
Hyperspectral Image Classification Using a General 
NFLE Transformation with Kernelization and 

Fuzzification 
 

Ying-Nong Chen 

National Central 
University 

Department of Computer 
Science and Information 

Engineering 
 Taiwan, Taoyuan City 

yingnong1218@gmail.com 

Yu-Chen Wang 

National Central 
University 

Department of Computer 
Science and Information 

Engineering 
 Taiwan, Taoyuan City 

m09502062@chu.edu.tw 

Chin-Chuan Han 

National United 
University 

Department of Computer 
Science and Information 

Engineering 
 Taiwan, Miaoli City 

cchan@csie.ncu.edu.tw

Kuo-Chin Fan 

National Central 
University 

Department of Computer 
Science and Information 

Engineering 
 Taiwan, Taoyuan City 

kcfan@csie.ncu.edu.tw 

 

ABSTRACT 
Nearest feature line (NFL) embedding (NFLE) is an eigenspace transformation algorithm based on the NFL 
strategy. Based on this strategy, the NFLE algorithm generates a low dimensional space in which the local 
structures of samples in the original high dimensional space are preserved. Though NFLE has successfully 
demonstrated its discriminative capability, the non-linear manifold structure cannot be structured more efficiently 
by linear scatters using the linear NFLE method. To address this, a general NFLE transformation, called 
fuzzy/kernel NFLE, is proposed for feature extraction in which kernelization and fuzzification are simultaneously 
considered. In the proposed scheme, samples are projected into a kernel space and assigned larger weights based 
on that of their neighbors according to their neighbors. In that way, not only is the non-linear manifold structure 
preserved, but also are the discriminative powers of classifiers increased. The proposed method is compared with 
various state-of-the-art methods to evaluate the performance by several benchmark data sets. From the 
experimental results, the proposed FKNFLE outperformed the other, more conventional, methods. 
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1. INTRODUCTION 
Dimensionality reduction (DR) in hyperspectral 
image (HSI) classification is a critical issue during 
data analysis because most multispectral, 
hyperspectral, and ultraspectral images generate high-
dimensional spectral images with abundant spectral 
bands and data. However, it is challenging to classify 
these spectral data because vast amount of samples 
have to be collected for training beforehand. Besides, 
the spectral properties of land covers are too similar 
to clearly separate them out. Hence, an effective DR 
is an essential step to extract the salient features for 
classification. Recently, a number of DR methods 
have been proposed that can be classified into three 
categories: linear analysis, manifold learning, and 
kernelization. Those using linear analysis try to 
model the linear variation of samples and find a 
transformation to maximize the global scatter matrix, 
e.g. principal component analysis (PCA), linear 
discriminant analysis (LDA), and discriminant 
common vectors (DCV). Sample scatters are 
represented in the global Euclidean structure in these 
methods. They work well for DR or classification if 

