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ABSTRACT

Navigation of autonomous vehicles in natural environments based on image processing is certainly a complex
problem due to the dynamic characteristics of aquatic surfaces, such as brightness and color saturation. This
paper presents a new approach to identify turbid water surfaces based on their optical properties, aiming to allow
automatic navigation of autonomous vehicles regarding inspection, mitigation and management of aquatic natural
disasters. More specifically, computer vision techniques were employed in conjunction to artificial neural networks
(ANNS), in order to build a classifier designed to generate a navigation map that is interpreted by a state machine
for decision making. To do so, a study on the use of different features based on color and texture of such turbid
surfaces was conducted. In order to compress the extracted information, Principal Component Analysis (PCA)
was performed and its results were used as inputs to ANN. The whole developed approach was embedded in an

aquatic vehicle, and results and assessments were validated in real environments and different scenarios.
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1 INTRODUCTION

With recent technological advances, several areas of
knowledge have been benefited from techniques of dig-
ital image processing and computer vision. The area
of robotics, mainly, stands out by the wide use of com-
puter vision, in order to acquire necessary knowledge
for agents from the universe around them. In addition
to the use of sensors, computer vision can provide more
information to increase and analyse the amount of data
that can be supplied [IMMO09a]. Navigation in natural
environments based on image processing is certainly
a complex problem. The main difficulties are the dy-
namic characteristics that aquatic surfaces can present,
due to variation of image features such as brightness
and color saturation. Physical factors such as light in-
tensity, shadows, reflections, diffraction and refraction
effects also influence the identification process for nav-
igation [IMMO9a].

International organizations related to risk reduction
show statistics stating that the impact of floods affects
over 500 million people, with a cost of $ 50 million
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annually, and it accounts for the highest number of
deaths registered in natural disasters [Krol5a]. The
effects of these disasters are even more drastic in
developing countries, due to lack of early warning
systems, flood control and emergency response infras-
tructure [SKV11a]. Considering this context, we are
interested in developing an approach to assist in the
navigation of an autonomous vehicle in a post-disaster
environment, both for gathering data and identifying
its real dimension. Some solutions for the navigation
of surface vehicles using computer vision have already
been developed. However, there are still some open
problems, as the availability of a method to navigate in
turbid water surfaces in adverse environments, which
could run in a hardware with computational limitations
and could be adapted to several autonomous vehicles.

The main goal of this paper is to present an approach for
automatic identification of navigable turbid water sur-
faces, based on computer vision techniques. We focus
on the key subproblem of automatically segmenting tur-
bid aquatic surfaces for autonomous navigation. The re-
sult of this process is the generation of a navigation map
to guide the direction to be taken by the autonomous
vehicle. Seeking to improve accuracy, two ANNs were
trained: the first one to recognize turbid water regions
without reflection and the second one to identify those
regions with reflection [GSWO07a, ASN11a]. These
ANNS, as well as all the algorithms of this approach,
run independently in an embedded hardware. A naviga-
tion map is built and, then, a finite state machine guides
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the direction to be taken by the autonomous vehicle,
which can be a boat, a navigable platform or a smaller
device.

The main contributions of the presented approach are:

e Proposal of a method to estimate navigable turbid
water surfaces from images captured by a monocular
camera positioned on an aquatic vehicle;

e Generation of a navigation map that determines the
limits of navigable regions and that can be inter-
preted by other algorithms for navigation;

e Presentation and development of an algorithm for
decision making related to autonomous navigation,
based on the generated navigation map;

e Embedding the developed approach in an aquatic
vehicle.

The remainder of this paper is organized as follows.
Section 2 presents some related works. We briefly de-
scribe the developed approach in Section 3. In Sec-
tion 4 we present some experiments and results. Fi-
nally, the last section presents closing comments and
future works.

