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ABSTRACT 5 

Modelling dynamic pose deformations of human subjects is an important topic in many research applications. 

Existing approaches of human pose deformations can be classified as volume-based, skeletal animation and 

example-based methods. These approaches have both strengths and limitations. However, for models in 

customized shapes, it is very challenging to deform these models into different poses rapidly and realistically. We 

propose a conceptual model to realize rapid and realistic pose deformation to customized human models by the 10 

integration of skeletal-driven rigid deformation and example-learnt non-rigid surface deformation. Based on this 

framework, a method for rapid automatic pose deformation is developed to deform human models of various 

body shapes into a series of dynamic poses. A series of algorithms are proposed to complete the pose deformation 

automatically and efficiently, including automatic segmentation of body parts and skeleton embedding, skeletal-

driven rigid deformation, training of non-rigid deformation from pose dataset; shape mapping of non-rigid 15 

deformation, and integration of rigid and non-rigid deformations. Experiment has shown that the proposed 

method can customize accurate human models based on two orthogonal-view photos and also efficiently generate 

realistic pose deformations for the customized models. 
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1. INTRODUCTION 
3D human body modelling is needed in many 

research applications, such as gaming, filming, 

medical, ergonomics and fashion. Modelling human 

body has two major aims: shape and pose modelling. 

A number of methods have been developed to 

address these two aims. For example, methods or 

applications [2-5,19] were reported to estimate global 

shape and pose model of human subjects using image 

or depth information as input deform a parametric 

model. Example-learnt parametric model can capture 

global shape and pose deformation realistically, and 

thus have used in many computer graphic 

applications. However, for fashion or ergonomic 

related research applications, the key focus of human 

modelling is accurate body shape of the resulting 

models. Parametric deformable models may not be 

able to accurately capture the shape details of 

individuals. This is because example-based methods 

often learn parametric deformable models form 

examples using Principal Component Analysis (PCA), 

resulting in models of ‘average’ looks, missing local 

shape characteristics of individuals. The existing 

human modelling methods could not address to the 

specific needs of fashion industry, where not only 

global features but also local details of the 

individual’s body figures are precisely modelled. 

We present an automatic method of customizing 

human body shape model from images, and 

deforming the customized model in different poses. 

We mainly follow the method of [13] for customizing 

accurate body shape of individuals from images, 

which is a complete automatic method from image 

processing to model deformation. However, [13] 

addressed to shape modelling of individuals from 

images only, however the customised model holds a 

standard standing post. In addition to shape 

customization, we propose a new method to deform 

the customized shape model into different dynamic 

poses. The rest of the paper is organized as follows. 

First, the related work of human shape and pose 

modelling will be reviewed in Section 2. The detailed 

of the proposed method will be described in Section 3, 

including shape customization and pose deformation. 

Section 4 shows some model customization results 

together with thorough discussion on the pros and 

cons of the current method. Section 5 concludes this 

paper and also suggestion the future work. 
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Figure 1. Dynamic pose modelling of customized human models – Method Overview 

2. RELATED WORK 
Existing approaches of modelling realistic pose 

deformations of human subjects can be classified as 

volume-based, skeletal animation and example-based 

methods. Volume-based methods [14,17] were 

proposed in the early stage of pose modeling 

research. Volume-based methods were based on 

physical analysis of muscle or tissue, anatomy and 

biomechanics theory. In volume-based pose 

deformation, the skeleton of a virtual 3D human body 

model, which includes bones, muscle, tissue and skin, 

was first deformed using motion data. The skeleton 

was used to compute the forces on the correlated 

muscle or tissue. The muscle and tissue deform 

according to computed forces, and so does the skin. 

Volume-based methods not only achieve realistic skin 

deformation but also compute the forces and 

kinematics of the correlated muscle or tissue. 

Volume-based methods are widely used in 

biomechanics research. However, these methods are 

all computationally expensive, and the pose 

deformation is not real-time. Furthermore, a detailed 

model of a human subject with skeleton, muscle and 

tissues is complex to create. The calculation of pose 

deformation for a standard model (in standard size 

and shape) is already tedious and time-consuming, 

and it is very difficult, if not impossible, to calculate 

the pose deformation of human models in customized 

shapes.  

