In our experiment, we show that our method can measure the range up to 20 meters away by
measuring from several viewpoints in the range of 5 meters using a RGB-D sensor in outdoor scenes.
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1 INTRODUCTION
Recently, low-cost and small RGB-D sensors appeared.
These sensors can acquire colored 3D models using
color image and depth data. The 3D models of target
objects can be reconstructed using depth data, so these
RGB-D sensors has caused a surge in 3D perception
research in the past few years. However, a limitation
of the RGB-D sensors is that sunlight interferes with
the pattern projecting LED. Therefore, these sensors are
not available in outdoor scenes. Fig.1 shows measure-
ment result in outdoor scenes. The black color repre-
sents the area where cannot be measured. As shown the
bottom of Fig.1, almost all the area cannot be measured
in outdoor scenes.

In this research, we developed a novel measurement
method for RGB-D sensors in outdoor scene. This
method uses several measurement data from multiple
viewpoints, and estimates the shape and the sensor
poses using Structure from Motion (SfM) and a scale
adjustment method. SfM algorithms have a scale am-
biguity problem. Then, our method uses scale informa-
tion obtained from partially acquired area which is near
to the viewpoints, and our method optimizes the shapes

and poses by the modified bundle adjustment with the
scale information. The bundle adjustment minimizes
the reprojection error of the features in the acquired im-
ages and the depth error between measurement data and
estimated data. At last, our method generates dense
point cloud using a multi-view stereo algorithm. Our
method obtains the correct scale and reconstructs the
shape which locates out of measurement range in out-
door environment. In our experiment, we show that our
method can measure the range up to 20m away with
700mm accuracy by measuring from several viewpoints
in the range of 5m using a RGB-D sensor in outdoor
scenes.
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Figure 1: Measurement data from a RGB-D sensor in
outdoor scenes. The top shows acquired color image.
The bottom shows color mapped depth image. The
black colored area represents out of range. The area
which is near to the viewpoint is acquired.

2 RELATED WORK

Recently RGB-D sensors have become very popular
in the area of Simultaneous Localization and Mapping
(SLAM) [Henry10][Endres12]. The major advantage
of these sensors is that they provide a rich source of
3D information at relatively low cost. Unfortunately, in
outdoor scenes, sunlight affects the measurement result
of these sensors, so these sensors are limited to use in
indoor scenes.

SfM [Davison07][Snavely07] computes camera poses
and 3D shapes of scenes as 3D point cloud using only
corresponding feature points in each 2D image. These
image-based approaches can be applied to outdoor
scenes. To find the correspondences between images,
features such as corner points are tracked from one
image to another image. However, the image-based
method has a scale ambiguity problem [Hartley00]. It
is impossible to recover the absolute scale of the scene.

To avoid the scale ambiguity problem, sensor fusion ap-
proaches are proposed. Pollefeys et al. [Pollefeys08]
integrated captured image sequences with GPS data to
correct the scale. Nutzi et al. [Nutzi10] proposed to
merge the output of a SfM algorithm with IMU (Iner-
tial Measurement Unit) measurements in an Extended
Kalman Filter holding the scale as an additional vari-
able in the state. However, these sensor fusion ap-
proaches need additional sensors.
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Figure 2: Measurement from several viewpoints. In this
case, the near object and the far object exist.

In contrast to these previous works, our method obtains
the correct scale and 3D models in outdoor scenes using
one RGB-D sensor only without another sensor.

3 PROPOSAL METHOD

Our method estimates the 3D shape of outdoor scenes
by a RGB-D sensor using feature points and scale of
which distance is acquired. At first, we measure color
images and depth images from several viewpoints mov-
ing the RGB-D sensor as shown in Fig.2. Next, us-
ing the image-based SfM which uses the feature in the
acquired images, the 3D shape can be measured ro-
bustly in outdoor scenes. However, the correct scale
is unknown. Then, we adjust the scale using depth
data obtained from acquired area which is near to view-
points. And our method minimizes the reprojection er-
ror and the depth error. The reprojection error is the 2D
distance between the features and projected points as
shown in Fig.3. The depth error is the distance between
the estimated depth and the measured depth as shown
in Fig.4. At last, we generate dense point cloud using
multi-view stereo.

