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ABSTRACT 
In this paper we introduce a novel, simple, and efficient method for human action recognition based on a 
multiphase representation of human motion. An action is considered as a finite state machine where each state 
represents a primitive motion called motion phase, which is simply a sequence of poses with predefined common 
features. Spatial-temporal and postural features introduced in previous work are redefined by using only 3D joint 
positions for features extraction and are extended by involving the relative movement of the body end-effectors 
as new features. We developed a framework for modelling a given motion in the proposed motion model, 
whereupon we used this framework to create a model database of 25 different actions. Using this database we 
conducted a number of experiments on data obtained from several sources as well as on distorted data. The 
results showed that the presented method has high accuracy and efficiency. Additionally, it can work offline and 
online in real time, and can be easily adapted to work on 2D data. 
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1. INTRODUCTION 
Motion capture data is the basis for a realistic 
animation, but it is expensive to produce, therefore, 
the reusability of it is very important. However, this 
reusability demands that the motion capture data is 
good segmented and annotated. The segmentation 
into natural motion phases increases the reusability; 
however, the basis for this segmentation is the 
recognition of motion phases.  Moreover, motion 
capture data is used in medicine for the analysis and 
examination of joint movement and rehabilitation 
procedures. These fields continuously produce large 
stores of data so that it is hard and tedious to retrieve 
a particular motion manually. Therefore, many 
methods have been developed for automatic search 
and retrieval in these stores. Of late, marker-less 
motion capture data has achieved significant 
improvement in accuracy, which enables it to be used 
in control and surveillance systems, as well as in the 
human–robot interaction field. This demands 
instantaneous and precise action recognition, which 
is what our presented method can do. Many works 
such as [Jin07a] and [Bar04a] successfully could 

reduce the high dimensionality of motion capture 
data without semantic lost. Additionally, some other 
works such as [Liu06a] and [Zha11a] could capture 
meaningful human motion with a reduced marker set. 
Inspired by such works, we develop a motion model 
that depends only on the movement of the actor’s 
end-effectors and some basic postural features. We 
extend the features introduced in [Sal15a] so that any 
primitive motion can be described automatically in 
high-level terms. In general an action consists of 
several phases each of which is represented by a 
subset of these features and characteristics. Using the 
framework of phases and features a person with no 
experience with motion capture data is able to define 
or design movements at will and use them in any 
application area to retrieve and classify motions from 
motion repositories or to recognize ongoing motions 
online in real time. 

The contribution of the proposed method is threefold: 
(1) specification of high-level features of human 
motion that enables (2) multiphase representation of 
human action and (3) utilizing this framework for 
efficient and high-accuracy classification of motion 
capture data. The presented approach is easy to 
implement, efficient, and works in real time both 
online and offline. Additionally, the database of 
recognizable motions can be extended easily in a 
very short time because there is no need for training 
data or training time. The rest of this paper is 
organized as follows: First, an overview of the 
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related works is given, and then some terms and 
notations used in our work are introduced. After that, 
the proposed features are described in Section 4 
while the developed motion model is introduced in 
Section 5. In Section 6 the classification algorithm is 
presented, and then in Section 7 some conducted 
experiments are described and their results discussed. 
Finally, the work is concluded in Section 8. 

2. RELATED WORK 
Action recognition from motion capture data has 
received a lot of attention in the last decade. 
Nowadays there is a wide range of methods for 
classification of motion capture data. These methods 
can be divided into online and offline methods 
depending on whether the whole data should be 
processed before a classification result can be given 
or not. From another point of view, the classification 
methods can be divided into the following groups 
based on the nature of the features used to represent 
human motion as well as the field in which the used 
algorithms originated: 

Description-Based 
Methods of this category use annotated motion 
templates and high-level semantic features for action 
recognition. The work of J Baumann et al. [Bau14a] 
is an example of these approaches, where a motion 
capture database is annotated with actions of interest 
in an offline phase, and then used in the online phase 
to search for motion segments that are similar to 
annotated actions in the motion database. Leightley 
et al. [Lei14a] used Exponential Map EMP and k-
means clustering to model human actions. For each 
action class they transform each pose of a 
representative sequence into EMP form then they 
used k-means clustering to extract a small number of 
exemplars that represent the action. Then they used 
Dynamic Time Warping and Template Matching to 
recognize actions from motion capture data streams. 

