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ABSTRACT
Nearest feature line (NFL) embedding (NFLE) is @&eerspace transformation algorithm based on the NFL
strategy. Based on this strategy, the NFLE algeritienerates a low dimensional space in which tleal lo
structures of samples in the original high dimenalospace are preserved. Though NFLE has sucdgssful
demonstrated its discriminative capability, the #iaear manifold structure cannot be structurederefficiently
by linear scatters using the linear NFLE method. altlmress this, a general NFLE transformation, dalle
fuzzy/kernel NFLE, is proposed for feature extrawctin which kernelization and fuzzification are sitaneously
considered. In the proposed scheme, samples gectao into a kernel space and assigned largerigeitased
on that of their neighbors according to their nbigfs. In that way, not only is the non-linear matuifstructure
preserved, but also are the discriminative powerdassifiers increased. The proposed method ispemed with
various state-of-the-art methods to evaluate thdfopmance by several benchmark data sets. From the
experimental results, the proposed FKNFLE outperéat the other, more conventional, methods.
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samples are linearly separated or are distributeal i

1-_ INTRO_DUCTIO_N _ Gaussian function. However, when samples are
Dimensionality reduction (DR) in hyperspectral gistributed in a manifold structure, the local stue
image (HSI) c_IaSS|f|cat|on is a critical issue dgi o g sample in a high dimensional space is not
data  analysis because most multispectral, 5pnarent when using global measurement. In addition
hyperspectral, and ultraspectral images genergte hi  the classification performance in the case of linea
dimensional spectral images with abundant spectralanajysis methods would deteriorate when the deisio
bands and data. However, it is challenging to #ass poundaries are predominantly nonlinear. Manifold
these spectral data because vast amount of samplegaring methods are proposed to reveal the local
have to be collected_ for training beforehand. B(ex“x_,,|d_ structure of samples. He et al. propose the lgcalit
the spectral properties of land covers are tool_a;lm| preserving projection (LPP) method to preserve the
to clearly separate them out. Hence, an effecti® D |qca structure  of training samples for face
is an essential step to extract the salient featioe  recognition. Since LPP presents sample scattegusin
classification. Recently, a number of _D_R methods the relationship between neighbors, the local
have been proposed that can be classified int@ thre manifold structure is preserved and the performance
categories: linear analysis, manifold learning, and js more effective than in the case of the linear
kernellzat|0n_. Those using linear analysis try 10 analysis methods. Similar to LPP, Tu et al. propmse
model the _Ilnear variation of samples and flnd_a Laplacian eigenmap (LE) method for land cover
transformation to maximize the global scatter matri  ¢|assification using polarimetric synthetic apestur
e.g. principal component analysis (PCA), linear raqar data. The LE algorithm reduces the dimensions
discriminant analysis (LDA), and discriminant of features from a high-dimensional polarimetric
common vectors (DCV). Sample scafters are mapjifold space to an intrinsic low-dimensional

represented in the global Euclidean structure @seh 4 nifold space. Wang and He investigated the LPP
methods. They work well for DR or classification if 5 DR in HSI classification. Kim et al. utilizeithe
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locally linear embedding (LLE) method to reduce the 2. Related Works

dimensionality of HSIs. Li et al. propose the local | this study, three approaches, nearest feataee i
Fisher discriminant analysis (LFDA) method which embedding (NFLE), kernelization , and fuzy
integrates the properties of LDA and LPP to reduce pegrest neighbor (FKNN)[20], were considered to
the dimensionality of HSI data. Luo et al. prop@se reduce the feature dimensions for HSI classificatio
discriminative and  supervised  neighborhood Before the proposed methods, brief reviews of NFLE
preserving embedding (NPE) method for feature and kernelization methods are presented in the

extraction in HSI classification. These manifold following: Given N d-dimensional training samples
learning methods all preserve the local structure o

samples and improve on the performance of X :[Xl’XZ"'XN]DRdXN consisting ofN . land-
conventional linear analysis methods. However, the
applicability of linear manifold learning is limideto _ ) _ )
noises. Generally, the discriminative salient feegu OW-dimensional space were obtained by the linear
of training samples are extracted using certain projectiony, :WTXi , where W is a found linear
evaluation processes. An appropriate kernel functio projection matrix for DR. NFLE is a linear
could improve the performance for the given anstormation for DR. The sample scatters are
method[13]. Th.e kerngllzatmn approaches have beenrepresented in a Laplacian matrix form by using the
proposed for improving the performance of HSI yointto-line strategy which originated from the