samples are linearly separated or are distributed in a 
Gaussian function. However, when samples are 
distributed in a manifold structure, the local structure 
of a sample in a high dimensional space is not 
apparent when using global measurement. In addition, 
the classification performance in the case of linear 
analysis methods would deteriorate when the decision 
boundaries are predominantly nonlinear. Manifold 
learning methods are proposed to reveal the local 
structure of samples. He et al. propose the locality 
preserving projection (LPP) method to preserve the 
local structure of training samples for face 
recognition. Since LPP presents sample scatter using 
the relationship between neighbors, the local 
manifold structure is preserved and the performance 
is more effective than in the case of the linear 
analysis methods. Similar to LPP, Tu et al. propose a 
Laplacian eigenmap (LE) method for land cover 
classification using polarimetric synthetic aperture 
radar data. The LE algorithm reduces the dimensions 
of features from a high-dimensional polarimetric 
manifold space to an intrinsic low-dimensional 
manifold space. Wang and He  investigated the LPP 
for DR in HSI classification. Kim et al.  utilized the 
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locally linear embedding (LLE) method to reduce the 
dimensionality of HSIs. Li et al. propose the local 
Fisher discriminant analysis (LFDA) method which 
integrates the properties of LDA and LPP to reduce 
the dimensionality of HSI data. Luo et al. propose a 
discriminative and supervised neighborhood 
preserving embedding (NPE) method for feature 
extraction in HSI classification. These manifold 
learning methods all preserve the local structure of 
samples and improve on the performance of 
conventional linear analysis methods. However, the 
applicability of linear manifold learning is limited to 
noises. Generally, the discriminative salient features 
of training samples are extracted using certain 
evaluation processes. An appropriate kernel function 
could improve the performance for the given 
method[13]. The kernelization approaches have been 
proposed for improving the performance of HSI 
classification. Boots and Gordon  introduced a 
kernelization method to alleviate the limitation of 
manifold learning. Scholkopf et al.  propose a kernel 
PCA (KPCA) method for nonlinear DR. KPCA 
generates a high-dimensional Hilbert space to extract 
the non-linear structure that is missed by PCA. 
Furthermore, Lin et al. propose a general framework 
for multiple kernel learning during DR. They unify 
the multiple kernel representation, and the multiple 
feature representations of data are consequently 
revealed in a low dimension. On the other hand, a 
composite kernel scheme, a linear combination of 
multiple kernels, extracts both spectral and spatial 
data. Chen et al. present a sparse representation of 
kernels for HSI classification. A query sample is 
represented via all training samples in an induced 
kernel space. Moreover, pixels within a local 
neighborhood are also represented by the 
combination of training samples. In the previous 
works, the nearest feature line (NFL) strategy was 
embedded into the linear transformation for 
dimension reduction on face recognition and HSI 
classification. However, the nonlinear and non-
Euclidean structures are not efficiently extracted 
using the linear transformation. Fuzzification and 
kernelization are two efficient tools for enhancement 
in nonlinear spaces. The fuzzy methodology is further 
adopted in previous work. In this study, a general 
NFLE transformation, called fuzzy-kernel NFLE, is 
extended for feature extraction in which kernelization 
and fuzzification are simultaneously considered. In 
addition, more experimental analysis was conducted 
in this study. Three benchmark data sets were 
evaluated in this work. The proposed method was 
compared with state-of-the-art algorithms for 
performance evaluation. 

2. Related Works 
In this study, three approaches, nearest feature line 
embedding (NFLE), kernelization , and fuzzy k 
nearest neighbor (FKNN)[20], were considered to 
reduce the feature dimensions for HSI classification. 
Before the proposed methods, brief reviews of NFLE 
and kernelization methods are presented in the 

following: Given N  d-dimensional training samples 

[ ] Nd
N RxxxX ×∈= ..., 21  consisting of CN  land-

cover classes 
CNCCC ,,, 21 K . The new samples in a 

low-dimensional space were obtained by the linear 

projection i
T

i xwy = , where w  is a found linear 

projection matrix for DR. NFLE is a linear 
transformation for DR. The sample scatters are 
represented in a Laplacian matrix form by using the 
point-to-line strategy which originated from the 
nearest linear combination (NLC) approach. The 
objective function is defined and minimized as 
follows: 

( ) ( )

( ) ( )( )
( )( )

( ).    

     

     

    

  

2

,

,

2

,

wXLXwtr

XwWDXwtr

YMIMIYtr

yMy

ylyLyO

TT

TT

T

i j
ijii

i nmi
inminmi

=
−=

−−=

−=








 −=

∑ ∑

∑ ∑
≠≠

(1) 