Machine Learning 
Machine learning techniques are widely used to 
classify 2D and 3D human motion. Cho and Chen 
[Cho13a] generated features for each motion frame 
based on the relative positions of joints, temporal 
differences, and normalized trajectories of motion. 
They then used them in training deep neural 
networks that they later used to classify motion 
capture data. Coppola et al. [Cop15a] extended the 
3D Qualitative Trajectory Calculus (QTC3D) and 
used them to model human actions. Then they 
learned HMM to recognise human actions. 

Statistics-Based 
Statistical techniques such as Gaussian-Mixture-
Models, Histograms and Space-Time Correlation are 
used here to model and recognize human motion. Y 
Jin and B Prabhakaran [Jin07a] quantized human 
motion data by extracting spatial–temporal features 

using SVD and then translated them into a one-
dimensional sequential representation through a 
semantic Gaussian Mixture Models with 
Expectation-Maximization algorithm. These could 
reduce the dimensions of human motion data while 
maintaining semantically important features. M 
Zhang and A Sawchuk [Zha12a] introduced a 
framework for human motion modelling and 
recognition based on a bag of features. They 
modelled human activities through histograms of 
primitive symbols on physical features using k-
means clustering and soft weighting. Unlike our 
proposed method, most of the above-mentioned 
methods are unable to separate two consecutive 
occurrences of one motion. In addition, the 
transitions between two motions are not recognized 
as transition but merged with the neighbour motions. 
Moreover, in some methods the learning process by 
classification is not simple, while our method is 
simple, easy to implement, efficient, and does not 
need any training phase.  

3. PRELIMINARIES  
We describe a pose of the human body as a set of 
annotated 3D points that correspond to the body 
joints. Thus, the human body pose is determined by 
the global 3D positions of these joints additional to 
the global orientation of the body. The proposed 
method needs a minimum set of joints J, namely, the 
ankles, knees, hips, chest, head, wrists, as well as a 
virtual joint at the pelvis called 'root'. In this work, 
we refer to ankles and wrists as feet and hands 
respectively. A pose at time t is described by �� =
(��, ���, ��� , … , ��� ), where �� is the global orientation 
of the body and ��� is the 3D global position of the 
joint j, where n is the number of used joints. The 
global body orientation at time t is given by three 
orthogonal vectors ��, ��, and ℎ� representing the 
normal vectors of the frontal, sagittal, and traversal 
main body planes respectively. We denote the single 
position coordinates of joint j at time t as ���,  ��� and ��� respectively where ���  is the vertical coordinate. 
We refer to the vector that goes from joint a to joint b 
at time t as 	�,� = ��� − ���  , and the motion direction 
of joint j at time t as 
�� = ���  −  �����. Additionally, 
we define the motion magnitude of joint j at time t in 
the direction v as 
following  
�,	� = ||
��||cos (∠�
��, 	�), where 	 ∈
{ ��, ��, ℎ�}, and we refer to the algebraic sum ∑ 
�,	��
��
�  as the accumulated motion magnitude of 
joint j over the time interval � = [�, �] in the 
direction v. 

4. FEATURE DESCRIPTION 
The main idea of the proposed method is based on a 
set of features that was inspired by the way in which 
people in general and kinesiologists in particular 
analyse and evaluate human motion. The method also 
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seeks to analyse the most important factors in 
deciding on the motion class. We extend the 
taxonomy tree of human motion introduced in 
[Sal15a] by adding motion directions of the end-
effectors in the main body planes. The extended tree 
shown in Fig. 1 now consists of nine levels that 
reflect the importance of each group and the relations 
among features where the features in the first level 
have the highest importance. We call each complete 
path in this tree a 'pose state', which can be described 
as a complete set of the defined features. Each given 
pose is assigned a pose state by taking a previous 
pose into account. In the following, we introduce a 
detailed description of each of the features. In 
[Sal15a] the used features are calculated using both 
joint angles and 3D joint positions. However, we use 
here only 3D joint positions for calculating the 
introduced features.  

Spatial–Temporal Features  
In this section we introduce features that are 
generated by changing the joint positions over time, 
thereby denoting it as spatial–temporal features. They 
are introduced in the following in the order in which 
they are computed. 

