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ABSTRACT
In this paper, we show how the concept of Gaussian process regression can be used to determine potential events in
scalar data sets. As a showcase, we will investigate climate data sets in order to identify potential extrem weather
events by deriving the probabilities of their appearances. The method is implemented directly on the GPU to ensure
interactive frame rates and pixel precise visualizations. We will see, that this approach is especially well suited for
sparse sampled data because of its reconstruction properties.
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1 INTRODUCTION

The visualization of tensor data that is given on discrete
positions typically requires interpolation of the data val-
ues in between the sample positions. Usually, this task
is solved by using linear interpolation. However, in the
case that the given data is uncertain, this method is not
feasible [BUR96]. In [SCH12], Schlegel et al. pro-
posed the use of Gaussian process regression to over-
come the aforementioned problems.

We will show how this method can be used to calculate
occurence probabilities of certain events. Therefore,
we present an approach that combines fast computation
on the GPU as well as visualizations of arbitrarily
dense samplings. This is achieved by using the
reconstruction properties of Gaussian Process Re-
gression. We use datasets from the climate research
domain to demonstrate our method. One of the major
tasks in climate research is the prediction and the
understanding of extreme weather events. Events like
heat waves, heavy precipitation (resulting in floods)
or hurricanes have a large impact on society and
politics. Decision makers rely on climate simulation
results as accurate as possible. Those results should
hold characteristics of extreme events like location,
frequency and intensity. There is a lot of research
that points out that climate and extreme events un-
dergo a change especially in frequency and intensity.
Emanuel [EMA05], for instance, pointed out that the
destructiveness of hurricanes immensely increased of
the past 30 years. A quick overview for other observed
changes can be viewed here: http://www.ipcc.
ch/publications_and_data/ar4/wg2/en/
ch10s10-2-3.html#table-10-3.

2 RELATED WORK

As pointed out by [PAN96] it is important to keep in
mind that uncertainty of scalar data can reside in the
data value or in the position of the data point or in both.
In this paper, we deal with the uncertainty of the data
value itself. Pöthkow et al. [POE11a] also targeted this
issue and presented an uncertain counterpart for iso-
contours [LOR87]. Therefore, they calculate the so
called level-crossing probability (LCP). In a given in-
terval, the probability is computed that a certain thresh-
old is crossed within. Therefore, they interpolated the
expected values and the roots of the central moments to
interpolate the probability density function. Schlegel et
al. [SCH12] proposed the method of Kriging to inter-
polate the mean and the variance in an uncertain Gaus-
sian field. They also applied their method to compute
LCP. Several acceleration methods were employed in
[SCH15] to enable a fast computation of Kriging in 3D
scalar fields. They created interactive 3D visualizations
of the mean field and showed the confidence of the com-
putation by depicting areas of high uncertainty. There-
fore, they computed an upper boundary for the posterior
variance. In contrast, we aim to provide probabilities
for the data to exceed (or fall below) certain thresholds
using the exact posterior variance. [ATH13] analyzed
the effects of uncertainty to linear interpolation and iso-
surface extraction. The extension of [POE11a] to corre-
lated data was done in [POE11b]. To reduce the heavy
computation time (mainly caused by Monte Carlo Sam-
pling), two methods called maximum edge crossing
probability and linked-pairs to approximate the level-
crossing probabilities were introduced in [POE13b]. To
overcome the restrictions of predefined probability dis-
tributions [POE13a] introduced nonparametric models
(empirical distributions, histograms, and kernel density
estimators) to compute the probabilty of features in an
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uncertain field. Based on [POE11a], Pfaffelmoser et
al. [PFA11] developed an algorithm to compute the so
called isosurface first crossing probability. It is an al-
gorithm that incrementally uses a front-to-back volume
ray casting to visualize that probability. The render-
ing is enriched by additionally depicting surfaces of
the stochastic distance function (SDF-surfaces). Ad-
ditional work to compute the gradient of the probabil-
ity density function of uncertain 3D scalar fields was
done in [PFA12]. Kniss et al. [KNI05] try to perform
classification of medical volume data under uncertainty.
They base their transfer function on what they call the
decision boundary distance that is computed for every
class, which is a maximal log-odds ratio of all the other
classes. Roughly speaking, it is a measurement of the
risk of being wrong to assume that the current class is
the correct one. A more thorough overwiev of visual-
ization of uncertain data can be read in [BRO12].