2 RELATED WORK

Some solutions of locomotion for surface vehicles
using computer vision have already been devel-
oped [SMB12a, SMHO04a, GSW07a, HS11a, ASN11a,
RMBI11a]. A detailed description of consequences,
influences and variations in variable values, as well
as the challenges that effect the ability to detect water
surfaces by optical means, is presented by Igbal et
al. [IMMO09a]. They focus on difficulties involved in
the detection of water bodies, along with state of the
art techniques that deal with this topic. Andrew et
al. [CANI11a] also emphasize that aquatic environments
present several problems, such as the reflection of other
objects on the water surface, currents and waves that
distort the aspect of water, or the presence of debris or
sediment, which changes the color of water or causes
movement on its surface.

According to Huntsberger et al. [HAH11a] and Yao et
al. [YXLO07a], a vehicle equipped with a water detec-
tor based on computer vision has a higher probability
to navigate safely and efficiently. This is particularly
emphasized when the vehicle is in an unknown envi-
ronment. The image acquisition in this case can be done
by a set of cameras [SMHO04a] or just a monocular cam-
era [SMB12a, CAN11a, YRCl11a].

For example, Santana et.al. [SMB12a] propose a model
for water detection with segmentation guided by dy-
namic texture recognition. From an input video, they
defined that the region of water has a signature, based
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on the measure of entropy over the trajectories obtained
from optical flow trackers. In order to classify regions
with a higher degree of reliability in surfaces of little
ripple, a segmentation method based on appearance is
applied. Then, every image is labeled in segments with
water if they cover a certain percentage of pixels classi-
fied as water by the method based on entropy and tex-
ture. It presented a good true positive rate; however,
this model does not adapt to mobile cameras due to its
constant movement. According to the authors, track-
ing stabilization techniques would help in reducing the
inertial optical flow induced by camera moving.

Rankin and Matthies [RM10a] proposed the detection
of water bodies and ponds through the behavior model-
ing of these surfaces. They used intensity data based on
the variation of color spaces RGB and HSB to estimate
the contribution of the reflection coefficient, consider-
ing the reflection surface and a combination of other
factors such as saturation and brightness. According to
the authors, the developed method for detecting water
bodies in open areas proved to be sensitive to any re-
flection, both vegetation and objects on the aquatic sur-
face. One way to deal with possible exceptions could
make this method more robust and less limited.

Other works [GSWO07a, ASN11a, HS11a] use a robust
descriptor with the analysis and combination of features
to build a classifier with supervised learning. According
to the authors, the use of a set of training data allows
to build a good classifier to distinguish water surfaces,
since natural environments suffer variations, as physical
factors.

Gong et al. [GSWO07a] present a two-stage algorithm
to find the margin between water and land. Images
are collected and classified into two types: Reflection-
identifiable and Reflection-unidentifiable. After, the
images are segmented into smaller regions based on
their color and uniformity, which are classified into ar-
eas of land or water according to features such as sym-
metry and brightness. Then, the algorithm traces a
border to separate water from land regions by means
of a classifier using an adaptive threshold segmenta-
tion. Frames with 320 x 240 pixels with reflection-
identifiable processing take 2 seconds to be processed,
and frames with reflection-unidentifiable take 27 sec-
onds. Besides being a computationally expensive al-
gorithm, it also seems hard to be implemented in au-
tonomous video capture application.

Achar et al. [ASNlla] propose a self-supervised
method to segment images into "sky", "river" and
"shore" regions. It uses assumptions about river scene
structure to learn about appearance models based on
features as color, texture and image location, con-
sidering the horizon line to automatically specify the
correlation among features. It extracts features of color
spaces RGB, Lab and HSV individually and in various
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combinations to train the classifier. Thus, it allows
to label each part of the image with the probability
of being water. Each labeled region is used to train
a support vector machine (SVM) model generating
the output for each image segment. This method
presents good results, but each frame of 640 x 360
pixels takes around 2.32 seconds to be processed in
a high-performance computer. Thus, it is difficult to
embed it in medium and small vehicles.