4.1.1 Motion Existence 
First the existence of motion is checked. A pose is 
classified as dynamic if there is at least one joint that 
has moved a significant distance on at least one 
coordinate axis (1), otherwise it is classified as static. 

∃j ∈ J: ∃c ∈ �x, y, z�: ��| c
� − c
��� | � > ��                     (1) 

The threshold � is a small real value representing the 
maximal noise value in the used data. Assuming 
there is a clip of n static poses that can be recorded 
during the system setup; the threshold � is then the 
maximal displacement that a joint has achieved along 
any of the coordinate axes between two subsequent 
poses over the whole clip (2). � = max�,
,�( |c
� − c
���| � for all t ∈ �2, n�, all j ∈
J and all c ∈ �x, y, z�.                                               (2) 

4.1.2 Motion Directions 
Secondly, the motions of the end-effectors in the 
three main body planes are described. Based on the 
observation that almost all human actions are 
performed by displacing the body end-effectors, 
namely the hands, the feet, and the head/torso, we 
use the motion direction of these body parts as high-
level features such as left foot moves forward up, or 
right arm moves left down fast. From a kinesiological 
perspective, the movements of body parts occur 
mainly in three anatomical planes, namely the 
frontal, sagittal, and traversal planes [Ham02a, 
Gre05a]. Based on this division of the body into three 
planes we define the directions of the joint 
movements relative to the body’s axes as shown in 
Table 1. 

Body Axis frontal vertical sagittal 

Positive 
Motion 

forward upward left 

Negative 
Motion 

backward downward right 

Table 1: Defined motion directions relative to 
main body’s axes 

4.1.3 Motion Space 
Although the human body can move in many 
different ways, there are actually two major kinds of 
movements. These are locomotive, translator or 
linear, and non-locomotive, rotary, or angular 
[Ham02a, Gre05a]. If the whole body moves from 
one place to another, then the movement is 
locomotive; otherwise, it is considered as non-
locomotive. A given pose is classified as locomotive 
if the root and both feet move, relative to the 
previous pose, in the same direction (3), or the root 
and at least one foot move in the same direction (4 
and 5), while the other foot is fixed, and the 
accumulated magnitude of the root motion in the 
considered direction is greater than a certain 
threshold equal to the tibia length. ��‖d����� ‖� > �� �˄ ���‖d������ ‖��  >  �� ˄ ���‖d������ ‖�  >  �� ˄             �d����� ∙  d������ > 0 � ˄ �d����� ∙ d������ > 0�              (3) 

 �‖d����� ‖ >  ε� �˄ �‖d������ ‖ > �� �˄ �‖d������ ‖ ≤  ε� ˄         �d�����  ∙  d������ > 0�                                                      (4) 

 �‖d����� ‖  >  �� ˄ ��‖d������ ‖  ≤  ε� ˄ ��‖d������ ‖ >  �� ˄        �d�����  ∙  d������ > 0�                                                     (5)  
where ε is the noise threshold defined in (2). 

Postural Features 
An important factor for classifying human motion is 
the change in the main body posture. We utilize this 
observation and use the following major and 
corresponding minor postures as features for the 
recognition of human actions. 

4.1.4 Standing 
In general, 'standing' is a major posture where the 
body maintains an upright position supported by the 
feet. The presented approach restricts the upright 
constraint to the lower body. Therefore, a pose is 
considered as 'standing' if at least one leg is extended 
and has a certain maximum inclination (6). ��	�����,����� > �� ˄ �∠�	�����,���� ,��� ≤ ��) ˅         

��	�����,����� > �� ˄ �∠�	�����,����,��� ≤ ��)   (6)  

We consider a leg as extended if the distance 
between the foot and hip is greater than �, which is 
equal to one and a half of the femur length.  
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Figure 1: Taxonomy tree of human motion. Double circles allow the path to return to the first previous 

double circle, whereby it is not allowed to take the same path segment again.

 The maximum inclination used by our experiments 
is � = 45°. Standing can also have one of the 
following three minor postures: 

1. If the torso stays upright, i.e. it has an inclination 
smaller than threshold β: ∠������,�ℎ����,��� ≤
β (7), then the pose is considered as 'standing 
upright'. We used � = 30°. 

