
A Novel Accurate 3D Surfaces Description Using the
Arc-Length Reparametrized Level curves of the Three-Polar

Representation

Amal Rihani
CRISTAL Laboratory,

GRIFT research group
ENSI, La Manouba

University
2010, La manouba,

Tunisia
amal.rihani@ensi-uma.tn

Majdi Jribi
CRISTAL Laboratory,

GRIFT research group
ENSI, La Manouba

University
2010, La manouba,

Tunisia
majdi.jribi@ensi.rnu.tn

Faouzi Ghorbel
CRISTAL Laboratory,

GRIFT research group
ENSI, La Manouba

University
2010, La manouba,

Tunisia
faouzi.ghorbel@ensi.rnu.tn

ABSTRACT
This paper studies the problem of the 3D surfaces representation. Our starting point is the extraction of the three-
polar representation from the 3D shapes. It consists on a level curves set of the superposition of the three geodesic
potentials generated from three reference points of the surface. These curves are characterized by their invariance
under the M(3) group of R3 displacements. We intend to make the arc-length reparametrization of each level curve
to ensure its independence to the initial parametrization. The novel representation is materialized by the points of
the arc-length reparametrization of all the level curves. Therefore, we obtain an invariant representation under the
M(3) transformations group and independent to the initial parametrization. In this work, we implement it on 3D
faces since this type of surfaces knows actually a growing interest for the identities determination especially after
the many terrorist acts occurred around the world. We experiment, in this context, the identification scenario on a
part of the BU-3DFE database. The obtained results show the accuracy of the novel representation.

Keywords
Three-polar, geodesic potential, level set, curve, arc-length, shape representation, invariant, approximation, 3D
face, identification.

1 INTRODUCTION
3D shape recognition has become an important issue in
the pattern recognition field. This is due especially to
the growing development of the 3D scanning tools and
the good quality of the obtained 3D data. The pattern
recognition with three dimensional data was proposed
as an alternative to the one with 2D images. In fact, 3D
surfaces permit to overcome the problems of pose and
illumination often encountered in 2D data.
However, 3D surfaces lack of a canonical parametriza-
tion. Indeed, for the same surface, many parameteriza-
tions could exist. They depend on the point of view and
the orientation of the surface. This fact makes hard the
recognition procedure with 3D data. In order to cross
as much as possible these difficulties, the extraction of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

invariant description from 3D surfaces under some ge-
ometrical transformations is proposed as an efficient al-
ternative.
We intend in this work to construct a novel repre-
sentation of 3D surfaces which is invariant under the
M(3) group of transformations (R3 rotations and trans-
lations). This novel representation could be applied to
all types of 3D objects. We give, here, a special atten-
tion to 3D faces. In fact, this type of surfaces is actually
of a paramount importance. It is a powerful tool for the
persons identities recognition.

1.1 Related works
We present in this part, an overview of some 3D sur-
faces description methods including several ones that
were implemented on 3D faces. In the literature, the 3D
shape description methods can be classified into four
main families: the view based methods, the graph based
approaches, the global ones and those considered as lo-
cal.
In the view based approach, a 3D object is character-
ized by its 2D projections on canonical directions. In
fact two objects are assumed to be similar if they are
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similar from the same point of view. 2D invariant de-
scriptors could be, then, applied on this set of 2D im-
ages in order to extract an accurate representation of the
3D object. The 2D Zernike moments [Che03] and the
Fourier descriptors [Vra04] are among of the most used
descriptors in this context.
For the graph based methods, we try to represent a 3D
object as a graph showing how shape components are
linked together. These methods can be classified into
two major categories: the Reeb graph one [Tun05] and
the Skeleton method [Sun03]. The Reeb graph is a
topological structure. It is obtained according to the
Morse theory [Shi91] that characterizes a closed 3D
surface. In the case of the Skeleton graph, a 3D ob-
ject is represented by its Skeleton often obtained by the
median axis of the used 3D surface.
In the construction of a 3D global shape description
method, the representation of a 3D surface is obtained
by the geometrical characteristics of the whole object.
Several 3D global surfaces description methods were
performed in the literature. Osada et al. [Osa02] pro-
posed the 3D distribution forms method. It consists on a
novel signature of a 3D object obtained by a probability
distribution of a shape function. Paquet et al. [Paq99]
were among the first who proposed the famous cords
histogram method. It is based on the extraction of the
statistical characteristics from the cords of the 3D ob-
ject. Here, we denote by cords, all segments connecting
the gravity center of a 3D object and its triangles cen-
ters. The famous 3D Hough Descriptor (3DHD) pro-
posed by Zaharia et al. [Zah01a] is a global descriptor
that accumulates the parameters of the representative
planes defined by the triangles in a given 3D mesh.
In the fourth approaches category, a local 3D represen-
tation is extracted from a 3D surface. Several past 3D
local shape description methods were proposed. We
mention the pioneer work of Faugeras et al. [Fau86]
that characterizes a 3D surface by its high curvature val-
ues zones. Zaharia et al. [Zah01b] used the high curva-
ture values surface points or the inflexion ones to extract
a statistical description from histograms. Their descrip-
tor is called the shape index histogram. Bannour et al.
[Ban00] generalized the idea of the 3D surface descrip-
tion by only the high curvature zones to a method that
describes a 3D surface by a set of invariant points cor-
responding to the levels of the curvature values areas.
In the context of 3D faces description with curvatures,
Shu-wei et al. [Shu12] used the gaussian curvature to
characterize the 3D faces. Here, a 3D face is described
by a feature vector of gaussian curvature. The distance
between pair of 3D faces is obtained via the distance
between their feature vectors. Ganguly et al. [Gan14]
proposed to describe a 3D face by a two pairwise curva-
tures analysis. The first one is the mean, and the maxi-
mum curvatures and the second pair corresponds to the
gaussian and the minimum curvatures. 3D faces are,