3 GAUSSIAN PROCESS REGRESSION
As pointed out earlier, we can not rely on standard tech-
niques like linear interpolation, when the need for inter-
polation of uncertain data arises, . We need to regard the
uncertainty of the sampled data points, as well as their
respective corellation. If these samples are Gaussian-
distributed random variables, it is suitable to use the
concept of Gaussian processes. Interpolating random
variables in a Gaussian process is also known as Krig-
ing [KRI51] or Gaussian process regression [RAS06].
The basic approach is to assume a prior Gaussian distri-
bution for any (continuous) position in the data set. By
considering the given samples and a defined covariance
between the data points, this prior distribution is turned
into a posterior Gaussian distribution that matches the
given data more precisely in the sense of reducing the
variance of the distribution. For details, on how to de-
fine the prior distribution, we refer to [SCH12].

A Gaussian process given on a domain S defines a
Gaussian distributed random variable at any position
s ∈ S. It is defined by a mean function at every position
s and a covariance function between any two positions
s and s′, e.g., see [ADL11]:

µ : S 7→ R µ(s) = E[ f (s)],
k : S×S→ R k(s,s′) = E[( f (s)−µ(s))( f (s′)−µ(s′))],

(1)
where the mean function is assumed to be constant. Our
choice for the covariance function throughout this pa-
per is the squared exponential. This covariance func-
tion models an exponential drop of the covariance with
increasing distance of the data points. It is often used in
the field of Geostatistics and is given by

k(s,s′) = σ
2
pexp(− 1

2 l2 |s− s′|2), (σ2
p , l > 0). (2)

The parameters σ2
p (prior variance) and l (length scale)

are hyperparameters. Throughout this paper our choice
for l will be 1. The choice for σ2

p will be discussed
in section 4.1. Gaussian processes, as well as the opti-
mization of the hyperparameters, are discussed in detail
in [RAS06].

Let S be sampled with N Gaussian distributed vari-
ables at positions si, i = 1, . . . ,N, with X(si) = Xi ∼
N
(
µi,σ

2
i
)

and the covariance function k(s,s′). Then
one can calculate the covariances between those sample
points and generate the covariance matrix

K =

 k(s1,s1)+σ2
1 . . . k(s1,sN)

. . . . . . . . .
k(sN ,s1) . . . k(sN ,sN)+σ2

n

 ,

(3)
The posterior distribution at position s is then defined
as

X(s)∼N
(
~k(s)

T
K−1~µi, k(s,s)− ~k(s)

T
K−1 ~k(s)

)
,

(4)
with ~µi being the vector of the means of the sampled Xi

and ~k(s) = (k(s,s1), . . . ,k(s,sN))
T . It can be shown that

the variance of the posterior distribution is minimized,
when estimating X(s) in that way.

Additionaly, by defining the basis functions
(see [SCH15])

φi(s) =
{

−1, if i = 0
∑

N
j=1(K

−1)i jk(s j,s), otherwise (5)

we can write the computation of X(s) as

X(s) =
N

∑
i=0

Xiφi(s). (6)

with

X(s)∼N
(

µ(s) =
N

∑
i=1

φi(s)µi,

σ
2(s) = k(s,s)−

N

∑
i=1

φi(s)k(si,s)
)
.