2. Otherwise it is considered as 'standing 
bent': ∠�	����,������,��� > �.                        (8) 

3. If the body is not supported only by the feet, 
then the pose is considered as 'standing leaned'. 
Suppose S is the set of support body parts, then 
'standing leaned' is recognized when S contains 
at least one part except the feet    \
 !������� ,  ������� " ≠ Ø. This minor posture, 
however, is in our case not recognizable, 
because motion capture data does not contain 
any information about the environment.  

4.1.5 Sitting 
The 'sitting' posture is a major posture in which the 
body is supported mainly by the buttocks rather than 
the feet, that implies that the projection of the gravity 
centre of the body lies outside the support base of the 
body formed through the feet. Additionally, the torso 
is not horizontal. Based on the height of the hip joint, 
it is decided whether the pose is sitting on an object 

or on the floor as minor postures. No constraints are 
put on the legs because there are many variants of the 
sitting posture according to the position of the legs. 
Legs can be vertical, crossed, or on each other. 

4.1.6 Kneeling 
'Kneeling' is also a major body posture in which at 
least one knee touches the ground and the root height 
is greater than half of the femur length, which is 
denoted as # in (9). If only one knee fulfils these 
criteria, then kneeling is called asymmetric; 
otherwise, it is symmetric kneeling. 

(�������� ≈ ��� ˅ �������� ≈ ���) 

˄ ((������ − ��) > #)                                               (9) 

Given that the ground height can be greater than zero 
(stairs case), we denoted the ground height as ��. 
4.1.7 Squatting 
'Squatting' is a major human body posture in which at 
least one foot touches the ground but not the knee, 
and the vertical distance between the corresponding 
hip and foot is smaller than half of the femur length 
(10). Additionally, the torso must not be horizontal.  

(�������� ≈ ��� ˄ �(������ < #� ˄ ��������  > ���)  ˅    

(�������� ≈ ��� ˄ �(������ < #� ˄ ��������  > ���) (10)  

Squatting is symmetric when both the knees are bent; 
it is asymmetric when only one knee is bent. 

Motion Speed

Motion Magnitude

Motion Direction

Body Axis

End-Effector

Minor Posture

Main Posture

Motion Space

Motion Existence

standing sitting kneeling squatting lying 4-supported transition

upright bent symmetric asymmetric on back on belly sideways forwards bacwards

locomotive non-locomotive

static dynamic

MoCap Data

root head lfoot rfoot lhand rhand

frontal motion vertical motion sagittal motion

fixed forward backward up down fixed left right fixed

short mean long

slow normal fast

pose state
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4.1.8 Lying 
'Lying' is a major posture in which the body is in a 
horizontal or resting position supported along its 
length. In the proposed approach, this definition is 
restricted to the torso, i.e. the torso should have an 
inclination greater than a threshold $:  
∠�	����,������,��� > $ (11), which we set at 70° in 
the conducted experiments. If at least one hip lies on 
the floor, then the pose is classified as lying on the 
ground (12), otherwise on an object. ������ 

� ≈ ��� ˅ ������ 

� ≈ ���                                   (12) 

If the two hip joints have approximately the same 
height (13) and the normal of the frontal plane points 
down (14), then the pose is lying on the belly. If the 
mentioned normal points up (15) and the two hip 
joints have approximately the same height, then the 
pose is called lying on the back. %����� 

� − ����� 

� % < �	����,�����/2                          (13) 

∠���,��� ≈ 180°                                                 (14) 

∠���,��� ≈ 0°                                                     (15)                          

If the difference between the heights of both the hips 
is greater than half of the distance between the two 
hip joints (16), then the pose is lying sideways. %����� 

� − ����� 

� % ≥ �	����,�����/2                          (16) 

4.1.9 Four-Supported 
In this rare major posture, the hands and the feet 
contact the ground but not the root ������� 

� ≈��� ˄ ������� 

� ≈  �� � ˄ ������� 

� ≈ ��� ˄ ������� 

� ≈���˄ ������ 

� >  �� �. If the belly faces the ground 
(14), then the position is called 'forward four-
supported', or else the back faces the ground (15) and 
the position is called 'backward four-supported'. 
Another variant of this posture is when at least one 
upper limb and one lower limb contact the ground at 
the same time (17). This variant allows more 
movements to be performed than the first variant. 