Direct-deformation methods were later proposed to 

model pose deformation as skin deformation, without 

modeling the bones, muscles and tissues under the 

skin. Direct-deformation methods can be classified 

into two categories: skeletal animation and example-

driven methods. Magnenat-Thalmann [11] introduced 

the first skeletal animation algorithm that deforms a 

human hand with the assistance of virtual finger 

bones. The Linear Blending Skinning (LBS) 

algorithm [9], one of the most well-known skeletal 

animation algorithms, was introduced around the 

same time. Compared to volume-based methods, LBS 

provides a rapid solution for pose deformation. Thus, 

LBS is widely applied in game development and 

computer animation. However, the resulting skins of 

LBS algorithms have an unnatural appearance 

because of missing muscle deformation. Some 

skeletal animation algorithms were proposed to 

improve LBS [6-7,12,18]. For example, [18] 

described an enhanced skeletal animation algorithm 

called multi-weight enveloping (MWE), which 

replaces the linear model with a statistical model for 

the skin surface and the corresponding joints’ 

deformation. MWE can generate realistic skin 

deformation if the deformed pose is within the 

training dataset. Other well-known extensions of LBS 

includes Spherical Blend Skinning [7] and Dual 

Quaternion blending Skinning [8]. In sum, skeletal 

animation algorithms provide solutions for rapid pose 

deformation, but the shape accuracy of the deformed 

model is questionable, especially in the case of large 

joint angle changes.  

Example-driven pose deformations [2,10,12,15,18] 

were introduced in the last decade or so, by taking 

advantage of scanning technology development and 

the availability of scanning data. For example, [1] 

described the first example-driven method that trains 

scanned human models in different poses. More 

recently, SCAPE [2] was introduced to deform the 

shape and pose of a template model. However, 

example-based methods that model shape 

deformation in a global space are not good at 
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customizing local shapes. Besides, example-based 

methods generate erroneous deformation in the case 

of a subject with a shape out of the scope of the 

training dataset. It is thus not ideal to deform 

customized models into different poses.  

Recently, some researchers proposed to use motion 

data for shape modelling or mapping [22,23], while 

we propose to use images in this paper. Pons-Moll 

[25] developed a novel approach to model the soft-

tissue deformations of full-body human models using 

4D capture system. It used example-based approach 

for volume-based deformation, adding more detailed 

precise pose modelling for different subjects. 

3. METHOD 

3.1 Method Overview 
Figure 1 shows an overview of human modelling 

method, it integrate shape modelling and pose 

modelling of human subjects. It involves a shape 

modelling method of individuals based on two 

orthogonal-view photos (as shown in (a) of the 

figure); and a pose modelling method, which 

integrates rigid deformation and non-rigid 

deformation (shown as (b-e) of the figure). 

3.2 Shape Customization  
We describe here an automatic method that constructs 

a 3D shape model of an individual based on his/her 

front-view and side view photos. The detailed method 

has been reported in [13]. Our method of shape 

customization defined a feature-aligned 3D shape 

representation to characterize human body physique 

in detail (refer to (a) of Figure 1). The 3D shape 

representation is a layered structure, each layer 

represents a cross-sectional shape of the subject’s 

body at a specific level. 

A layered structure with parallel cross-sections is an 

effective shape representation for clothing 

applications, because such a structure aligns with the 

clothing size definition. The parallel cross-sections 

characterize local features of the body in terms of 

shape and size, as some cross-sections indeed 

correspond to important body girth measurements, 

such as the bust, waist, and hip. The shape of these 

cross-sections gives detailed information on where 

the body has developed fat, for instance the shape of 

the waist girth. 

Different from the example-based methods, which 

acquired global shape variations from full body scans, 

our shape customization method is capable of 

capturing and modelling the local body shape 

characteristics of individuals, by learning the cross-

sectional size and shape relationships from over 

10000+ scanned models using neural networks. Our 

method extract 2D body features from subjects’ 

orthogonal-view photograph, from which to predict 

the cross-sectional shape in 3D, and then to 

reconstruct the overall 3D shape representation. 

Without assuming linear shape deformation, the 

method is able to capture local shape characteristics 

and has been applied to customize 3D body models 

for subjects dressed in tight-fit clothing [20] or 

dressed in arbitrary clothing, even loose-fit clothing 

[21]. The recent advancement of the shape modelling 

method is that new algorithms were developed to 

extract all features needed for the shape 

customization process from input images. These 2D 

features can identify and align with the 3D layered 

structure of shape representation accurately using 

anthropometric knowledge [13]. It implies that the 

accurate 3D models can be customized from input 

images in a complete automatic manner. The 

experimental results showed that output human 

models (both males and females) have accurate sizes 

(anthropometric measurements) and realistic shape 

details. The size measurement discrepancies between 

the resulting models and the scanned models are less 

than 2cm in all key girth measurements like bust, 

waist and hip. 