(7)

Using Eq. 6, it is possible to compute the derivative of
X(s) by differentiating the basis functions:

δ µ(s)
δ s(n)

= E

(
N

∑
i=1

δφi(s)
δ s(n)

Xi

)
,

δσ2(s)
δ s(n)

=Var

(
N

∑
i=1

δφi(s)
δ s(n)

Xi

) (8)

This form of Kriging is called simple Kriging. Other
forms of Kriging differ mainly in the form of the as-
sumption of the prior (e.g. see [GOV97]).
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4 METHOD

In this section, we show how to work with Gaussian
regression on climate research datasets. Our goal is
to calculate the probability that a certain threshold will
(not) be exceeded. Thus, we construct uncertainty vari-
ables on the basis of the original climate data. We use
time dependent data from a global climate simulation
given on a rectilinear 2D grid. This could be interpreted
as a time series of data at each grid position.

4.1 Modeling the Gaussian Process

First we normalize each time series by removing the
seasonal component. Normalized time series have a
Gaussian distribution [LAR12]. So the normalization
enables us to compute the variability of the data and, of
course, to apply our method. Therefore, we replace the
value at each time step v(ts) with the average of these
values from the annual cycle. For example, if we have
monthly means, we replace v(ts) with the average of
the period [ts−6; ts+6]. Furthermore, we can remove
a linear trend in the dataset by replacing each time step
with its forward difference, i.e. v(ts)= v(ts+1)−v(ts).
Although the trend in temperature time series is not nec-
essarily linear, we can use this simplification for rela-
tively short time periods (i.e. 30 years). This step is
optional and best suited for datasets where linear trends
may disturb the normalization (e.g. temperature data).
In order to estimate the variability of the simulated data
at that position, we derive the empirical variance for ev-
ery grid point based on the normalized time series.

As described in section 3, the basic principle of Gaus-
sian process regression is to turn a prior Gaussian dis-
tribution, which we observe on the data, into a posterior
Gaussian distribution by taking the given samples and
the covariance into account. The prior distribution de-
scribes the uncertainty in the data acquisition method.
The posterior distribution on the other hand is in general
a better estimator for the uncertainty in the dataset in the
sense of having less variance. To model the prior distri-
bution, we need it’s mean and it’s variance. The mean is
constantly zero. This can be accomplished by subtract-
ing the empirical mean of the data from the samples.
When we display the results, we simply add the poste-
rior mean back on each sample point. This applies to an
error model, where the observed value is the sum of the
true (unknown) value and a zero mean Gaussian error.
The prior distribution variance is the maximum of all
the variances which we extracted at the grid points. The
maximum variance in the dataset is an obvious choice
for the prior variance, because the variance of the data
acquisition method is at least as big as the maximum
variance residing in the dataset. The prior variance (or
signal variance) is the factor σ2

p in the covariance func-
tion, see eq. 2, which results in k(s,s) = σ2

p (see eq. 4).

Algorithm 1 Creating The Cell Cache on the CPU
· l := length scale
· d := cell diameter
· n := number of Cells
· CellCache[n]

for i = 0 to n do
· b := barycenter(Cell)
· P := all sample points in radius [b−(3l+d),b+
(3l +d)]
· create and invert covariance matrix using all
points in P
· CellCache[i] := inverted covariance matrix, its
positions, and its samples

end for
· send CellCache to graphics card

for all pixels do
· calculateColor()

end for

Algorithm 2 "calculateColor()" – GPU Colormap Al-
gorithm.
· t := threshold
· idx := cell index of Pixel
· pos := position in (2D) world space of Pixel
· n := number of sample points in CellCache[idx]

for i = 0 to n do
· compute basisfunction φi using p and Cell-
Cache[idx]

end for
· compute distribution using the basisfunctions
and Eq. 7
· calculate probability p that the value at pos falls
below t
· color pixel according to p and given color map

4.2 Implementation
Gaussian process regression performs poorly on many
datasets. The reason is the storage and the inversion
of the covariance matrix. A method to reduce those
requirements, is the use of many small Gaussian pro-
cesses (and thus covariance matrices) instead of one
large process. For regular sampled datasets, it is fea-
sible to create a small Gaussian process for each grid
cell composed of the data points lying in a 3l + d ra-
dius of the bary center of the cell. Where l is the length
scale of the covariance function and d is the diameter
of the cell. This approach is described in more detail
in [SCH12]. The result is, that we have to invert one
relatively small covariance matrix for every cell instead
of one large matrix, which can also be done in parallel
for another speed up.