&������� 

� ≈ ��� ˅ ������� 

� ≈ ���' ˄      

�������� 

� ≈ ��� ˅ ������� 

� ≈ ����                        (17) 

4.1.10 Transition 
The transitions between the above-mentioned main 
postures of the human body are considered here. If 
the pose cannot be classified as one of the above-
mentioned major or minor human body postures, 
then it is considered a transition posture. The 
previous and next major postures determine the name 
of the transition, i.e. the classification of a 
transitional posture is dependent on the two 
surrounding main postures. For example, the pose 
that corresponds to the transitional phase between 
'sitting' and 'standing' will be classified as 'standing 
up'. 

5. MULTIPHASE REPRESENTATION 
OF MOTION  
Any human activity can be generally divided into a 
sequence of simple motions called 'phases'. This 
division makes the action classification easier and 
more robust. In the kinesiological analysis of human 
motion, one tries to divide the considered activity 
into three phases: preparatory phase, power phase, 
and follow-through phase [Ham09a], or preparation 
phase, action phase, and recovery phase [Bar07a]. 
Here each phase can be further divided into sub-
phases so that each sub-phase consists only of some 
basic joint movements in the directions introduced in 
Section 4. We use, however, a certain definition of 
the motion phase and do not distinguish between 
power phase and other phases. We define the motion 
phase as a sequence of poses with a common set of 
features defined above in Section 4. Table 2 
summarizes the feature set and the range of values of 
each feature, where the feature value 'undefined' 
denotes that this feature is not important in the 
considered phase, i.e. it can be ignored.  

Feature Values 
Motion 
Existen

static, dynamic, undefined 

Motion 
Space 

locomotive, non-locomotive, undefined 

Major 
Posture 

standing, sitting, kneeling, squatting, 
lying, four-supported, transition, 
undefined 

Minor 
Posture 

standing upright, bent, leaned, 
undefined 

sitting on object, on floor, 
undefined 

kneeling symmetric, asymmetric, 
undefined 

squatting symmetric, asymmetric, 
undefined 

lying 

{on belly, on back, 
sideway, undefined } 
×{on object, on floor, 
undefined }  

four-
supported 

backwards, forwards, 
undefined 

undefined 
Frontal 
Motion 

{forwards, backwards, fixed, 
undefined} ∪  ( ×    

Vertical 
Motion 

{up, down, fixed, undefined} ∪  ( ×    

Sagittal 
Motion 

{left, right, fixed, undefined} ∪ ( ×    

Table 2: Summary of introduced features and 
their possible values, where × stands for the 

Cartesian product operation, M = {short, mean, 
long, undefined} and S = {slow, normal, fast, 

undefined} 
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This definition of the wide range of high-level 
features allows the description of the most common 
human activities in a high language, enabling a 
comfortable retrieval system. Often, an action that 
consists of several phases can only be performed 
starting from a certain phase.  In these cases the 
motion description involves the order of phases. On 
the other side there are some actions that can be 
started in more the one phase, such as the kicking 
action, which consists of three phases and can be 
started in the first or second phase, where in the first 
phase the used leg moves backwards to give the 
strike more power, then it moves forward long fast in 
the second phase and then moves backwards down to 
the rest position in the last phase. Here the first phase 
is optional because kicking can be performed without 
this phase. Table 3 shows the detailed definition of 
kicking using the right leg without the optional 
phase. 

Feature Phase 1 Phase 2 
Motion 
Existence 

dynamic dynamic 

Motion Space non-locomotive non-locomotive 
Main Posture standing standing 
Minor Posture undefined undefined 
root Frontal-
Vertical-
Sagittal Motion 

fixed-fixed-
fixed 

fixed-fixed-
fixed 

torso Frontal-
Vertical-
Sagittal Motion 

undefined- 
undefined- 
undefined 

undefined- 
undefined- 
undefined 

lfoot Frontal-
Vertical-
Sagittal Motion 

fixed-fixed-
fixed 

fixed-fixed-
fixed 

rfoot Frontal-
Vertical-
Sagittal Motion 

forward long 
fast-up mean 
fast-fixed 

backward long 
fast-down mean 
fast-fixed 

lhand Frontal-
Vertical-
Sagittal Motion 

undefined- 
undefined- 
undefined 

undefined- 
undefined- 
undefined 

rhand Frontal-
Vertical-
Sagittal Motion 

undefined- 
undefined- 
undefined 

undefined- 
undefined- 
undefined 

Table 3: modeling the motion class "KickR" using 
the proposed motion model. 