3.1 Initialization

At first, sensor poses and 3D shapes are initialized us-
ing image-based SfM. The SfM computes camera poses
and 3D shapes as 3D point cloud using only corre-
sponding feature points in each view. To find the cor-
respondences between images, features such as cor-
ner points are tracked from one image to another im-
age. One of the most widely used feature detectors is
the SIFT (Scale-invariant feature transform) [Lowe04].
Given a set of corresponding points in two or more im-
ages, camera matrices and 3D coordinate of the features
are estimated by minimizing reprojection error. In this
way, the relative 3D structure of the target scene can be
estimated. And we will use the provisional scale which
is obtained this initialization step. In our implementa-
tion, we used the VisualSFM Software [Wu11].
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Figure 3: Reprojection Error. It is geometric error cor-
responding to the 2D image distance between the pro-
jected point and the measured point. The error is shown
as length of the arrows from projected points.
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Figure 4: Depth Error. It is a distance between a es-
timated depth and a measured depth. The estimated
depth is obtained by reconstructed shape.

3.2 Scale Adjustment
In this section, we explain the way to adjust scale using
depth data obtained from acquired area which is near to
viewpoints. Letdi j be the depth of featuresj in images
i, which is obtained by the estimated 3D structure of
the target scene with the provisional scale in the above
section. Letd′i j be the depth which is obtained from
measurement data of feature points. Then the following
relation holds

d′i j = sdi j (1)

where the scales is the ratio between the provisional
estimated scale and the measured scale. However, typ-
ically, the above condition does not necessarily satisfy
because of the estimation error of SfM and the measure-
ment error of RGB-D sensor. In our method, we com-
pute the optimal scales∗ by minimizing follow equa-
tion:

s∗ = arg min
s

∑
i

∑
j
(d′i j −sdi j )

2. (2)

The scales∗ is given by

s∗ =
∑i ∑ j d

′
i j di j

∑i ∑ j d
2
i j

. (3)

Using the scales∗, the 3D coordinateq of features is
updated by

q← s∗q (4)

and the camera poseTTT is

TTT← s∗TTT (5)

whereTTT is 3D vector which represents camera’s posi-
tion.

3.3 Optimization
In this section, we show our optimization approach us-
ing a modified bundle adjustment. Conventional bundle
adjustments minimize the reprojection error to estimate
camera poses and 3D shapes [Triggs00]. In contrast
to these bundle adjustment methods, our modified bun-
dle adjustment uses the 3D positions of features and the
depth data acquired by RGB-D sensor. In our research,
we assume a pinhole camera model. In this model, the
mapping from 3D coordinates of points in space to 2D
image coordinates can be represented in homogeneous
coordinates. Letqqq be representation of the 3D point in
homogeneous coordinates, and let(u′,v′) be representa-
tion of the projected point in the pinhole camera. Then
the following relation holds u′i j

v′i j
1

 ∝ PPPi

(
qqq j
1

)
(6)

wherePPP is a 3× 4 camera matrix which is given by
combining a camera calibration matrixKKK, rotation ma-
trix RRR and translation vectorTTT. The camera matrix is
given by

PPPi = KKK
[

RRRi TTT i
]

(7)

where the camera calibration matrixKKK is an upper tri-
angular matrix that is consist of the focal length and the
principal point, the rotation matrixRRR is a 3× 3 matrix
that represents camera orientation, and the translation
vectorTTT is a three vector that represents camera’s posi-
tion. The image points(u′,v′) given by

u′i j =
PPP(1)

i

[
qqqT

j 1
]T

PPP(3)
i

[
qqqT

j 1
]T (8)

v′i j =
PPP(2)

i

[
qqqT

j 1
]T

PPP(3)
i

[
qqqT

j 1
]T (9)

wherePPP(k) is k-th row of the camera matrixPPP. The
reprojection error between project points and observed
pointsE1 is given by