Here, point )(, inm yL  is a projection point on line 

nmL ,  for point iy , and weight )(, inml y  (being 1 or 

0) represents the connectivity relationship from point 

iy  to a feature line nmL ,  that passes through two 

points my  and ny . The projection point )(, inm yL  

is represented as a linear combination of points my
 

and ny : )()( ,, mnnmminm yytyyL −+=  in 

which nmi ≠≠ , and  

)()/()()(, nm
T

nmnm
T

minm yyyyyyyyt −−−−=
. Using simple algebra operations, the discriminant 

vector from point iy  to the projection point 

)(, inm yL  can be represented as ∑−
j jjii yMy , , 

in which two values in the ith row in matrix M  are 

set as mnmi tM ,, = , nmni tM ,, = , and 

1,, =+ nmmn tt , when weight 1)(, =inml y . The 

other values in the ith row are set as zero, if 
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nmj ≠≠ . The mean squared distance in Eq. (1) 

for all training points to their NFLs is next obtained 

as ( )wXLXwtr TT
, in which WDL −= , and 

matrix D  is a matrix of the column sums of the 

similarity matrix W . From the consequences of Yan 

et al. [22], matrix W  is defined as 

( ) ji
TT

ji MMMMW ,, −+=  when ji ≠ , and 

zero otherwise; ∑ =
j jiM 1, . Matrix L  in Eq. (1) 

is represented as a Laplacian matrix. For more details, 
refer to [18, 19]. Consider the class labels in 

supervised classification, two parameters 1K  and 2K  

are manually determined in calculating the within-

class scatter wS  and the between-class scatter bS , 

respectively: 
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( )kiK CxF ,
1

 indicates the set of 1K  NFLs within 

the same class, kC , of point ix , i.e. 1)(, =inm yl , 

and ( )liK CxF ,
2

 is a set of 2K  NFLs belonging to 

the different classes of point ix . The Fisher criterion 

( )wbtr SS  is then maximized to find the projection 

matrix w , which is composed of the eigenvectors 
with the corresponding largest eigenvalues. A new 
sample in the low-dimensional space can be obtained 

by the linear projection xwy T= , and the NN (one-

NN) matching rule is applied for template matching. 
In kernel LDA, consider the nonlinear mapping 

function from a space X  to a Hilbert space H , 

( ) ΗxXx ∈→∈ φφ : , the within-class 

and between-class scatter in space H  are calculated 
as 

( )( ) ( )( )∑ ∑
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Here, ( )∑ =
= k

k

n

i ink x
1

1 φφ  and ( )∑ =
= N

i iN x
1

1 φφ  

represent the class mean and the population mean in 

space H , respectively. To generalize LDA to the 
nonlinear case, the dot product trick is exclusively 
used. The expression of dot product on the Hilbert 

space H  is given by the following kernel function: 

)()(),( , ji
T

jiji xxkxxk φφ== . Let the 

symmetric matrix K  of N  by N  be a matrix 
composed of dot product in feature space H , i.e. 

( ) ( ) ( )jijiji kxxxxK , ),( =⋅= φφ  and, 

Nji ,...,2,1, = . The kernel operator K  makes the 

possibility: the construction of the linear separating 
function in space H  is equivalent to that of the 
nonlinear separating function in space X . Kernel 
LDA also maximizes the between-class scatter and 

minimizes the within-class scatter, i.e. ( )φφ
wb SSmax . 

This maximization is equivalent to the following 

eigenvector resolution: wSwS bw
φφλ = . There is a set 

of coefficients α  for ∑ =
= N

i ii xw
1

)(φα  such that 

the largest eigenvalue gives the maximum of the 

scatter quotient wSwwSw w
T

b
T φφλ = . 

3. Fuzzy Kernel Nearest Feature Line 
Embedding 
According to the aforementioned surveys, a training 
DR scheme effectively extracts the discriminant 
features from the non-Euclidean and non-linear space. 
To this end, fuzzy kernel nearest feature line 
embedding (FKNFLE) is proposed for HSI 
classification. The idea of FKNFLE is to incorporate 
the fuzziness and kernelization into the manifold 
learning method. The kernel function not only 
generates a non-linear feature space for well 
discriminant analysis, but also increases the 
robustness to noise during the training phase. 
Manifold learning methods preserve the local 
structure of samples in the Hilbert space. On the other 
hand, the fuzzy k-nearest neighbor (FKNN) method 
extracts the non-Euclidean structures of training 
samples for enhancing discriminative capability.  