Considering the methods described in several
works [RM10a, ASN11a, IMMO09a], we have adopted
the use of several features (see Section 3.2) for
the development of our approach. This is because
the aquatic surface not only changes its optical
property such as saturation and brightness, but it
is also not uniform, causing color variation. Some
techniques are robust to distinguish, segment and
identify aquatic surfaces based on color analysis,
and by using several color spaces, it states that a
color descriptor associated with a vector of features
becomes robust using statistical measurements to form
classifiers [RM10a, ASN11a, HS11a, GSW07a].

3 APPROACH DESCRIPTION

This section presents the proposed approach for the au-
tomatic identification of navigable turbid water surfaces
and automatic navigation of aquatic vehicles. It starts
with an overview of the developed methodology, fol-
lowed by an explanation about each implemented step.

3.1 Methodology Overview

The developed approach has several steps, as presented
in Figure 1. Initially, sequences of images are col-
lected by a monocular camera coupled to the prototype
of the autonomous aquatic vehicle shown in Figure 11-
(b). Then, the first step consists in the subdivision of
each input frame / into blocks of r x s pixels. The val-
ues of r and s should be set to ensure good compu-
tational performance and classification granularity. In
our experiments, we set r = s = 10 pixels, since our in-
put frames have 320 x 240 pixels. Thereafter, for each
block B, a set of 32 colors and texture features is ex-
tracted (see Section 3.2). We standardized these fea-
tures and changed the coordinates of z-scores, by pro-
jecting them into the subspace of k principal compo-
nents obtained through Principal Component Analysis
(PCA) for the training phase described in Section 3.3,
hence reducing data dimensionality. The values ob-
tained are submitted to the classifiers, modeled as mul-
tilayer perceptron Artificial Neural Networks (ANN).
As output for the ANNSs, each image block B is classi-
fied as a "navigable" or "non navigable" region, inde-
pendently. This procedure allows us to classify each
block in different threads, which increases computa-
tional performance. Once all image blocks have been
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classified, we built a navigability map for each frame.
This map is then submitted to a Finite State Machine
(FSM), that interprets it and defines the actions to be
performed by the vehicle. The following sections de-
scribe this methodology.

3.2 Extraction of image features

Each image block B is processed individually as fol-
lows: Firstly, we convert it to HSV and YUV color
spaces, keeping the original RGB block image; after-
wards, it is split into 8 color channels (red, green, blue,
hue, saturation, value, luminance and chrominance).
Then, we compute a series of statistics for each one,
as described below.

Initially, we computed the normalized histogram of in-
tensities for each channel c. Hereafter, these histograms
will be denoted as H,, with ¢ € { Red, Green, Blue, Hue,
Saturation, Value, Y(luminance), U(chrominance) }.
The value of element /,; from the histogram H, is given
by:

hei =", (1)

n

where i € [0,M], n; is the number of pixels with inten-
sity 7 in each channel ¢ of a given image block,n =r X s
and M is the maximum intensity value of the color
channel, i.e., M = 255 considering a color depth of 8
bits per pixel.
Given the eight normalized histograms H,, the follow-
ing statistics are computed:

e Average:

M—1
Vo= Y ixhe. )
i=0
e Entropy:
M—1
Ec = - hci 10g2 hci- (3)
i=0
e Variance:
S 2
o; =) (i—v) xhe, )
i=0
o Energy:
M—1
ee=Y (hi)’. (5)
i=0

After all these statistical measurements have been com-
puted, 32 features per image block were generated (av-
erage, entropy, variance and energy of the 8 color chan-
nels). Next sections explain how these features are used
to train ANNSs and, subsequently, as inputs for turbid
water recognition.
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Developed Approach

Division Extraction of Dimensionality Classifier:
Image into blocks image features reduction assiiiers Map of
Capture W L Navigability
Blocks t Features
Action Finite State
(vehicle control) Machine
Navigation algorithm
Figure 1: Diagram showing the steps of the proposed methodology.
3.3 Preprocessing and Training
In order to accomplish the proposed goals, we used a o fi— fmin
supervised approach, i.e., we trained our classifiers us- fi= Fnax — fouin (6)

ing labelled features. Thus, for our experiment, we
used a video made in the scenario presented in Fig-
ure 10 as a training environment. We selected a set of
15 frames randomly chosen to cover different condi-
tions of luminosity and water turbidity. The acquisition
was performed through a monocular camera attached
to the prototype vehicle described in Section 4.3. These
images were then divided into blocks as previously ex-
plained, and the 32 features were extracted.