3.3 Pose Deformation 
As shown in Figure 1, we propose to model dynamic 

pose deformation to any customized model as an 

integration of pose-induced rigid deformation and 

non-rigid deformation. Rigid deformation here 

represents the deformation induced by different body 

parts’ rotation and translation, such as forearms or 

lower legs. The deformation of these body parts 

explains most of the global change in body shapes in 

different dynamic pose deformations. In rigid 

deformation, a human model is deformed like a 

puppet, and such deformations are modeled as the 

rotation of different body parts along an articulated 

skeleton. Realistic skin surface deformation due to 

different pose change is obvious very different from 

rotation of an articulated model, and we model such 

skin surface differences as non-rigid deformations. 

We use the pose dataset of [2], which has a wide 

range of scan of a single subject in different poses. 

All scan models are properly registered, meaning that 

they have the same topology structure. The pose 

dataset in fact provides examples of realistic skin 

surface deformations, we can obtain non-rigid 

deformation to each triangle by computing the 

differences between rigidly deformed mesh and the 

corresponding pose model in the pose dataset. We 

then learn a regression model to predict non-rigid 

deformations using motion data. Our idea of pose 

modeling is similar to that of SCAPE [2], but we 

improve the detailed implementation in different 

areas, which will be explained in details below. 
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Pose deformation is modelled with reference to each 

triangle of a mesh model (template). Such 

formulation enables easy representation of 

deformation by matrix operations:  

 
0
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0~
k

Q

k

R

kLkk VTTTVV  . (1) 

As shown in Equation (1), each triangle 
0

kV  of the 

template is multiplied by transformation matrix T to 

obtain its pose deformation, where T is a matrix 

product of two components 
R

kL )(T  and 
Q

kT . 
Q

kT  

represents non-rigid pose-induced deformations 

specific to triangle 
0

kV  of the template; 
R

kL )(T  

denoted the rotation of the rigid body part in the 

articulated skeleton, where )(kL  denotes the rigid 

part that triangle 
0

kV  is belonged to. Both 
Q

kT  and 

R

kL )(T  are functions of motion data, represented as 

joint rotation angles of a defined skeleton structure. 

3.3.1 Rigid pose deformation 
To obtain rigid deformation of a human model, the 

first step is to group triangle faces of the human mesh 

model into different rigid parts. Automatically 

grouping triangle surfaces is a typical mesh surface 

clustering problem. There are many different 

algorithms reported in the literature to recover 

articulated object models from meshes. In the vast 

majority of the applications, the articulated skeleton 

structure and its parameters have to be manually 

specified. In the SCAPE method, object surface 

segmentation is done by iteratively finding 

decomposition of the object surface into rigid parts 

and finding the location of the parts based on a set of 

registered 3D scans in different configurations [2]. 

They estimated the locations of the joints from the 

resulting segmentation. Their algorithm not only 

recovered the parts and the joints, but also figured out 

the optimal number of parts numerically. However, 

the availability of a sample of object instances is a 

necessary input in the SCAPE method for mesh 

segmentation. Moreover, recovering articulated 

skeleton as a numerical optimization problem from 

the sample scans may not result in parts that aligned 

well with human body features, and its segmentation 

results may vary when different dataset is used. 

Numerically optimized part number may result in 

skeleton structure different from the typical skeleton 

definition for animation applications.  

We develop an efficient and automatic method that 

segments triangle faces of the mesh model into 

meaningful rigid parts, using the 3D shape 

representation constructed in the phase of shape 

modeling. The 3D shape representation has included 

a number of body features defined based on 

anatomical knowledge. We thus assign the triangle 

faces of 3D shape representation with a rigid part 

label },,{ 1 Nj aaa  . We assign part labels based on 

the skeleton definition of the SCAPE model with a 

total of 16 rigid parts },,{ 161 aa  . However, it is 

important to note our method is flexible in term of the 

definition of skeleton structure, because we define 

using anatomical knowledge with identified body 

features of the 3D shape representation, which can be 

viewed as a simplified version of human model. In 

other words, we can model pose deformation using 

other skeleton structure definition that allow easy 

integration with motion data.  