NFLE has successfully been applied in HSI 
classification. Noise variations and high degree non-
linear data distributions limit the performance of 
manifold learning. A kernel trick is used to alleviate 
this problem. The details of FKNFLE are introduced 

in the following: Let ( ) ΗxXx ∈→∈ φφ :  be a 

nonlinear mapping from a low dimensional space to a 
high-dimensional Hilbert space Η . The mean 
squared distance for all training points to their NFLs 
in the Hilbert space is written as follows: 
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Then, the object function in Eq. (6) is minimized and 
expressed as a Laplacian matrix. The eigenvector 
problem of kernel NFLE in the Hilbert space is 
expressed as: 

( ) ( )[ ] ( ) ( )[ ]wXDXwXLX TT φφλφφ = .         (7)  

To extend NFLE to its kernel version, the implicit 
feature vector, )(xφ , does not need to be obtained 

explicitly. The dot product expression of two samples 
is exclusively applied in the Hilbert space with a 
kernel function as follows: 

( ) ( ) ( )jiji xxxxK φφ ,, = . The eigenvectors of 

Eq. (7) are represented by the linear combinations of 

( )1xφ , ( )2xφ ,K  , ( )Nxφ . The coefficient iα  is 

( ) ( )αXxw
N

i ii φφα ==∑ =1
, where 

[ ] NT
N R∈= ααα ,,, 21 Kα . Then, the 

eigenvector problem is as follows:  

αλα KDKKLK = . (8) 

Let the coefficient vectors, 
Nααα ,,, 21

K , be the 

solutions of Eq. (8) in a column format. Given a 
testing point, z, the projections onto the eigenvectors, 

kw , are obtained as follows: 
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where 
k
iα  is the ith element of the coefficient vector, 

kα . The kernel function RBF (radial basis function) 
is used in this study. Thus, the within-class and 
between-class scatters in a kernel space are defined as 
follows: 
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The kernelized manifold learning could preserve the 
non-linear local structure in a Hilbert space.  The 

distances in the NFLE approach are calculated by the 
Euclidean distance-based measurement. On the other 
hand, the non-Euclidean structure of training samples 
can be further extracted by fuzzification. The FKNN 
algorithm[20] enhances the discriminant power 
among samples by assigning the higher membership 
grades to the samples whose neighbors are with the 
same class. By doing so, the non-Euclidean structures 
are extracted, and the discriminative power of 
samples can be enhanced. The idea of FKNFLE using 
the fuzzification trick is described in the following.  

Consider N samples in the reduced space 

[ ]NyyyY ...,, 21=  and their corresponding fuzzy 

membership grades, )( iyπ , for each sample, iy . 

The objective function is re-defined as follows:  
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( )

( ) ( )( )
( )( )
( )( )

( )wXXLwtr

YWDYtr

YFEWFEDYtr

YFEMFEIFEMFEIYtr

yMyy

ylyLyyO

T
fuzzy

T

fuzzyfuzzy
T

T

TT

i j
jjiii

i nmi
inminmii

=

−=

−=

−−=

−=








 −=

∑ ∑

∑ ∑
≠≠

2

,

,

2

,

π

π

 

(10) 

Here, each sample is assigned a fuzzy grade, )( iyπ . 

Element jiM ,  denotes the connectivity relationship 

between point iy  and line nmL ,  which is the same as 

that in Eq. (1). Two non-zero terms, nmni tM ,, =  and 

mnmi tM ,, = , are set, and 1, =∑ j jiM . Using 

simple algebra operations, the objective function with 
fuzzification is represented in a Laplacian matrix 

form in which the fuzzy terms, ( )iyπ , constitute the 

column vector, F ,with size 1×N , and E  is a row 
vector of all those with size N×1 .  