Next, we performed the manual annotation of image
blocks. To this end, an interactive tool was built, in
which users were asked to paint in green all navigable
regions from the input images, through mouse interac-
tions. Users were supposed to paint disjoint regions,
according to the presence of water or not. Figure 2
presents two annotated frames, where blocks marked in
red are "not navigable" and the blocks marked in green
are "navigable".

Figure 2: Annotation process of training frames.

A common procedure to avoid data over-fitting and to
increase the generality and convergence speed of pat-
tern recognition methods is to employ a dimensionality
reduction technique [BisO6a]. We chose to apply Prin-
cipal Component Analysis of features to accomplish
this goal.

First of all, we performed the standardization of the fea-
tures from the samples. For this, for each image block,
the 32 previously described features were computed.
We normalized every feature f; with respect to their
range of values, as follows:
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where f ; 1s the normalized value of each feature, f; is
the original value of the feature, j = 1,2,...,32, fii, 1S
the minimum value of feature j, and f;,,, 1S the maxi-
mum value of feature j, considering all training blocks.
Given the normalized values, we computed, for each
feature j, the average ; and the standard deviation o7,
considering all samples. Then, each extracted feature
f 7 was standardized, according to the equation:

Ji—H

Zj= o @)
The z-scores of the features computed through Equation
7 of every training block were finally submitted to PCA.
The use of PCA as a preprocessing step for a machine
learning method can accelerate its convergence, since
it allows dimensionality reduction and the correlation
among features [YZLO06a]. Figure 3 shows the labeled
z-scores projected in the sub-space defined by the three
principal components, achieved through PCA. We can
notice a visible separation of the blocks classified as
navigable (red) from the non-navigable ones (blue). We
can also observe that this separation is non-linear. Due
to this fact, an artificial neural network was employed
as a classifier.

The values of u;, o; and the matrix of the sorted eigen-
vector from the covariance matrix M obtained in PCA
are stored to be used to compute features from images
acquired during the experiments conducted in real en-
vironments described in Section 4.3. The eigenvectors
are sorted according to crescent order of eigenvalues.

We defined the ideal dimension of principal compo-
nents based on the work by Ian [Jol02a] to minimize the
complexity subject to a limit on the fidelity of the prob-
lem. According to the author, the set of components

320 ISBN 978-80-86943-58-9



ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

Figure 3: Standardized features from training blocks
projected into the subspace defined by the three princi-
pal components from PCA.

for analysis of values is above a threshold 7 eigenval-
ues > 1. In our experiments we verified that 81,25%
of data variability are incorporated by projecting stan-
dardized features into the subspace of the six principal
components. Due to this fact, the data coordinates in
the subspace of dimension k = 6 are then used as in-
put for training the ANN. Thus, the data dimensionality
was reduced to k = 6. The values i; and o; are kept
and used to standardize the features extracted from new
image blocks that must be classified when the vehicle is
operational. Next section details the architecture, train-
ing and performance of ANNs.

3.4 Classifier

This subsection presents the two ANN classifiers de-
veloped for the turbid water surface identification. The
purpose of ANN classifiers is to determine if an image
block corresponds or not to a navigable surface. The
classifier can be defined as follows: B is a block of an
image to be classified and CP = { CP;,CP,,---CP; }
is the set of coordinates of the extracted features in the
subspace of k principal components, computed as ex-
plained in the previous section. Thus, the ANN classi-
fier receives the CP’s scores as input and returns a value
V €0, 1]. The smaller the value of V, less likely it is for
a block to correspond to a navigable surface; whereas
the greater the value of V, the greater the probability of
being a block that corresponds to a navigable surface.
We trained two ANNSs: the first one described in Sec-
tion 3.4.1, aims to recognize turbid water surfaces, and
the second one aims to recognize regions of reflection
on these surfaces, as explained in Section 3.4.2. Fig-
ure 4 shows the scheme for the classifiers’ modelling
(a) and their final architecture (b).