Given a customized human model in Figure 2(a), we 

can construct a 3D shape representation for the mesh 

model with faces labelled, as shown in Figure 2(b). 

Based on the labelled 3D shape representation, we 

calculate the correspondence relationship and assign 

part label   for every triangle face of the customized 

human model with the following equations.  
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In equation (2a), )(kL  denotes the centroid position 

kc  of triangle k on the human model, and ja  denotes 

the centroid position of the j-th triangle of the 3D 

shape representation. )( jaL  records the part label 

},,{ 1 Nj aaa   that Equation (2b) is minimized. In 

Equation (2b), )φ(  is penalty function defined as 


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jk

jk
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where function )( kcN  calculates the normal vector of 

the triangle k at its centroid kc . The penalty function 

)φ( filters those triangles with different normal 

vectors, especially at connecting areas of two or more 

rigid parts, e.g. armpit. We only segment the 3D 

shape representation once, because the topology 

structure of 3D shape representation is the same for 

all customized human models. Figure 2(c) shows the 

result of segmenting input human model (a) into rigid 

parts. 
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Figure 1. Part grouping and rigid part deformation. 

3.3.2 Training of Non-rigid pose deformation 
Since pose-induced non-rigid deformation for a 

customized model is unknown, we use the concept of 

deformation transferring [16] to copy the deformation 

from known pose dataset to the customized model. In 

addition to the given poses in the pose dataset, we 

train a model, using the pose dataset, to predict the 

non-rigid deformation of triangle k, namely the 

transformation matrix 
Q

kT  in Equation (1), using two 

adjacent joints’ rotations, 1),(kLr  and 2),(kLr . Again, 

the formulation of non-rigid deformation is toward 

each triangle, 
0~
k

Q

kk VTV  . 

The detailed formulation of non-rigid deformation is 

described as follows. We predict non-rigid 

deformation from articulated human pose, which is 

represented by a set of relative joint rotations. With a 

specific pose (i), the non-rigid deformation for every 

triangle k of the mesh is denoted by a 3×3 matrix  
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We reduce the dimensionality of the problem by 

assuming 
)(iQ

kT  is affected by two adjacent joints of 

the rigid part where triangle k is belonged to. Each 

entry 
i

mnkq ,  of matrix 
)(iQ

kT  is thus inner product of 

two vectors: 

i

mnk

i

kL

i

kL

i

mnk rrq ,2),(1),(, ]1[ b    m,n=1,2,3 (4) 

where 
i

mnk ,b  is a 71 column vector of linear weights 

that map the rotations of two adjacent joint angles 

(
i

kLr 1),( , 
i

kLr 2),( ) and a constant bias term as the 

entry value of transformation matrix 
)(iQ

kT . Each joint 

rotation 
i

kLr 1),(  can be easily computed from the 

absolute rotation matrices of the two rigid parts, and 

be specified by three parameters in twist coordinates. 

The goal is to learn the parameters 
i

mnk ,b  in Equation 

(4). We train this non-rigid deformation prediction 

model using SCAPE pose dataset. We construct the 

3D shape representation for the SCAPE template at 

standard pose (pose zero) of the pose dataset. We 

next segment this SCAPE template into rigid parts 

and extract skeleton structure accordingly. We then 

obtain the rigid deformations of the SCAPE template 

by rigid part rotation 
)(iR

T  for all pose instances (i) 

given in the pose dataset, using the method described 

in Section 7.2.3 above. 

Each mesh model in the pose dataset is the final 

shape integrating both rigid 
)(iR

T  and non-rigid 

)(iQ
T  pose deformations. Given transformation for 

each mesh instance 
)(iQ

kT  and its rigid part rotation 

)(

)(

iR

kLT , solving for the 97 regression parameters 

i

mnk ,b  for each triangle k is straightforward by 

minimizing a quadratic cost function  

 



m

i

i

mnk

i

mnk

i

kL

i

kL qrr
i

mnk 1

2

,,2),(1),( )]1([minarg
,

b
b

 (5) 

To solve Equation (5), we performed PCA on the 

observed joint rotation angles (
i

kLr 1),( , 
i

kLr 2),( ), 

reducing the size of the problem because many 

human joints only have one or two degree of freedom 

instead of three. With learned parameters 
i

mnk ,b , we 

can calculate using Equation (4) the non-rigid 

deformation matrix 
)(iQ

kT  based on pose/motion data, 

in terms of joint rotation angles. Figure 2 shows the 

examples of pose deformation of SCAPE template. 