Similarly, given N samples 

( ) ( ) ( ){ }Nxxx φφφφ ,,,(X) 21 K=  in a Hilbert 

space, the membership grade of a specified sample, 

( )ixφ , and its 3K  neighbors is designed in the 

following equation for computing the within-class 
scatter: 

( )( )

( )




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∗

≥∗+
=
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;if,49.051.0
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iπ  (11) 

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 78 ISBN 978-80-86943-66-4



Here, value iq  is the number of samples whose 

labels are the same label of ( )ixφ  among 3K  

nearest neighbors, and withinθ  is a manual threshold. 

If 3Kqi = , then )( ixπ  returns to 1, i.e. all 

neighbors are in the same class. Adding the fuzzy 

term )( ixπ , the within-class scatter matrix becomes: 
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Similarly, a fuzzy term 
)( ixλ

 is also adopted to 

evaluate the membership grade of 
( )ixφ

 and its 
neighbors during the computation of between-class 
scatter as follows: 
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Here, value ip  is the number of samples with labels 

different from ( )ixφ  among 4K  nearest neighbors, 

and betweenθ
 is a given threshold. If 4Kpi = , term 

)( ixλ  is returned to 1. That means all neighbors 

have labels different from ( )ixφ . The fuzzy term 

)( ixλ
 is added into the between-class scatter matrix 

to generate a new one as:  

( )
( ) ( )( )( ) ( ) ( )( )( )

( )( )
∑ ∑∑∑

= ∈≠=∈













−−∗=

C

liKnm

C

ki

N

k CxFL

T
inmiinmi

N

kll
i

Cx

F
b xLxxLxx

1 ,
,,

,1
2,

       )(
φφ

φ φφφφλS
 (16

) 

Hence, kernelization and fuzzification are 
simultaneously integrated into the NFLE 
transformation for feature extraction. In this paper, a 
general format for the NFLE learning method using 
kernelization and fuzzification is proposed to be used 
for DR. The advantages of the proposed method are 
threefold: the kernelization strategy generates a non-
linear feature space for the discriminant analysis and 
increases the robustness to noise for manifold 
learning; the kernelized manifold learning preserves 
the local manifold structure in a Hilbert space as well 
as the locality of the manifold structure in the reduced 
low dimensional space; non-Euclidean structures are 
extracted for improving discriminative abilities using 
the FKNN strategy. 

4. Experimental Results 
In this section, the experimental results are discussed 
to demonstrate the effectiveness of the proposed 

method for HSI classification. Three HSI benchmarks 
are given for evaluation. The first data set, Indian 
Pines Site (IPS) image, was generated from AVIRIS 
(Airborne Visible/Infrared Imaging Spectrometer) 
which was captured by the Jet Propulsion Laboratory 
and NASA/Ames in 1992. The IPS image was 
captured from 6 miles in the western area of the 
Northwest Tippecanoe County (NTC). A false color 
IR image of dataset IPS is shown in Fig. 2(a). 
Although dataset IPS contained 220 bands and 16 
land-cover classes, only ten classes were used in the 
experiments: Corn-no till(1428), Corn-min till(830), 
Grass/Pasture(478), Grass/Trees(730), Hay-
windrowed(483), Soybeans-no till(972), Soybeans-
min till(2455), Soybeans-clean till(593), 
Woods(1265), and Bldg-Grass-Tree-Drives(386). 
The numbers in parentheses are the collected pixel 
numbers in dataset IPS. The ground truths of 9,620 
pixels were manually labeled for training and testing. 
Nine hundred training samples of ten classes were 
randomly chosen from 9,620 pixels, and the 
remaining samples were used for testing. The other 
two HSI data sets adopted in the experiments were 
obtained from the Reflective Optics System Imaging 
Spectrometer (ROSIS) instrument covering the City 
of Pavia, Italy. Two scenes, the university area and 
the Pavia city centre containing 103 and 102 data 
bands both with a spectral coverage from 0.43 to 0.86 
um and a spatial resolution of 1.3m. The image sizes 
of these two areas were 610x340 and 1096x715 
pixels, respectively. Figs. 2(b) and 2(c) show the 
false color IR image of these two data sets. Nine 
land-cover classes were available in each data set, 
and the samples in each data set were separated into 
two subsets, i.e. one training and one testing set. 
Given the Pavia University data set, ninety training 
samples per class were randomly collected for 
training, and the 8,046 remaining samples were tested 
for performance evaluation. Similarly, the numbers of 
training and testing samples used for the Pavia Centre 
data set were 810 and 9,529, respectively. The 
proposed methods, NFLE[18,19], KNFLE, 
FNFLE[24], and FKNFLE, were compared with two 
state-of-the-art algorithms, i.e. nearest regularized 
subspace (NRS) [23] and NRS-LFDA [23]. The 
parameter configurations for both algorithms NRS1 
and NRS-LFDA can be referred to in [23]. The 
gallery samples were randomly chosen for training 
the transformation matrix, and the query samples 
were matched with the gallery samples using the NN 
matching rule. Each algorithm was run 30 times to 
obtain the average rates. To obtain the appropriate 
reduced dimensions of FKNFLE, the available 