then, compared and matched using this description. In
order to compare between 3D faces, several methods
based on a curvature computation were used to to ex-
tract interest points from this type of 3D surfaces. De
Giorgis et al. [Deg15] identified fiducial points from
3D faces using a multi-scale curvature analysis. Berreti
et al. [Ber13] proposed to use the meshDOG algo-
rithm (Difference Of Gaussian) based on a mean curva-
ture computation to determinate accurate interest points
from 3D faces. Another kind of local 3D surface de-
scription is based on the geodesic computing around
feature points. Many authors [Sam06, Sri08, Gad12]
proposed to compute the unipolar representation that
consists on the geodesic level curves around a refer-
ence point of the 3D shape. They impose, therefore,
a coordinates system to the 3D surface. They apply
these representations in the context of 3D faces descrip-
tion. Other works, used many unipolar representations
around many reference points to locally describe a 3D
surface [Maa11]. In order to ensure a more stability of
the unipolar representation in the case of error on ref-
erence point, Ghorbel et al. [Gho13] proposed a novel
representation called the bipolar one. It consists on the
invariant set of points corresponding to the levels of the
sum of the two geodesic potentials generated from two
reference points of the surface. Here, the geodesic in-
formation coming from each reference point are com-
bined and not used each one lonely like the representa-
tion with many unipolar representations [Maa11]. Jribi
et al. [Jri13, Jri14] proposed a novel representation
qualified by the three-polar one. It is defined by the
invariant points of the surface corresponding to the lev-
els of the sum of the three geodesic potentials gener-
ated from three reference points. The same authors pro-
posed an ordered version of the three-polar representa-
tion obtained by the intersection between the last one
and the radial lines levels representation obtained with
the same angular separation [Jri15]. The last represen-
tations (bipolar and three-polar) were implemented and
tested on some 3D faces.

1.2 Our approach
We propose here a novel 3D surfaces representation.
The base of this work is the three-polar one. This
last one corresponds to a set of invariant curves under
the group of R3 rotations and translations(M(3) group).
Once a 3D surface is described by these curves, it be-
comes more easy to extract an accurate representation
from a 3D surface. In fact, the problem of 3D sur-
faces description is transformed to a problem of 3D
curves description. In this context, we try to describe
these curves independently to their first parametriza-
tions. We, therefore, characterize them by their arc-
length reparametrization. The obtained points from all
the curves consist the proposed novel representation.
We apply the proposed approach for the description of
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3D faces. We use the Hausdorff shape distance as a
similarity metric to compare between different shapes.
The reminder of this paper is organized as follows: We
detail in the second section all the steps of the novel rep-
resentation construction. In the third section, we expose
the used similarity metric that corresponds to the Haus-
dorff Shape distance. We apply, finally, in the fourth
section the novel representation for the description of
3D faces. The obtained results for the identification sce-
nario on a part of the BU-3DFE database [Lij06] of 3D
faces are exposed.