3.4.1 Navigable Surface Identification

In order to solve the problem stated in this approach, we
adopted a 3-layer Multilayer Perceptron topology for
ANNs [BhalOa]. The input layer has k neurons since
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ANN
CP,
CcP
CP,

(a) Classifier modeling

Classifiers

/Classifier I/ Classifier |

(b) Architecture of classifiers

1|

Figure 4: (a) shows how each classifier is built and (b)
shows the architecture of our classifiers.

the input data are the set of scores of the training im-
age blocks (in our case, k = 6). The intermediate layer
has % neurons. The output layer has only one neuron
since the output is a scalar value V € [0,1]. Figure 4-
(a) shows the modeled classifier. If V < 0.5, the output
means that the image block belongs to a non naviga-
ble region; if V >= 0.5, that block will be considered
as navigable. Intermediate values indicate a low confi-
dence in the classification. Figure 5 shows the values
of V for image blocks from the input image on the left,
mapped to greyscale images.

We use the resilient propagation algorithm for training
our multilayer feedforward network [KNS99a]. Ac-
cording to Svozil et al. [SKP97a], it increases the res-
olution capability for non-linear problems and ANN
becomes very robust, i.e., their performance degrades
gracefully in the presence of increasing amounts of
noise. In this algorithm, synaptic weights of the net-
work are adjusted according to signal error propaga-
tion [Hay98a]. In order to plan an assessment of the
convergence of ANNs in the training phase, we used
the method developed by Shinzato at al. [SGOW12a].
This method assigns a weight to the classification er-
ror for a given ANN, by computing a score S. For the
sake of exemplification in this method, a greater weight
is assigned to an ANN output with error of 0.1 than an
output with error of 0.2. Through this weighted score,
there is a tendency to "reward" ANNs with fewer large
errors or several small errors and "punish" the other
ones. Equation 8 shows how to calculate the score:

hmax
. ) (,-Zo h(i).p(i) ) +1 ®)
B 2.0 ,

ISBN 978-80-86943-58-9



ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

where N is the number of classes (N = 2), h(i) is the
number of errors ranging from ;, Wiax to h’; ;x and hmax is
the number of intervals to be considered for discretiza-
tion in the error counting process. The value of hmax
determines the precision for interpretation of the output
from the ANN. In other words, e.g., if imax = 10, then
the output that has a real value ranging from O to 1 is
divided into 10 intervals of errors: an error interval for
values between 0.0 and 0.1, other error interval for val-
ues between 0.1 and 0.2, and so on. After the training
phase, the network is executed for each block.

The training of ANNSs is repeated until the convergence
is reached. In the proposed implementation, the stop
criteria adopted is S = 95% or a limit of 5.000 epochs.
Our first ANN reached 95.52% in 1.730 epochs, and the
second ANN 95.29% in 460 epochs. After this process,
we kept the best ANN, to be used in real time for image
blocks’ classification.

3.4.2 Reflection Zone Identification

In our experiments, we learnt from the classification re-
sults of the ANN described in the previous section that
a high number of false negatives occur in regions with
high reflectance on the water surface. In order to ad-
dress this problem and enhance performance, a second
ANN was trained. The goal of this second ANN is to
correctly classify blocks belonging to reflection zones
on the water surface as navigable. The topology of this
second ANN is the same as described in Section 3.4.
The input for the training step consists of features ex-
tracted from image blocks manually classified as "re-
flection zone" (therefore, "navigable") and "non reflec-
tion zone". These features are extracted following the
same procedures described on Section 3.3.