                                                           
1 The source codes are available from the web site 
https://github.com/eric-tramel/NRSClassifier 
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training samples were chosen to evaluate the overall 
accuracy versus the reduced dimensions in the 
benchmark datasets. The proposed method was 
compared with various classification methods on 
computational time. All methods were implemented 
by MATALB codes on a personal computer with an 
i7 2.93-GHz CPU and 12.0 GB RAM. The 
comparisons of various algorithms on computational 
time were tabulated in Table I for the IPS, Pavia 
University, and Pavia City Centre datasets. 
Considering the training time, the proposed FKNFLE 
algorithm was generally faster than NRS and NRS-
LFDA; 2 times and 15 times, respectively. Due to the 
fuzzification process, algorithms FKNFLE and 
FNFLE were slower than KNFLE and NFLE; 13 
times and 15 times, respectively. 

From Tables II to IV, the producer’s accuracy, 
overall accuracy, kappa coefficients, and user’s 

accuracy defined by the error matrices (or confusion 
matrices) [25] were calculated for performance 
evaluation. They are briefly defined in the following.  

The user’s accuracy and the producer’s accuracy are 
two widely used measures for class accuracy. The 
user’s accuracy is defined as the ratio of the number 
of correctly classified pixels in each class by the total 
pixel number classified in the same class. The user’s 
accuracy is a measure of commission error, whereas 
the producer’s accuracy measures the errors of 
omission and indicates the probability that certain 
samples of a given class on the ground are actually 
classified as such. The kappa coefficient, also called 
the kappa statistic, is defined to be a measure of the 
difference between the actual agreement and the 
changed agreement.  

 

Table I: The training and testing time of various algorithms for the benchmark datasets (seconds). 

Datasets IPS Pavia University Pavia City Centre 

Algorithms Training Testing Training Testing Training Testing 

 900 8720 810 8046 810 9529 

NFLE-NN 10 18 9 16 9 20 

KNFLE-NN 12 18 11 16 11 20 

FNFLE-NN 155 18 140 16 140 20 

FKNFLE-NN 156 18 141 16 141 20 

NRS 326 326 294 300 294 351 

LFDA-NRS 2331 327 2098 301 2098 352 

Table II: The classification error matrix for data set IPS (in percentage). 