classification. Boots and Gordon introduced & pegrest linear combination (NLC) approach. The
kernelization method to alleviate the limitation of objective function is defined and minimized as

manifold learning. Scholkopf et al. propose a kérn
PCA (KPCA) method for nonlinear DR. KPCA
generates a high-dimensional Hilbert space to eixtra - - o 2 :
the non-linear structure that is missed by PCA. © Z(Z Y Lm’"(y')H . )]
Furthermore, Lin et al. propose a general framework

for multiple kernel learning during DR. They unify :Z y. _ZM_ y.
the multiple kernel representation, and the mutipl =" 5
feature representations of data are consequently T (1)

revealed in a low dimension. On the other hand, a —tr(Y(I -M)( _M)Y)

composite kernel scheme, a linear combination of :tr(WTX(D —W)WTX)

multiple kernels, extracts both spectral and spatia :tr(wT XLXTW)'

data. Chen et al. present a sparse representdtion o

kernels for HSI classification. A query sample is Here, pointL, . (Y;) is a projection point on line
represented via all training samples in an induced ) _ )

kernel space. Moreover, pixels within a local L, for point ¥;, and weight ., (y;) (being 1 or
neighborhood are also represented by the Q) represents the connectivity relationship frorinpo
combination of training samples. In the previous
works, the nearest feature line (NFL) strategy was
embedded into the linear transformation for points Y., and Y, . The projection pOimLmn(yi)
dimension reduction on face recognition and HSI ’
classification. However, the nonlinear and non-
Euclidean structures are not efficiently extracted _ i
using the linear transformation. Fuzzification and @nd Y, : Lon (Vi) = Y i (Yo = Vi) i
kernelization are two efficient tools for enhanceme  which iZmM#Nn , and

in nonlinear spaces. The fuzzy methodology is frth _ T T

adopted in previous work. In this study, a general o = = Ym) Vi = Y)Y = Ya) " (Vi = Vi)
NFLE transformation, called fuzzy-kernel NFLE, is . Using simple algebra operations, the discriminant
extended for feature extraction in which kernelaat
and fuzzification are simultaneously considered. In
addition, more experimental analysis was conducted Lmn(yi) can be represented 35 —Z. M, Y
in this study. Three benchmark data sets were b
evaluated in this work. The proposed method wasin which two values in théth row in matrixM are
compared with state-of-the-art algorithms for set as Mi’m =t, Mi’n =t,, . and
performance evaluation.

cover classe€,, C2,...,CNc . The new samples in a

follows:

iZzm#n
2

Y, to a feature IineLm]n that passes through two

is represented as a linear combination of p0¥fts

vector from point Y, to the projection point

,m !
tom tlon =1, when weightl  (y;)=1. The
other values in theith row are set as zero, if
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] ZM#N. The mean squared distance in Eq. (1) spaceH , respectively. To generalize LDA to the

for all training points to their NFLs is next obitaed
as tr(wT XLXTW) , in which L=D-W, and
matrix D is a matrix of the column sums of the
similarity matrix W . From the consequences of Yan
e a. [22, matix W is defined as
W, =(M+MT=M™™) wheni# j , and

zero otherwisezj M, ; =1. Matrix L in Eq. (0)

is represented as a Laplacian matrix. For moreldeta
refer to [18, 19]. Consider the class labels in
supervised classification, two parametd&s and K,
are manually determined in calculating the within-
class scatteS,, and the between-class scatfgy,

respectively:

Sw = ) [ Z Z (X\ - Lm,n (Xi )) (X\ - Lmyﬂ (Xi )) ! (2)
k=1{ %0OC, L nl0Fy, (6.C)

Sb = ZC: Z ZC: Z (Xi - Lm‘n (Xi ))(Xi - Lm‘” (Xi ))
k=1{ xOC, 1=LIzk LR, (6.C) (3)