Due to similarities of reflection zone features and other
non navigable zone features, we only applied this sec-
ond ANN to image blocks below an automatically com-
puted horizon line L1 (shown in Figure 5). This line is
defined by the upper row of blocks that have at least
25% of classification as "navigable" by the first ANN.
Only features extracted from blocks classified as "non
navigable" by the first ANN and below the horizon line
are submitted to the second ANN. Figure 4-b illustrates
this flow. Images in Figure 5 exemplify inputs and out-
puts from both ANNs. On the left side images, one
can note reflection zones on the turbid water surface.
The output of the classification computed by the first
ANN is shown in the central images, where values of
V are mapped to greyscale values (brighter blocks in-
dicate navigable regions). The red ellipses in Figure 5
indicate false negative zones due to reflection and L1 in-
dicates the horizon line. Then, the images with blocks
classified as "non navigable" by the first ANN that are
below L1 are submitted to the second ANN.
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Figure 5: On the left are the two input images; the im-
ages of the middle show the results from the classifica-
tion of the first ANN, with reflection zones marked by
the ellipses; the images on the right side show the result
with the combination of both ANN classifiers.

3.4.3 Classifying New Images

The model described in previous sections was embed-
ded in an aquatic vehicle, as a prototype. More details
on this prototype can be found in Section 4.3. Once the
vehicle is on the water surface, new images are acquired
by the coupled camera. These images are converted to
HSV and YUYV space colors, split into 8 color chan-
nels, divided into blocks and, for each block, statistics
defined in Equations 2 to 5 are computed. This fea-
tures are then normalised and standardized, according
to Equations 6 and 7, which lead us to z-score values.

Given the set of z-scores of new image blocks, we must
project them into coordinates of the PCA space. To this
end, we used the autovector matrix M for the change of
basis of the extracted features:

PC=MZ. )

where M is the matrix of sorted eigenvectors obtained
by PCA, and Z is the vector of normalized and stan-
dardized features extracted from each block.

The scores of k’s principal components corresponding
to each block are then submitted to the first ANN. The
horizon line L1 is then determined. Blocks with value
V < 0.5 assigned by the first ANN below the horizon
line are submitted to the second ANN. The output of
these procedures is a matrix, whose elements corre-
spond to an image block. From now on, this matrix
will be addressed as map of navigability. This map
will guide the decision-making about the direction the
vehicle must follow. Next section explains how the
decision-making process was implemented.

3.5 Navigation algorithm

Given the navigation map composed by the output from
blocks’ classification, a decision making process must
be employed to guide the navigation of the aquatic ve-
hicle. This process begins with the subdivision of the
navigation map into four regions, as shown in Figure 6-
(a). For each navigation map, the regions SP1, SP2,
SP3 and SP4 are defined by lines L1, L2 and L3. L1 is
the horizon line that also appears in in Figure 5.
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Figure 6: (a) Definition of areas for decision making;
(b) search of classifications based on predefined areas;
(c) combination of predefined areas with the navigation
map.

Lines L2 and L3 of Figure 6(a) are defined, respectively,
according to:

1
Y2 = §nr+xz,

1
y3:%nr+nc—X3, (10)

where nr is the number of rows of blocks, nc is the num-
ber of columns of blocks, y, and y3 are the rows, x, and
x3 are the columns of lines L2 and L3, respectively. The
origin is in the upper left corner of the navigation map
and y is oriented top down.

Once the areas are delimited, an FSM defines if the ve-
hicle must remain in the same direction, turn left, turn
right or stop. First of all, we computed the number of
blocks classified as "navigable" in each region. The de-
cision process can be summarised as follows: (1) if the
row of the horizon line L1 is higher than %.nr, the ve-
hicle should stop. This occurs mainly when there is
few or no navigable blocks ahead of the vehicle; (2)if
the number of blocks classified as "navigable" in SP2 is
higher than in SP3 and SP4, the vehicle should turn left;
(3) if the number of blocks classified as "navigable" in
SP3 is higher than in SP2 and SP4, the vehicle should
keep forward; (4) if the number of blocks classified as
"navigable" in SP4 is higher than in SP2 and SP3, the
vehicle should turn right.