Another relative complex example is the jumping 
action. Jumping can be divided into four phases. In 
the first phase the feet stay fixed while the root 
moves down. In the second phase the whole body 
moves up and forwards, while it goes on forward in 
the third phase but down. In the last phase the feet 
are fixed while the root moves up and forwards. 

6. ACTION RECOGNITION 
Actions to be recognized should be manually 
modelled and saved in a model database using the 
developed framework. For each action in the action 

model database, a finite state machine FSM is created 
automatically (Fig. 2).  

 
Figure 2: Finite state machine representing the 
recognition process of a defined action, where 

‘n’ means that the next phase is matched and the 
current phase can be ended; 'a' means the 

current phase is matched; 'f' implies failed to 
match either the current phase or the next one; 
'r' means the end phase ended successfully and 

the motion is recognized; 's' means return to the 
start phase and start again. 

Suppose that an action model consists of n 
phases  �,  �, … ,  �, where  �is the start phase and  � is the end phase, then the corresponding FSM is 
defined as following: ) = (Σ,  , ��, #,*), where Σ is 
the input alphabet and consists of all possible pose 
states;  = { ��,  �� , … ,  �� } is the states set and it 
consists of the action phases whereby each phase is 
extended to have the following attributes: (1) start 
time +, (2) end time , and (3) an activation flag. �� is 
the initial phase. # is the transition function and it 
will be defined later in Fig. 3. F is the set of final 
states and it consists here of the extended end phase. 
The input data in each frame consists of the global 
positions of the used joints as well as the global body 
orientation. The motion features are computed using 
this information and then the FSM for each action is 
updated using the computed current pose state as 
shown in Fig. 2 and Fig. 3. At the beginning all 
created FSMs are considered to be in their initial 
phase. When a new pose is available, the pose state is 
computed and given to each FSM to update its status 
as following: if the pose state is compatible with the 
current FSM phase i.e. the phase is matched, then the 
phase is retained and the related action is considered 
active. Otherwise, if the current phase is not matched 
and it was active in the previous frame, then the 
phase is considered to be achieved and can be ended 
if the accumulated motion magnitude and motion 
speed of each required phase feature are within the 
desired range and, in this case, the FSM is aggregated 
to the next phase. Otherwise, the action is cancelled 
and the FSM is returned to its start phase. If it is 
assumed that  �  is the pose state of the pose t, i.e.  �  
is a complete set of the defined features or a 
complete path in the taxonomy tree, and    is the 
feature set of the current phase   �  of the FSM for the 
action ℳ, then the global recognition algorithm of 
the action ℳ at the time t can be stated as follows: 

Start
Phase

Phase 1

Phase 2

End
Phase

Reco-
gnized

s

a

n

a

f

n

a
f

n

af

r

start
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1 if     
 ⊆ 

 
 � 

 then 

2 

 

if  the current action phase   �  is active 
then 

3  set end time of    �   , =  -. 
4 else 
5 

 
set start time of    �   + =  -. 

6 raise the activation flag of   � , i.e. 
make   �  active. 

7 else if    �  is active and can be ended then 
8  if  the   �  is the end phase then 
9  action ℳ is recognized. 

10   return to the first phase and reset the 
activation flag of all phases. 

11  else move to the next phase. 

12 else return to the first phase and reset the 
activation flag of all phases. 

Figure 3: Transition function of the action FSM. 

The proposed approach can provide information 
about the ongoing activity before it is completed, 
which is an important issue for some application 
areas such as human–robot interaction, because it 
enables the robot to response quickly and at the right 
time. 