2 CONSTRUCTION OF THE NOVEL
3D SURFACES REPRESENTATION

We intend in this work to describe a 3D surface by an
accurate, finite and invariant set of points under the ge-
ometrical transformations of the M(3) group. We sup-
pose here that a 3D object is a continuous surface. It
is considered as a 2D-differential manifold that we de-
note by S. The three-polar representation, known by its
stability under the errors on the reference points extrac-
tion [Jri14] is used as a starting representation. This
last one corresponds to a set of invariant curves under
the same group of transformations. Finite and accu-
rate points are obtained by the discretization of each
curve. The discretization procedure has a major impor-
tance for the construction of the novel representation.
In fact, an accurate discrete representation of the level
curves leads to an efficient novel representation. There-
fore, the steps of the novel 3D representation can be
summarized as follows: (i) The first step consists on
the three-polar representation construction. (ii) In the
second step, an accurate description of each three-polar
level curve should be performed.
We use the following mathematical considerations for
the construction of the novel representation. Let P1 and
P2 be two points of S. We denote by:

• γ(P1,P2): the geodesic curve joining P1 and P2. It is
the curve having the minimum of distance between
P1 and P2 and belonging to the surface S.

• γ̃(P1,P2): the length of the geodesic curve computed
between P1 and P2

• Ur(P): the geodesic potential generated from a point
r of S. It is the function that computes for each point
P of S the length of the geodesic curve joining it to
the point r.
We describe in the rest of the section the two steps
cited above.

2.1 Brief recall of the three-polar repre-
sentation

The three-polar representation is constructed from three
reference points of a 3D surface S. It is built in order to

ensure a more stability in the case of extraction errors
on the reference points [Jri14]. This 3D representation
consists on a set of curves extracted from the 3D object
assumed to be, here, a 2D-differential manifold. These
curves correspond to the levels of the sum of the three
geodesic potentials generated from the used three ref-
erence points of the surface. It is easy to see that these
level curves are invariant under the geometrical trans-
formations of the M(3) group since the geodesic com-
putation is invariant under the same transformations.
Therefore, let denote by P1, P2 and P3 three refer-
ence points of S, UP1, UP2 and UP3 their corresponding
geodesic potential functions and U3 the sum of these
three geodesic potentials.
The three-polar representation composed by a set of K
level curves can be formulated as follows:

Mk(S) = {Cλi}i=1..k (1)

where Cλi is the level curve with the value λi of the sum
U3 of the three geodesic potentials generated from the
used three reference points. Therefore:

Cλi = {p ∈ S,U3(p) = λi} (2)

We note here that the curves{Cλi}i=1..k are extracted
from the 3D surface with the same step of the sum of
the three geodesic potentials.

2.2 Accurate description of the level
curves

A 3D object is assumed to be a 2D-differential man-
ifold. It is represented by a collection of indexed 3D
curves {Cλi}i=1..k of the three-polar representation. A
level curve Cλi parametrization denoted by Cλi(t) is a
1-periodic function of a continuous parameter t defined
by:

Cλi(t) : [0,1]→ R3 (3)

t 7→ [x(t),y(t),z(t)]t

It is important to note that for the same curve we can
find many parametrizations. They depend on the posi-
tion and the orientation of the used curve and the speed
we go over it. This fact makes hard the comparison be-
tween curves. In order to overcome this problem, we
propose to use a G-invariant reparametrization of each
curve. G is group of the geometrical transformations
applied to a curve. A reparametrization of Cλi(t), noted
Cλi (̂t), is defined as follows :

Cλi (̂t)=Cλi(τ(t))= [x(τ(t)),y(τ(t)),z(τ(t))]t , t ∈ [0,1]
(4)

where τ is an increasing function defined on [0,1].
Let consider Cλi

1 (t1) and Cλi
2 (t2) two parameterizations

of a curve Cλi and its image by the geometrical transfor-
mation g ∈G. After the G-invariant reparametrization,
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we obtain:

Cλi
2 (̂t) = g(Cλi

1 (̂t + t0)) (5)

where t0 ∈ Z, g ∈ G and t0 is the starting points differ-
ence between the curves.
In our context, G corresponds to the M(3) group formed
by the R3 rotations and translations. This transforma-
tions group preserves the length of curves. The speed
we go over a curve will affect the parametrization. We
perform, therefore, the arc-length reparametrization of
this curve. This implies that it is covered with a con-
stant speed. The arc-length reparametrization of a 3D
curve Cλi is defined as follows:

S(t) = 1/L
∫ t

0

√
x(t)′2 + y(t)′2 + z(t)′2dt, t ∈ [0,T ]

(6)
Here, L denotes the length of the level curve Cλi .