Figure 7 illustrates this FSM, with the diagram of ac-

tions to be taken according to analysis carried out on
the navigation map and the predefined areas.

Quantifies map
navigability

2 Reset Active
SP. region Fardware
>Turns right| -
Reset Active
SP4 region Fardware

Figure 7: Decision diagram for FSM actions.

The approach to decision making is a proof of concept,
developed to ensure fast performance when embedded
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in the aquatic vehicle. We use FSM because we can
easily describe a sequence of states considering differ-
ent contexts for each input image. Then, it is easy to
change from one state to another, defining a specific ac-
tion to be taken for each state. Next section presents
and discusses the results achieved by our approach.

4 RESULTS AND DISCUSSION

This section presents some obtained results, aiming
to validate the presented approach. Subsection 4.1
presents the scenarios where the images were collected.
The performance metrics evaluated and the results of
the tests in real environments are presented in subsec-
tion 4.2. In subsection 4.3 we describe our prototype.

4.1 Images and environment

We chose three different environments for extracting
the images used to evaluate the developed approach.
All images were collected from these environments un-
der different timetables and after a heavy period of
rain, in order to achieve the characteristic of turbid wa-
ter surface. Thus, we tried to approximate as close
as possible to the conditions of a real situation where
an autonomous vehicle can assist navigation in a post-
disaster environment. Figurell-(c) shows our proto-
type in action, and some of these frames of each evalu-
ated scenario are presented in Figure 8. Each scenario
with its peculiarities will be further described.

4.1.1 Scenarios’ description

Scenario I corresponds to a rural environment, made up
entirely of vegetation, with many trees, rocks and grass
on the slope. Figure 8-(a) exemplifies some frames of
this scenario. It is possible to notice on these images
that the aquatic surface presents large incidence of re-
flection of the sky, changing the optical property of the
turbid water surface.

Scenario II is also a rural environment, but it presents
less vegetation and some houses, some of which even
working as a form of obstacle to the boat. Figure 8-(b)
presents some frames of scenario II. In these images,
it is possible to see that there was little incidence of
sky reflection on the water surface, showing a subtle
reflection of vegetation and houses.

Scenario III corresponds to an urban environment, de-
picting a real situation of natural disaster. This envi-
ronment is more complex, since it presents heteroge-
neous situations. As shown in Figure 8-(c), the images
extracted from this scenario can contain, for example,
people, cars, animals, and buildings.

4.2 Approach evaluation

Considering the ROC (Receiver Operating Characteris-
tics) analysis [Faw06a], the evaluation was performed

ISBN 978-80-86943-58-9



ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

(a) Frames of scenario I

(b) Frames of scenario II

(c) Frames of scenario III

Figure 8: Some examples of frames illustrating each
environment used to evaluate the developed approach.

in terms of accuracy, sensitivity and precision, as de-
fined in Equations 11, 12, and 13, respectively.

TP+TN

Accuracy = ) (11)
TP+TN+FP+FN
TP
Sensitivity = ————, (12)
TP+FN
TP
Precision = ————— 13
recision TP+FP’ (13)

where TP, TN, FP, and FN refer to True Positive, True
Negative, False Positive and False Negative, respec-
tively.

We consider that the proposed approach had a satis-
factory accuracy rate in our experiments (Figure 9). It
achieved an average accuracy of 95.85% with standard
error of 0.924 for scenario I, an average accuracy of
93.35% with standard error of 0.882 for scenario II, and
an average accuracy of 91.21% with standard error of
0.980 for scenario III. Figure 10 shows the results for
some random frames classified in each scenario.