E1 =
1
2
||eee1||2

=
1
2 ∑

i
∑

j
((ui j −u′i j )

2+(vi j −v′i j )
2). (10)
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where(ui j ,vi j ) are the measured feature points, andeee1

is residual error. Then, we explain depth error between
estimated depth and measured depth. In the pinhole
camera model, the depth of features are given by

d′i j = PPP(3)
i

[
qqqT

j 1
]T

. (11)

Then, the depth error is given by

E2 =
1
2
||eee2||2

=
1
2 ∑

i
∑

j
(di j −d′i j )

2 (12)

The total error from reprojection error and depth error
is given by

E = rE1+(1− r)E2 (13)

wherer is the weight parameter between the 2D dis-
tance on the images and the 3D distance in the re-
constructed structure. Next, we explain the way to
minimize the error. To solve non-linear least squares
problems, the Levenberg-Marquardt (LM) algorithm is
most widely used. The method interpolates between
the Gauss-Newton algorithm and the gradient descent
method. This method updates parametersxxx with

xxx← xxx− (HHH +λ III)−1ggg (14)

whereIII is identity matrix,HHH is hessian matrix, andggg
is gradient vector.λ is damping factor which adjusts
the step size at each iteration. Using residual erroreee1 in
(10) andeee2 in (12), the total error (13) is

E =
r
2
||eee1||2+

1− r
2
||eee2||2

=
1
2

(
eee1

eee2

)T (
rIII 0
0 (1− r)III

)(
eee1

eee2

)
.(15)

The gradient vector and the approximated hessian ma-
trix is given by

ggg =

(
JJJ1

JJJ2

)T (
rIII 0
0 (1− r)III

)(
eee1

eee2

)
(16)

HHH =

(
JJJ1

JJJ2

)T (
rIII 0
0 (1− r)III

)(
JJJ1

JJJ2

)
(17)

where the matrixJJJ is jacobian. Using residual error, the
jacobian is given by

JJJ =

(
JJJ1

JJJ2

)
=

( deee1
dxxx
deee2
dxxx

)
(18)

Note that we gave the approximated hessian matrix.
The hessian matrix is a symmetric positive definite ma-
trix and the solution to (14) can be obtained.

Unfortunately, due to the large number of unknowns
contributing to the minimized reprojection error and

depth error, the computational cost of LM algorithm
becomes high. The cost depends on computing cost
of inverse of the hessian matrix. To solve this prob-
lem, the Sparse Bundle Adjustment (SBA) [Triggs00]
takes advantage of the sparse structure of the hessian
matrix. The SBA solves huge minimization problems
over many thousands of variables within seconds on a
standard PC for the image-based SfM. Fortunately, in
our method, it is easy to apply sparse technique to deal
with both reprojection error and depth error. In the SBA
formula, replacing our jacobian matrix and our residual
vector to original SBA’s jacobian matrix and residual
vector, this problem can be solved.

3.4 Generating Dense Point Cloud
Our algorithm uses only feature points, so reconstructed
3D structure is sparse. Then, at last, we apply multi-
view stereo algorithm [Seitz06] which generates dense
point cloud. The multi-view stereo algorithm uses the
camera poses estimated in above section. Using the
poses, our method generates dense point cloud whose
scale is correct. In our research, we apply The Patch-
based Multi-view stereo (PMVS) [Furukawa10] to gen-
erate dense point cloud.

4 EXPERIMENTAL RESULT
In this section, we show our experimental result. We
test our method using Kinect v2 in outdoor scenes. We
compared our result with ground truth data which is ac-
quired by high accuracy Laser Range Finder (LRF). As
a LRF, we choose a RIEGL VZ-400. The accuracy of
VZ-400 is about 5mm at 100m range.