Fy, (Xi ,Ck) indicates the set oK, NFLs within
the same clas€;, , of point X, i.e. | (y;) =1,
and F, . (Xi ,C, ) is a set ofK, NFLs belonging to
the different classes of point;. The Fisher criterion
tr(Sn/SW) is then maximized to find the projection

matrix W, which is composed of the eigenvectors

with the corresponding largest eigenvalues. A new learning method. The kernel
sample in the low-dimensional space can be obtainedgenerates a non-linear

by the linear projectiory=WTX, and the NN (one-

NN) matching rule is applied for template matching.
In kernel LDA, consider the nonlinear mapping

function from a space>< to a Hilbert space ,
¢: x4 X - ¢(X)D H , the within-class

and between-class scatter in spé’ée are calculated
as

k=1

2

X OCy

o) -aete)-a) |- ¢,

and
NC _ N/ _
S§’=kZ(¢fk-¢)(¢fk-¢)T- (5)
=1

Here’ @ :n_tz:]:kldxi ) and a = ﬁz:\ildxi )

nonlinear case, the dot product trick is exclusivel
used. The expression of dot product on the Hilbert

spaceH is given by the following kernel function:
k(% %) =k ; =¢ (%)@x;) Let  the

symmetric matrix K of N by N be a matrix
composed of dot product in feature spdde, i.e.

K(Xi,X,-)=<¢’(Xi)Df”(Xj)>=(ki,J)

i,j=212,...,N. The kernel operatoK makes the
possibility: the construction of the linear sepaugt
function in spaceH is equivalent to that of the
nonlinear separating function in spagé . Kernel
LDA also maximizes the between-class scatter and
minimizes the within-class scatter, ima*Sf/Sﬁ).
This maximization is equivalent to the following

eigenvector resolutiondSw=SW. There is a set

and,

N
of coefficientsd for w= zi:laiqa(xi) such that
the largest eigenvalue gives the maximum of the
scatter quotiend = w' SfW/WT SZ,’W.

3. Fuzzy Kernel Nearest FeatureLine
Embedding

According to the aforementioned surveys, a training
DR scheme effectively extracts the discriminant
features from the non-Euclidean and non-linear epac
To this end, fuzzy kernel nearest feature line
embedding (FKNFLE) is proposed for HSI
classification. The idea of FKNFLE is to incorpaat
the fuzziness and kernelization into the manifold
function not only
feature space for well
discriminant analysis, but also increases the
robustness to noise during the training phase.
Manifold learning methods preserve the local
structure of samples in the Hilbert space. On thero
hand, the fuzzyk-nearest neighbor (FKNN) method
extracts the non-Euclidean structures of training
samples for enhancing discriminative capability.

NFLE has successfully been applied in HSI
classification. Noise variations and high degrea-no
linear data distributions limit the performance of
manifold learning. A kernel trick is used to allaté

this problem. The details of FKNFLE are introduced

in the following: Letg: XU X — ¢(X)DH be a
nonlinear mapping from a low dimensional space to a
high-dimensional Hilbert spaced . The mean

squared distance for all training points to thekLN
in the Hilbert space is written as follows:

represent the class mean and the population mean in
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distances in the NFLE approach are calculated &y th
Zudyl ¢(y. ))ﬂ Euclidean distance-based measurement. On the other
hand, the non-Euclidean structure of training sasipl
can be further extracted by fuzzification. The FKNN
algorithm[20] enhances the discriminant power

:iszyi)—]zMi,jdy,-

(6) among samples by assigning the higher membership
_ T T grades to the samples whose neighbors are with the
=tr ((” (Y)(l - M) (l -M )q(Y)) same class. By doing so, the non-Euclidean strestur
— T _ are extracted, and the discriminative power of
tr (¢) (Y)(D W)(l(Y)) samples can be enhanced. The idea of FKNFLE using
=tr(w" dX)Lg (X )w) the fuzzification trick is described in the follavg.

Then, the object function in Eq. (6) is minimizewda ~ Consider N samples in the reduced space
expressed as a Laplacian matrix. The eigenvectorY:[yl,y2...,yN] and their corresponding fuzzy
problem of kernel NFLE in the Hilbert space is
expressed as:

X)L (X)w=Adx)Dg (X)w. @)
To extend NFLE to its kernel version, the implicit 0= Z”(yl)[
feature vectorg(X), does not need to be obtained

explicitly. The dot product expression of two saespl ~ _ Z”(y)
is exclusively applied in the Hilbert space with a i
kernel function as follows:

(Xl,X ) <¢(X qﬂ(x )> The eigenvectors of

Eq. (7) are represented by the linear combinatains
¢(X1), ¢(X2),--- , ¢(XN). The coefficient@; is

w= zi’ila’i {z)(xi ) = ql(X)a : where

membership grades?,?(yi) , for each sampley,; .
The objective function is re-defined as follows:

5 i—Lm,n(yirlm,n(yi)j

iZm#n

_ZMLJV;‘ 2
=tr ( Y"(FEI - FEM )" (FEI - FEM )Y)
=tr(v" (FED - FEW)Y)
=tr ( (Dfuzzy fuzzy)Y)

= tr (W' XL X W) (10)

Here, each sample is assigned a fuzzy grai(g; ) .