When an inverted covariance matrix (see Eq. 3) for
each cell of the dataset is computed, we send those
matrices to the GPU. We also store the dataset itself
as well as the indices of the data points that belong
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to each of those local Gaussian processes on the GPU.
The next step is to compute the probability distribution
according to eq. 4 for every pixel position which lies
inside our dataset domain. Now, we are able to com-
pute probabilities that values at that pixel fall below
or exceed certain thresholds (which in our case are in-
dices for extreme weather events). Furthermore, we are
able to accumulate those probabilities over several time
steps in order to compute probabilities that the values
fall below or exceed the threshold over a given period
of time. Given the fact, that we compute everything
on the GPU, we finally use the given probabilities for
each pixel to create a pixel precise color map which
can be rendered immediately by writing the color into
the frame buffer. The main advantage of this approach
is, that we send the required data (inverted covariance
matrix and the point indices) to the GPU once, which
will process both tasks, namely computing and render-
ing. There is no need to send the data back to the CPU.
Our implementation uses the OpenCL framework. The
algorithm’s pseudocode for processing the data on the
CPU to send it to the GPU is given in algorithm 1. The
pseudocode for the GPU implementation of the calcu-
lateColor() function is depicted in algorithm 2.

5 RESULTS
The data we use is a temperature data set from a global
climate simulation of IPCC scenario A1B with the
coupled atmosphere ocean general circulation model
(AOGCM) ECHAM5-MPIOM, which was carried out
as a contribution to the International Panel on Climate
Change Assessment Report 4 (IPCC AR4) [SOL07].
It is given on a 192 x 96 rectilinear grid. At each grid
point, there is a temperature data time series of monthly
means from the year 1860 to the year 2100. We used
the data from 1860 to 1890 in order to calculate the
variances for every grid position.

After the variances are calculated, we assigned them to
temperature data (simulated by the same model) given
on a 6 hour basis to calculate the probability that the
temperature of 273.15◦K (0◦C) was not exceeded in the
whole month of January 2001 (124 time steps). The
prior distribution is calculated as described in section
4.1. The result is given in Fig. 1. Additionally, we
zoomed into one area containing probability transitions
to demonstrate that this kind of interpolation in fact en-
ables rendering using arbitrary zoom factors and still
providing smooth results.

This kind of application is also interesting with respect
to regional climate changes. Therefore, we used as a
second example a data set from a simulation with the
regional climate model CLM [HOL08]. This is a com-
munity model for the German climate research, origi-
nally based on the LM forecast model of the German
Weather Service (DWD). The CLM simulation was

Figure 1: Colormap of the probability that the temper-
ature of 273.15◦K (0◦C) is not exceeded in the whole
month of January 2001.

Figure 2: Colormap of the probability that the surface
runoff exceeds a threshold of 60 kg/m2 at least five con-
secutive days in the summer of 1961.

forced with results of the IPCC scenario A1B simula-
tion with ECHAM5 / MPI-OM. The particular dataset
we used is the surface runoff. The surface runoff is the
amount of water that cannot be absorbed by the soil.
It is an accumulated quantity mainly based on precipi-
tation, snow melting, and the water content of the soil
surface and is an indicator for floods. If large volumes
of surface runoff flow into a river in a short period of
time, the likeliness of a flooding increases. In climate
research, one typically counts how often the data ex-
ceeds or falls below a threshold within a certain interval
to identify weather extremes; see [SIL] and references.
As in the example above, we can normalize the time
series data at each grid point and calculate the probabil-
ity that a certain threshold of the surface runoff is ex-
ceeded. With our method, we are able to interpolate the
data, incorporate the uncertainty of the simulations into
the interpolation and compute the probability pixel by
pixel. A second step would be to assign the results to
the corresponding river catchment basin and accumu-
late the probabilities over this area to derive potential
risks for people living near those rivers, see [SCH13].
Unfortunately this is beyond the scope of this paper.
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(a)

(b)

Figure 3: Images showing the regression error for k = 2
(Fig.3(a)) and k = 3 (Fig.3(b)).