3 SIMILARITY METRIC
In order to compare between 3D shapes, we use the
novel 3D representation as a signature. The well known
Hausdorff shape distance introduced by Ghorbel et al.
[Gho98, Gho12] is used as a similarity metric. Let G be
the group of all possible parameterizations of surfaces.
It can be the R2 plane for the open surface or the S2 for
the closed ones. In the context of 3D surfaces pieces
diffeomorphic to G, on which act the M(3) group, the
Hausdorff shape distance can be defined for two sur-
faces pieces S1 and S2 and two displacements g1 and g2
as follows:

4(S1,S2) = max(ρ(S1,S2),ρ(S2,S1)) (7)

where:

ρ(S1,S2) = sup
g1∈M(3)

inf
g2∈M(3)

‖g1S1−g2S2‖2
L2 (8)

Since the M(3) displacement group preserves this
norm, the Hausdorff shape distance can be reduced to
the following quantity:

4(S1,S2) = inf
h∈M(3)

‖S1−hS2‖2
L2 (9)

In order to compute the Hausdorff shape distance value
between two surfaces, the optimal transformation be-
tween these two objects should be determined. We use
in this context, The Iterative Closest Point (ICP) algo-
rithm [Bes92] to estimate this transformation and thus
to reach the real value of this distance.

4 DESCRIPTION OF 3D FACES WITH
THE NOVEL REPRESENTATION

Actually, human recognition via biometric traits is of a
paramount importance especially with the many terror-
ist acts occurred around the world. The face is one of

the most used biometric traits since it does not require
the cooperation of the subjects. The 3D faces descrip-
tion is becoming actually an area of growing interest
especially with the rapid development of 3D scanning
tools. We try, in this context, to apply the novel repre-
sentation for the description of 3D faces. We present
in the rest of this section the used database and we de-
tail the construction steps of the novel representation on
this special type of 3D surface.

4.1 The used database
In order to study the performance of the novel 3D rep-
resentation for the description of 3D faces, we use the
BU-3DFE database [Lij06] which contains 100 subjects
(56 females and 44 males) from different ethnicities.
Seven facial expressions (neutral, disgust, happiness,
angry, surprise, sadness and fear) are available for each
subject. Each facial expression is presented by four lev-
els of magnitude.

4.2 The used three reference points
The selection of the reference points is the first step of
the three-polar representation construction. The nose
tip which is used in the unipolar representation based
on only one reference point [Sam06, Sri08, Gad12] will
be also used as a reference point for the three-polar rep-
resentation. The two outer corners of eyes will be se-
lected as candidate reference points. For the automatic
extraction of the reference points, we use the approach
proposed by Szeptycki et al. [Sze09a] which is based
on a curvature analysis of a 3D face.

4.3 Geodesic computation
We have assumed in the construction of the three-polar
representation that a 3D surface is a 2D-differential
manifold. In practice, this surface is represented by a
3D mesh composed by a set of vertices and edges.
In order to compute the geodesic potentials from the
reference points, we should be able to compute the
geodesic curves between pairs of points of the 3D dis-
crete mesh. We use in our work the fast marching algo-
rithm [Set96] to compute geodesic paths between pairs
of points and subsequently the geodesic potentials.

4.4 Extraction of the level curves of the
three-polar representation

Since the 3D face corresponds to a discrete object, its
level curves of the three geodesic potentials sum are
also discrete. Each level curve will be composed by
a set of points from the 3D face. In practice a level
curve of value λ can be seen as a trip. It is formulated
as follows:

Cλ = {P ∈ S,λ − ε ≤U3(P)≤ λ + ε} (10)

where ε is a real positive value chosen according to
the resolution of the mesh to avoid the intersections be-
tween successive level curves.
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Figure 1: Different kinds of level curves from the three-polar representation. (a): A closed level curve. (b): An
open level curve with two separated parts. (c): An open level curve composed by one part.