T N
=la.,a,,...,ay| UR" . Then, th
) [ 12 N]_ en © ElementM; ; denotes the connectivity relationship
eigenvector problem is as follows: )
KLKa = AKDKa . ®8) between pointy; and linel,, , which is the same as

that in Eq. (1). Two non-zero termdd,, =t and
Let the coefficient vectorsa'l,a’z,...,a’N , be the b mn

solutions of Eq. (8) in a column format. Given a Mim =t,m. are set, andzj M;; =1. Using

testing point,Z, the projections onto the eigenvectors, simple algebra operations, the objective functidth w

W* are obtained as follows: fuzzification is represented in a Laplacian matrix

N N form in which the fuzzy termsﬂ(yi ) constitute the
— k — k
(Wk @‘(Z))‘;ai (dz) dxi )> _izzllai K(Z’)ﬂ)' ©) column vector,F ,with size Nx1, and E is a row

vector of all those with sizéx N .

k . , -
where @} is thei™ element of the coefficient vector,

Similarly, given N samples
k . )
@ The kernel function RBF (radial basis function) #X) = {¢(X1) (”(Xz) 1¢(XN )} in a Hilbert

is used in this study. Thus, the within-class and space, the membership grade of a specified sample,
between-class scatters in a kernel space are dedme ¢(X-) and its K3 neighbors is designed in the
| ’

fOIIO‘:"S: following equation for computing the within-class
= 2 X L)) L)) (Bater

AT Lo ) ) 051+(0490(q; /K,))  if O 20,0
EE B F -] () o

0490(q, /K;) otherwise.
The kernelized manifold learning could preserve the

non-linear local structure in a Hilbert space. The
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Here, value is the number of samples whose methqd for HSI classification. Th_ree HSI benchmarks
are given for evaluation. The first data set, India
labels are the same label @(Xi) among K, Pines Site (IPS) image, was generated from AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer)
which was captured by the Jet Propulsion Laboratory
If 0 =K;, then 72(X) returns to 1, ie. al and N'ZS}A/Am%S ir_ll 1992-hThe IPS image fWahS
. : . captured from 6 miles in the western area of the
neighbors are in the same class. Adding the fuzzyNorthwest Tippecanoe County (NTC). A false color
term ﬂ(Xi),the within-class scatter matrix becomes: |g image of dataset IPS is shown in Fig. 2(a).
. A&s ugh dataset IPS contained 220 bands and 16
SE=Y X At D (k) Lo (@l ) (e )= Lo (e, )))T] I é—)cover classes, only ten classes were useakin t
SRS alete) &perimentsf:orn—no till(1428), Corn-min till(830),
A()g) ) Grass/Pasture(478), Grass/Trees(730), Hay-
is also adopted t0  \indrowed(483), Soybeans-no till(972), Soybeans-
min till(2455), Soybeans-clean till(593),
Woods(1265), and Bldg-Grass-Tree-Drives(386).
The numbers in parentheses are the collected pixel
numbers in dataset IPS. The ground truths of 9,620

nearest neighbors, ard|,;,,, is @ manual threshold.

Similarly, a fuzzy term

evaluate the membership grade %(Xi) and its
neighbors during the computation of between-class
scatter as follows:

051+ (0490(p, /K,)) if P, 2 Opereen; pixels were manually labeled for training and tegpti
A(x) = Nine hundred training samples of ten classes were
1 12 .
0490(p, /K, ) otherwise. (12) randomly chosen from 9,620 pixels, and the