We measured from 70 viewpoints in the range of 5 me-
ters using RGB-D sensor in outdoor scenes. The top of
Fig.1 shows the acquired RGB image, and the bottom
of Fig.1 shows the acquired depth map. In the bottom
of Fig.1 black color represents the area where cannot
be measured. The top of Fig.5 shows the result of the
estimated depth map which is estimated by our method,
and the bottom of Fig.5 shows the ground truth. As the
Fig.5, the resolution of the depth map in our method
is lower than the ground truth. The reason is that the
number of points generated PMVS is less than LRF
data. For visibility, we determined the resolution ac-
cording to the number of points. As shown in Fig.5,
our result can estimate the depth out of RGB-D sen-
sor’s range. Fig.6 shows the estimated accuracy. The
line depicts the root mean square (RMS) error. RMS is
computed using the difference between our result and
ground truth around each place. The graph shows our
method can estimate the range up to about 20 meters
away with 700 mm accuracy. And accuracy is higher
in the location close to the sensor. The running time
of our scale adjustment and bundle adjustment is 16.5s
and 60MB memory is used in this case.
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Figure 5: Color mapped depth image. The top shows
estimated depth image using our method. The bottom
shows ground truth.
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Figure 6: Accuracy of our method. The line shows the
root mean square error which is computed using the dif-
ference between our estimated depth and ground truth.

Above described scene is measured in the shade, so the
acquired image is not bright as shown Fig1. Then, we
measured from 90 viewpoints in the range of 5 meters
using RGB-D sensor in the direct sunlight (not against
sun). The top of Fig.7 shows the acquired RGB image,
the middle of Fig.7 shows the generated depth map, and
the bottom of Fig.7 shows the ground truth. Fig.6 shows
the estimated accuracy. The graph shows our method
can estimate the range up to about 20 meters away with
500 mm accuracy. The result shows that our method
can work in the bright environment. In this case, the
running time of our scale adjustment and bundle adjust-
ment is 69.2s and 135MB memory is used.

Figure 7: Color mapped depth image in the bright
scene. The top shows color image, the middle shows
estimated depth image. The bottom shows ground truth.

5 DISCUSSION
As Fig.5 and Fig.7, the result shows the our depth maps
became noisy. The reason is correspondence error be-
tween color images in the process of MVS described
in Sec.3.4. For example, error models are generated
in the sky (Fig.5). And our method cannot reconstruct
the ground surface model although the ground exists in
the captured area. In our method, MVS algorithm gen-
erates dense 3D points using correspondence of image
patches, so the method cannot make correspondence on
texture-less area. Therefore, it is difficult to reconstruct
the model of these texture-less areas correctly.

As shown the graph, the accuracy from 4m to 6m be-
came low. In this area, only ground surface exists, so
the error became large. The reason of this low accuracy
is correspondence error as described above.

Next, we will discuss the accuracy of our result. In
our method, we use PMVS algorithm for generating
dense point cloud. However, the accuracy of our re-
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Figure 8: Accuracy of our method in the bright scene.

sults was less quality than the original results of PMVS
[Furukawa10]. The accuracy of reconstructed models
depends on the accuracy of obtained camera poses in
PMVS. In our method, the camera poses are estimated
by our bundle adjustment, so the accuracy is chiefly af-
fected by the bundle adjustment. One of the reasons for
the low accuracy is that we did not use robust algorithm
in our current implementation, in particularly the esti-
mated scale influences the accuracy because the error
becomes larger as the object leaves more the sensor po-
sition. The scale is determined by the ratio of estimated
distance by the features to acquired distance directly.

6 CONCLUSION
We developed a measurement method which recon-
structs 3D shapes in outdoor scenes. This method uses
measurement data acquired from multiple viewpoints,
and estimates the 3D shape and the sensor poses using
reprojection error and depth error. Our method obtains
the correct scale in the area that could not be measured
directly from RGB-D sensor using both the acquired
color images and depth images. In our experiment, we
show that our method can measure the range up to 20
meters away with 700 mm accuracy by measuring from
several viewpoints in the range of 5 meters using RGB-
D sensor in outdoor scenes.

As a future work, we plan to apply robust approaches
and to compare the accuracy of our method with an-
other approach that can determine the scale. And we
will extend to on-line algorithm using local bundle ad-
justment and video-based real-time MVS.
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