4.5 Arc-length reparametrization of the
discrete level curves

After the extraction of the discrete level curves from a
3D face, we proceed to their arc-length reparametriza-
tion. In the context of 3D faces study, the 3D surfaces
are open. Therefore, it is naturally to obtain some open
level curves since we reach the surface border. Fig. 1
illustrates many kinds of obtained level curves from the
three-polar representation. Fig. 1(a) shows an example
of a closed level curves. Fig. 1(b) illustrates an open
level curves composed by two separated parts. The
curve of the Fig. 1(c) corresponds to an open curve with
only one part.
In order to make all curves closed for the computa-
tion of the arc-length reparametrization, we propose
in this work to complete the empty parts of the open
level curves by some border points. Fig. 2 illustrates
some open curves that were completed by the used
border points of the 3D surface. Once all the level
curves are closed, before we perform their arc-length
reparametrization, we approximate each one of them by
the B-spline function. Let {pi,λ}i=0..Nλ

be the set of the
Nλ discrete points of a curve Cλ of level value equal
to λ . The approximated curve by the B-spline function
denoted by Cλ (t) can be formulated as follows:

Cλ (t)=
Nλ

∑
i=1

Bi,k−1(t)×((1−
t− ti

ti+k− ti
)Pi−1,λ +

t− ti
ti+k− ti

Pi,λ )

(11)
where Bi,k(t) is the B-spline basic functions.
We apply, then, the arc-length reparametrization of each

Figure 2: Illustration of two open level curves com-
pleted by the border points.(a): A curve with two sepa-
rated parts. (b): A curve with one part.

approximated level curve. We obtain equidistant points
on each curve since we go over it with the same speed.

Fig. 3(a) represents a level curve of the three-polar
representation extracted from a 3D face. Fig. 3(b)
shows the approximation of the same curve by the B-
spline function and Fig. 3 (c) illustrates the arc-length
reparametrization of this curve.
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Figure 3: The steps of the description of a level curve from the extraction to the arc-length reparametrization. (a):
A discrete level curve of the three-polar representation. (b): Approximation with the B-spline function. (c): The
obtained points after the arc-length reparametrization.

4.6 Accuracy of the novel representation
for the description of 3D faces

We test, here, the performance of the novel represen-
tation for the description of the 3D faces. We use for
the experimentation a part of the database BU-3DFE
[Lij06]. This portion is composed by the first magni-
tude level of each facial expression and the neutral face
of all the database subjects (100 persons). A total of
700 faces are, then, used for the experimentation.
Fig. 4 presents all the steps of the novel representation
construction for two faces with different facial expres-
sions going from the three-polar representation extrac-
tion (Fig. 4(a)) to the construction of the novel repre-
sentation (Fig. 4(d)).
We focus our study on the identification scenario. In
this case, a person is compared to all the individuals
of the used database and matched to the most similar
ones. We run the experiments with the protocol All vs
All which consists on the comparison of each face of
the database to all the others. Here, the gallery subset
and the probes set corresponds to the all 700 faces.

Fig. 5 shows the Cumulative Matching Curve of the
proposed 3D representation under the protocol All vs.
All. The obtained results are about 92.68% for the rank
one recognition rate. This significant recognition rate
proves the accuracy of the novel 3D surfaces represen-
tation for the description of 3D faces.

5 CONCLUSION

We introduced in this work a novel 3D surfaces descrip-
tion, which is based on the three-polar representation.
This last one consists on a set of invariant curves under
the M(3) group of R3 rotations and translations. These
curves correspond to the levels of the superposition
of the three geodesic potentials generated from three
reference points of the surface. The novelty of this
work lies on the arc-length reparametrization of each
curve of the three-polar representation. This fact
makes them independent to the initial parametrization.
We apply the novel representation for the description
of 3D faces knowing actually a growing interest for
the determination of persons identities. To illustrate
the performance of the proposed representation for
3D faces description, we implement, in this context,
the identification scenario on a part of the BU-3DFE
database. We obtain a rank one recognition rate of
about 92.68% .
We propose in future work to experiment the novel
representation on the standard database of 3D faces
FRGC V2. An important perspective is to make a study
for the best choice of the three reference points for the
three-polar representation. We intend also to compare
the proposed representation with some works of the
state of the arts using the standard protocols.
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Figure 4: (a): The level curves of the three-polar representation. (b): Approximation of the level curves with the
B-spline function. (c): The arc-length reparametrization of the level curves. (d) The obtained points of the novel
3D representation.

Figure 5: The CMC curve of the proposed approach for the scenario: All vs. All.
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