remaining samples were used for testing. The other
two HSI data sets adopted in the experiments were
obtained from the Reflective Optics System Imaging
Spectrometer (ROSIS) instrument covering the City
different from ¢(Xi) among K, nearest neighbors, ~of Pavia, Iltaly. Two scenes, the university ared an
the Pavia city centre containing 103 and 102 data
and Bpetween is a given threshold. I, =K, term bands both with a spectral coverage from 0.4386 0.
um and a spatial resolution of 1.3m. The imagessize
A(X) is returned to 1. That means all neighbors of these two areas were 610x340 and 1096x715
have labels different fron¢(Xi). The fuzzy term pixels, respecti_vely. Figs. 2(b) and 2(c) show t.he
false color IR image of these two data sets. Nine
land-cover classes were available in each data set,
and the samples in each data set were separated int
two subsets, i.e. one training and one testing set.
o :NZ[ ¥, ) 5 ) (¢(x.)-Lmn(qo(x‘)))(w(x)-Lm(qo(x‘)))T]Gi(/b& the Pavia University data set, ninety trajnin
=i ot T 1T L O (o6).01) ' ' sanples per class were randomly collected for
Hence, kernelization and fuzzification are training, and the 8,046 remaining samples weredest
simultaneously  integrated  into  the NFLE for performance evaluation. Similarly, the numbefrs

transformation for feature extraction. In this page  training and testing samples used for the Paviar€en
general format for the NFLE learning method using data set were 810 and 9,529, respectiveljie
kernelization and fuzzification is proposed to lseds ~ Proposed  methods,  NFLE[18,19],  KNFLE,
for DR. The advantages of the proposed method aré"NFLE[24], and FKNFLE, were compared with two
threefold: the kernelization strategy generatesr n  State-of-the-art algorithms, i.e. nearest regutatiz
linear feature space for the discriminant analgsig ~ Subspace (NRS) [23] and NRS-LFDA [23]. The
increases the robustness to noise for manifold Parameter configurations for both algorithms NRS
learning; the kernelized manifold learning pressrve @nd NRS-LFDA can be referred to in [23]. The
the local manifold structure in a Hilbert spacened gallery samples were randomly chosen for training
as the locality of the manifold structure in thdueed ~ the transformation matrix, and the query samples
low dimensional space; non-Euclidean structures areWere matched with the gallery samples using the NN

extracted for improving discriminative abilitiesing ~ Matching rule. Each algorithm was run 30 times to
the FKNN strategy. obtain the average rates. To obtain the appropriate

reduced dimensions of FKNFLE, the available

Here, value); is the number of samples with labels

A(X) . . .
(X‘) is added into the between-class scatter matrix
to generate a new one as:

4. Experimental Results
In this section, the experimental results are dised
to demonstrate the effectiveness of the proposed

! The source codes are available from the web site
https://github.com/eric-tramel/NRSClassifier
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training samples were chosen to evaluate the dveralaccuracy defined by the error matrices (or confusio
accuracy versus the reduced dimensions in thematrices) [25] were calculated for performance
benchmark datasets. The proposed method wasevaluation. They are briefly defined in the followi

compareq with. various classification .methods ON The user's accuracy and the producer's accuracy are
computational time. All methods were |mplem.ented two widely used measures for class accuracy. The
by MATALB codes on a personal computer with an ,qer's accuracy is defined as the ratio of the rarmb

i7 2'93'GHZ CPL,J and 1,2'0 GB RAM. 'I_'he of correctly classified pixels in each class by tbial
comparisons of various algorithms on computational pixel number classified in the same class. The'siser

time were tabulated in Table | for the IPS, Pavia 50 racy is a measure of commission error, whereas

University, and Pavia City Centre datasets. \he producer's accuracy measures the errors of
Considering the training time, the proposed FKNFLE , nisqion and indicates the probability that certain

aIgorit'hm-was generally faster than NRS and NRS-g5pies of a given class on the ground are actually
LFDA; 2 times and 15 times, respectively. Due ® th  |5ssified as such. The kappa coefficient, alstedal

fuzzification process, algorithms FKNFLE and i, kappa statistic, is defined to be a measurtef
FNFLE were slower than KNFLE and NFLE; 13 gitference between the actual agreement and the

times and 15 times, respectively.

From Tables Il to IV, the producer’'s accuracy,
overall accuracy, kappa -coefficients, and user's

changed agreement.

Table I: The training and testing time of variolgoaithms for the benchmark datasets (seconds).