Classes Reference Data User's 
Accuracy  1 2 3 4 5 6 7 8 9 10 

1 79.20 3.43 0.28 0.35 0 5.46 9.73 1.54 0 0 79.20 

2 5.90 81.81 0 0.12 0 1.33 6.39 4.34 0 0.12 81.81 

3 0 0 97.49 1.46 0.21 0.42 0 0.21 0.42 0.84 97.49 

4 0 0 0.27 96.30 0 0 0 0 0 3.42 96.30 

5 0 0 0.42 0 99.58 0 0 0 0 0 99.58 

6 5.14 0.21 0.10 0.41 0 88.89 4.42 0.72 0 0.10 88.89 

7 10.59 5.58 0.29 0.33 0.04 9.78 69.98 3.30 0 0.12 69.98 

8 1.35 4.05 1.52 0.34 0 1.69 1.85 88.53 0 0.67 88.53 

9 0 0 3.32 0.16 0 0 0 0 90.83 5.69 90.83 

10 0 0 3.89 5.70 0 0 0 0.26 10.88 79.27 79.27 

Producer's 
Accuracy 

77.51 86.04 90.62 91.57 99.75 82.63 75.76 89.51 88.94 87.85 
 

Kappa Coefficient: 0.821 Overall Accuracy: 83.34% 
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Table III: The classification error matrix for data set Pavia University (in percentage). 

Classes 
Reference Data User's 

Accuracy 1 2 3 4 5 6 7 8 9 

1 90.18 3.15 0 0 0 3.24 1.35 1.26 0.81 90.18 

2 2.31 92.50 0 2.31 0 1.85 0 1.01 0 92.50 

3 0 0 90.07 2.38 1.58 0.99 2.97 0.99 0.99 90.07 

4 0 1.23 2.84 90.24 1.42 1.42 1.51 1.32 0 90.24 

5 0.63 1.13 0.75 1.26 91.91 0.63 1.64 0.88 1.13 91.91 

6 1.10 1.19 1.38 1.56 1.19 92.54 0.55 0.46 0 92.54 

7 0 1.12 0.51 0.61 2.24 0 93.25 1.22 1.02 93.25 

8 0.47 1.42 0.95 1.42 2.38 1.90 0 90.76 0.66 90.76 

9 1.14 0 2.15 2.01 0 2.29 0 2.15 90.22 90.22 

Producer's 
Accuracy 

94.10 90.92 91.30 88.65 91.25 88.25 92.08 90.71 95.14 
 

Kappa Coefficient: 0.910 Overall Accuracy: 91.31% 

 

Table IV: The classification error matrix for data set Pavia City Centre (in percentage). 

Classes 
Reference Data User's 

Accuracy 1 2 3 4 5 6 7 8 9 

1 98.61 0.17 0.51 0.34 0.34 0 0 0 0 98.61 

2 1.04 97.47 0.43 0 0 0.34 0.17 0.52 0 97.47 

3 0.59 0.82 96.23 0.69 0.99 0 0 0 0.69 96.23 

4 0 0.56 0.66 96.68 0.37 0.47 0.66 0.56 0 96.68 

5 0 0 0.43 0.34 97.73 0.26 0.34 0.34 0.52 97.73 

6 0.35 0.26 0.61 0 0 98.15 0 0.26 0.35 98.15 

7 0.35 0.26 0 0.35 0 0.44 98.23 0.35 0 98.23 

8 0 0 0.37 0.30 0.37 0.52 0.45 97.43 0.52 97.43 

9 0.39 0.59 0.79 0.29 0.29 0 0 0 97.60 97.60 

Producer's 
Accuracy 

97.32 97.34 96.20 97.67 97.64 97.97 98.38 97.96 97.91 
 

Kappa Coefficient: 0.971 Overall Accuracy: 97.59% 

 

5. SECTIONS 
In this paper, a general NFLE transformation, 
FKNFLE, for HSI classification is proposed. 
Kernelization and fuzzification were both considered 
in NFLE in extracting non-linear and non-Euclidean 
structures. In addition, the locality of the manifold 
structure of samples was preserved. High-dimensional 
HSI data were reduced to low-dimensional features 
by the proposed FKNFLE transformation. Two state-
of-the-art algorithms, NRS and NRS-LFDA, were 
compared with the proposed FKNFLE. Three land-

cover benchmarks, IPS, Pavia University, and Pavia 
City Centre, were tested for performance evaluation. 
The experimental results demonstrated that FKNFLE 
outperformed the other algorithms. 
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