The data we used is a cutout of 65× 50 grid points of
daily CLM data for Europe centered on Germany. The
grid is regular (data stream 3) and has a spacing of 0.2◦

(approximately 20km). It is a simulation run for the
20th century (20C) from 1961-1990. In Fig. 2, we de-
picted the probability that the surface runoff exceeds the
amount of 60 kg/m2 in at least five consecutive days
in the summer (June, July, and August) of 1961 as a
showcase. We can judge from the image that within
Germany especially regions inside the catchment basin
of the river Rhine have a high probability of exceed-
ing the threshold. This method can be a valuable tool
when performing research on larger time scales to eval-
uate the development of such quantities in order to draw
conclusions on climate change.

5.1 Error Analysis
In Section 4.2, we showed that cutting off the expo-
nential covariance function provides smaller cell caches
and thus a faster computation of the regression result.
On the other hand, this technique introduces errors,
which we will analyze using a sample 2D climate data
set (sea level pressure) on a 192x96 grid. Therefore,
we first calculate the inverted covariance matrix for all
the grid points, i.e. we do not cut off the covariance
function. Then, we do an regression of the samples
with this covariance matrix and use this as a ground
truth. The interpolated field again is regulary sampled
at 2880x1440 positions. In the next step, the field is in-
terpolated and resampled the same way but using short-

(a)

(b)

Figure 4: Diagrams showing the exponential drop of
the error with increasing covariance influence radius
(Fig.4(a)), as well as the exponential gain of compu-
tation time (Fig. 4(b)) for different k.

ened covariance functions, each with a different length:
kl + d, k = 1, ..,10. Finally, we compare those fields
with the ground truth and calculate the absolute aver-
age error.

An error colormap for k = 2 and k = 3 can be seen
in Fig. 3. We can conclude from those images, that
the error in fact decreases, when the covariance func-
tion gains a larger influence radius. But this comes at a
comparably high computational cost. The development
of error and computational cost to create the cell cache
is depicted in Fig. 4. We can conclude an exponential
drop of the error as well as an exponential increasing
computation time with increasing k. The average rela-
tive error for this particular field ranges from 0,0057%
to 4,27%.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we showed how climate data can be in-
terpolated in an arbitrarily dense matter. Therefore,
we use the framework presented in [SCH12] as a ba-
sis and extend it by implementing it on the GPU. This
enables interactive visualizations with arbitrarily dense
samplings. We normalized the time series data to ex-
tract the simulation variance. Then we were able to cal-
culate probabilities for certain occurrences like the ap-
pearance of extreme events while considering the vari-
ance. The resulting color maps can be computed in any
desired resolution. Especially when the underlying data
is sparse (like in Fig. 2), we nevertheless are able to pro-
vide visualizations with smooth transitions.

We want to point out that the variance we used in this
paper is computed from the given data. Of course there

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Short Papers Proceedings 289 ISBN 978-80-86943-58-9



are cases, when the variance may known a priori, for
example when the simulation model has a known er-
ror. The proposed method also works with that kind of
uncertainty as long as it is Gaussian distributed.

In general, Gaussian process regression works on any
type of scalar data regardless of the underlying topo-
logical structure. The only precondition is, that there
has to be covariance defined between any of the data
points in the given domain. This covariance is often
modeled with a covariance function, which then serves
as the interpolation kernel. Since we use Gaussian pro-
cess regression for the means of data interpolation, it
is suitable to use a distance based covariance function.
With these prerequisites, Gaussian process regression
resembles inverse distance based interpolation methods
(e.g. Shepard interpolation).

A suitable application of this paper is to study the prob-
abilities of extreme weather events. As mentioned be-
fore in Sec. 5, this work can therefore be extended by
assigning the calculated probabilities to certain areas of
interest to draw conclusions on the danger for flooding,
droughts et cetera. We consider this as future work.
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