By analyzing the generated average values for each sce-
nario, it is possible to verify better results of the evalu-
ated metrics for the first scenario. One reason for this
may be due to the fact that some images acquired in this
scenario were used for training the ANN. Scenario II is
quite similar to the first one used for training. Thus,
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Figure 9: Evaluation results for each scenario.

although it is an unknown scenario, a good result was
obtained with an average of 90% among the evaluated
metrics. Scenario III corresponds to an adverse envi-
ronment with a lot of diversity, such as people, houses,
cars and objects floating on the water surface. Even so,
the approach proved to be efficient, since it has a good
sensitivity evaluation, which demonstrates a good per-
formance in identifying the surface with a high rate of
true positive values. On the other hand, lower values for
precision are due to high rate of false positive values.

4.3 Embedded approach

In order to evaluate the developed approach for au-
tonomous navigation in a real environment, it was em-
bedded in an aquatic vehicle. We build and develop our
approach using the programming language C, with sup-
port of OpenCV library, OpenMP for multiprocessing
programming, and Fast Artificial Neural Network Li-
brary (FANN), a free library that implements an ANN
multilayer in language C [NisO5a]. The hardware used
was a Raspberry Pi board (RPI) model 2 and a Rasp-
berry camera. Figure 11-(b) shows the prototype of
the aquatic vehicle with the RPI board and camera con-
nected. Its advantage is the processing totally made on
the boat, without the need of having communication or
sending commands through an external computer.

Results achieved with the RPI 2 board were: 46% of
processor usage, 308.9 MB of memory for execution
and 2.5 frames per second (FPS). Figure 11-(a) shows
our approach running on the operating system RPI 2.
Analyzing the performance of obtained results and con-
sidering the usual speed of aquatic vehicles it’s possible
to say that 2.5 FPS is an acceptable performance.

We used our prototype to evaluate the navigation al-
gorithm, which is based on the generated navigation
map. For this evaluation, we collected 48 frames of
the described scenarios, with twelve frames for each
possible action command defined in our FSM (four for
each scenario). Then, we analysed each frame to define
the best action or the expected command considering
the aquatic surface and its obstacles, and we compared
them with the executed command. Tablel presents the

ISBN 978-80-86943-58-9



ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

scenario |

scenario |

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

scenario Il

Figure 10: Results obtained for each scenario: (a) input frame; (b) map of generated navigability, and (c) overlay

to indicate the navigable region.

(a)

(b) (©)

Figure 11: (a) Performance evaluation of the approach
on the RPI 2 board; (b) Prototype built for approach
evaluation; (c) Prototype running our approach to col-
lect obtained results in a real environment.

expected commands for these selected frames and the
executed commands by our algorithm.

For the obtained average of 66.25%, we considered
only the expected values as correct, even though other
commands could also be suitable. The low value for
the "stop" command is because the vehicle was pro-
grammed to stop just when there were few or no navi-
gable blocks ahead of it.

5 CONCLUSION

In this work we proposed an approach for automatic
identification of navigable turbid water surfaces, based
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Table 1: Comparison of expected and executed com-
mands by the developed FSM.

Set of commands Expected | Commands
defined Commands | Executed
Forward 12 8
Turn right 12 9
Turn left 12 10
Stop 12 5
Hit average movement 66,25%

on computer vision techniques. Artificial neural net-
works (ANNSs) were also used to build a classifier de-
signed to generate a navigation map, and principal com-
ponent analysis (PCA) was performed to compress the
extracted information used as input to ANN.

The proposed approach was quantitatively evaluated
using a dataset containing images extracted from three
different scenarios. Experimental results indicated that
the approach effectively identified navigable region
achieving between 91.21% and 95.85% of accuracy.
For testing and evaluation of our approach, we built
a prototype used in three real environments in order
to demonstrate the adaptability and viability of our
approach to autonomy of aquatic vehicles. Thus,
we believe it can be used to assist navigation of an
autonomous vehicle in a post-disaster environment.

For future work we intend to use pre and post-
processing techniques in the navigability map, mainly
to improve false positive results. We would also like to
improve our navigation algorithm, in order to develop
better search directives on the navigability map and,
consequently, execute more precise commands in
our FSM. Furthermore, we also want to use other
sensors such as laser or distance sensors to increase the
capacity of performance in navigation.
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