7. EXPERIMENTAL RESULTS 
We developed a framework for action design and 
action classification from different motion capture 
databases, namely CMU [Cmu14a], HDM05 
[Mue07a], and locally captured data (at our institute). 
The used data contains distorted walking data. Using 
our framework we modelled 25 actions manually as 
explained in section 5. The motion clips were first 
manually segmented and annotated by two different 
persons, and then processed by our system. Table 4 
shows the actions used in our experiments and the 
measured evaluation values, where the global 
precision is about 96.2% and the global recall is more 
than 98.1%. To begin with, we measured the 
precision of action recognition as follows: precision 
= count of correctly recognized action / count of all 
recognized actions. Another evaluation value is the 
recall, which is the percentage of the count of 
correctly recognized actions compared to the count 
of ground truth actions. An action is considered 
correctly recognized if the temporal overlap between 
it and a manually segmented action of the same type 
is bigger than half the length of the manual action. 
We measured also the segmentation error as follows: 
the segmentation error is zero if the difference 
between the automatic detected cut and the manually 
created cut smaller than ten, otherwise the 
segmentation error is equal to this difference minus 
ten, where a manual created cut is the mean of all 
manual created cuts (in our case two) of the 
considered action. The proposed method is able to 
recognize some particular information about the 
action such as the marching foot while walking and 
running, the used hand while punching, or the leg 

while kicking. All occurrences of most of the defined 
actions are recognized successfully. An exception is 
the activity of walking. This is because sometimes 
the first and last strides of running are recognized as 
walking. The method failed to match the second 
phase in the running motion if the feet are not far 
enough from the ground. This is, however, a minor 
drawback, because walking and running are similar 
motions especially in terms of the first and last 
running strides.  

Action Class Prec-
ision 

Re-
call 

Segmentat-
ion Error 

WalkL 0.94 0.99 2 
WalkR 0.93 0.99 1 
RunL 0.98 0.94 0 
RunR 1 0.96 0 
BoxL 1 0.96 11 
BoxR 0.96 1 19 
KickR 1 1 10 
KneeKickR 1 1 27 
SideKickR 1 1 23 
Jump 1 1 11 
JumpJacks 1 1 7 
StandUp 1 1 55 
SitDown 1 1 14 
Hop2Legs 1 1 71 
HopR 1 1 31 
HopL 1 1 20 
SwingArmsSagittal 1 1 11 
SwingArmsTravers 1 1 26 
SwingArmsCircular 1 0.94 14 
ChoppingL 1 1 4 
ChoppingR 1 1 19 
Fight 1 1 28 
DrinkR 1 1 18 
Throw 1 1 57 
Squat 1 1 32 
Table 4: Results of the experiments, where 'L' 

stands for left and 'R' for right and it refers to the 
active limb during the action. 

The classification speed is linear with the number of 
actions to be recognized. The mean recognition speed 
for a model database of 25 actions amounted ~1200 
fps on a computer running Windows 8 with AMD 
A4-4300M APU processor, 2.50GHz and 4.00GB 
RAM. If the database were hypothetically extended 
to contain 250 actions, then the speed would sink to 
~120 fps. This means that our method can scale to 
large model databases and can still perform well in 
real time. 

Compared to some other works which were evaluated 
using data from the same data sources which we used 
,namely the HDM05 and CMU, the proposed method 
produces better results as shown Table 5. However 
this comparison might be unfair because the used 
datasets might be slightly different and the classes 
and numbers of considered actions are also different. 
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Action 
Class 

[Cho13
a] 

[Lei14
a] 

[Zha12
a] 

Propo-
sed 

All  0.95 0.9492 0.927 0.962 
Walk - ~0.975 0.923 0.935 
Run - ~0.975 0.989 0.99 
Hop - ~0.95 1 1 
Box - ~0.86 - 0.98 
Squat - ~0.94 - 1 

Table 5: Precision of some other works where „-“ 
stands for unknown accuracies and „~“ stands for 

those read from a diagram picture. 

8. CONCLUSION AND FUTURE 
WORK 
In this paper a set of high-level semantic features are 
introduced and employed in a multiphase motion 
representation that enables an efficient recognition 
and retrieval of motion capture data with high 
accuracy. The introduced features as well as the 
multiphase representation of motion are inspired by 
kinesiology, and hence the proposed method mimics 
the human mind by motion perceiving and analysing 
what enables it to perform very well. It can also work 
online and offline in real time. The recognizable 
motion database can be extended easily and in a short 
time, because our method does not require any 
training time. The experiments made on large 
databases from different sources, as well as on 
distorted data, proved that the proposed method 
scales well to other data sources. As future work we 
plan to extend this method so that it can also classify 
single poses, static clips, and static gestures. 
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