Datasets IPS Pavia University Pavia City Centre
Algorithms Training Testing Training Testing Traigi Testing
900 8720 810 8046 810 9529
NFLE-NN 10 18 9 16 9 20
KNFLE-NN 12 18 11 16 11 20
FNFLE-NN 155 18 140 16 140 20
FKNFLE-NN 156 18 141 16 141 20
NRS 326 326 294 300 294 351
LFDA-NRS 2331 327 2098 301 2098 352
Table II: The classification error matrix for dagat IPS (in percentage).
Classes Reference Data User's
1 2 3 4 5 6 7 8 9 10 |Accuracy
1 79.20 | 3.43 0.28 0.35 0 5.46 9.73 154 O 0 |79.20
2 5.90 81.81| 0 0.12 0 1.33 6.39| 4.34 0 0.12 81.81
3 0 0 97.49 | 1.46 0.21 0.42 0 0.21 0.42 0.84 97.49
4 0 0 0.27 96.30| O 0 0 0 0 3.42 96.30
5 0 0 0.42 0 99.58| 0 0 0 0 0 99.58
6 5.14 |0.21 0.10 0.41 0 88.89 4.42 0.72 0 0.10 =88.8
7 10.59 | 5.58 0.29 0.33 0.04| 9.78 69.98 3.30 0 0.1%9.98
8 1.35 4.05 1.52 0.34 0 1.69 1.85 88.833 0 0.6/ 388.5
9 0 0 3.32 0.16 0 0 0 0 90.83 5.69 90.83
10 0 0 3.89 5.70 0 0 0 0.26 10.88 79.27 79.27
zg‘éi‘rjgf;s 7751 | 86.04 | 90.62| 9157 99.75 82.68 75.76 89)51 9488.87.85
Kappa Coefficient0.821 Overall Accuracy83.34%
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Table IlI: The classification error matrix for degat Pavia University (in percentage).

Reference Data User's
Classes
1 2 3 4 5 6 7 8 9 Accuracy
1 90.18 3.15 0 0 0 3.24 1.35 1.26 0.81]90.18
2 2.31 9250 | O 2.31 0 1.85 0 1.01 0 92.50
3 0 0 90.07 2.38 1.58 0.99 2.97 0.99 0.99 90.07
4 0 1.23 2.84 90.24 | 1.42 1.42 151 1.32 0 90.24
5 0.63 1.13 0.75 1.26 91.91 0.63 1.64 0.88 1.13 9191.
6 1.10 1.19 1.38 1.56 1.19 92.54 0.55 0.46 0 92.54
7 0 1.12 0.51 0.61 2.24 0 93.25 1.22 1.02 93.25
8 0.47 1.42 0.95 1.42 2.38 1.90 0 90.76  0.66 90.76
9 1.14 0 2.15 2.01 0 2.29 0 2.15 90.22 90.22
ig‘éﬂ‘r‘;gls 94.10 | 90.92 | 91.30 | 88.65| 91.25| 88.25 92.08 90.71 1495.
Kappa Coefficient0.910 Overall Accuracy91.31%
Table IV: The classification error matrix for datet Pavia City Centre (in percentage).
Classes Reference Data User's
1 2 3 4 5 6 7 8 9 Accuracy
1 98.61 | 0.17 0.51 0.34 0.34 0 0 0 0 98.61
2 1.04 97.47 0.43 0 0 0.34 0.17 0.52 0 97.47
3 0.59 0.82 96.23 | 0.69 0.99 0 0 0 0.69 96.23
4 0 0.56 0.66 96.68 0.37 0.47 0.66 0.56 0 96.68
5 0 0 0.43 0.34 97.73 | 0.26 0.34 0.34 0.52 97.73
6 0.35 0.26 0.61 0 0 98.15 0 0.26 0.35 98.15
7 0.35 0.26 0 0.35 0 0.44 98.23] 0.35 0 98.23
8 0 0 0.37 0.30 0.37 0.52 0.45 97.43 0.52 97.43
9 0.39 0.59 0.79 0.29 0.29 0 0 0 97.6( 97.60
zg‘éi‘rjgf;s 97.32 | 97.34 | 9620 | 97.67| 97.64 97.97 9838 97.96 9197.
Kappa Coefficient0.971 Overall Accuracy97.59%
5 SECTIONS cover benchmarks, IPS, Pavia University, and Pavia

City Centre, were tested for performance evaluation

In this paper, a general NFLE transformation, The experimental results demonstrated that FKNFLE
classification

FKNFLE, for HSI

is proposed.
Kernelization and fuzzification were both considakre
in NFLE in extracting non-linear and non-Euclidean g5 REFERENCES
structures. In addition, the locality of the malfdfo

structure of samples was preserved. High-dimenkiona

HSI data were reduced to low-dimensional features
by the proposed FKNFLE transformation. Two state-

of-the-art algorithms, NRS and NRS-LFDA, were

compared with the proposed FKNFLE. Three land-
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