These poses are not given in pose dataset, but new 

poses synthesized completely from a vector of joint 

rotations. 

 

Figure 2. Pose deformation of the SCAPE template 

with synthesized joint rotations. 

 

3.3.3 Pose deformation of customized human 

models 
We model realistic skin surface deformation induced 

by different dynamic poses (defined in terms of joint 

rotation angles) using a pose dataset on a template 

mesh. The next question to answer is how realistic 

pose deformation can be obtained for a customized 

human model. We use the concept of deformation 

transfer that transfers the deformations of the SCAPE 

model (source) to the customized model (target).  
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the application of deformation transfer technique 

requires the availability of pairwise correspondence 

between source and target meshes. In general, with a 

set of users selected marker points, pairwise 

correspondence are determined by deforming target 

mesh into a shape of the source and then by 

calculating the closest Euclidean distance between the 

source mesh and the deformed target mesh. Such 

deformation is iteratively improved. Well known 

correspondence searching algorithms include Iterated 

Closet Points (ICP) [1][16] and Correlated 

Correspondence [2]. The selection of marker points 

requires some manual work at the initial stage and the 

involvement of manual work also causes the final 

results depend on users’ selection or experience.  

We propose a completely automatic correspondence 

alignment method for human models using the shape 

modeling method developed early. Our 

correspondence mapping involves three simple steps: 

1) construct 3D shape representations for the source 

mesh (SCAPE template) and target mesh (customized 

human model); 2) deform the source mesh using ct-

FFD [20] based on the 3D shape representation of the 

target; 3) for each triangle k of the target mesh, seek 

the triangle on the deformed source mesh so that 

centroids of the two triangles are in the closest 

proximity. This can be done by Equation (2b), except 

the different definitions of ja , which denotes the 

centroid position of the j-th triangle face of the source 

mesh (SCAPE template) instead of the 3D shape 

representation. There are no restrictions on the 

correspondence mapping, and it can be injective, 

surjective, or bijective. 

Our method in fact automatically identifies all the 

marker points without any manual operations. It 

ensures fine alignment with human body features, and 

the process is not iterative. By eliminating iterative 

deformations, our method is very efficient to register 

two human models. Table 1 compares the time spent 

by ICP method and our method for registering 

SCAPE template with a target mesh of 23112 

triangles. It is shown that our method is much more 

efficient than ICP in correspondence mapping.  

Table 1 Time comparison of registration methods 

Registratio

n methods 

ICP  

(1 

iteration) 

ICP  

(6 

iterations) 

ct-FFD-

based 

Time 

spent 

(Mesh 

with12428 

vertices 

and 23112 

triangles) 

24s 

(Core 

i7/8GB 

Memory/

Matlab) 

229s 

(Core 

i7/8GB 

Memory/ 

Matlab) 

5.1s 

(Core 

i7/8GB 

Memory/ 

Matlab) 

 

Upon establishing correspondence between SCAPE 

template and a customized model, we can transfer 

pose-induced non-rigid deformation from the source 

mesh (SCAPE) to the target mesh (customized 

model) to finish dynamic pose deformations on 

customized model. This is done by setting the 

gradient of objective function 

 
2

2~

~ minarg xAc
x

  (5) 

to zero, where x~  is a vector of unknown deformed 

vertex locations of customized model, c is a vector 

recording transformations of the mesh of the pose 

dataset, is is calculated as 

 xATTc ~ QR

 (6) 

A of Equation (5) is a large, sparse matrix that the 

entries in A depends only on the target mesh’s 

structure. In Equation (6), the rigid part 

transformation matrix 
R

T  is known based on given 

motion data and once the part grouping result of the 

customized model is known. With the motion data, 

we also calculate the non-rigid deformation using the 

SCAPE model. For every customized model, the 

sparse matrix A in Equation (6) is known. We can 

then calculate dynamic pose deformation of the 

customized model accordingly by integrating non-

rigid deformation and rigid part rotation by equation 

(1). Figure 3 shows the corresponding pose 

deformation transferred from SCAPE template in 

Figure 2. The resulting pose deformations on a 

customized model have natural and realistic skin 

surface deformation appearance similar to that of the 

source (Figure 2).  

 

Figure 3. Resulting pose deformation on a customized 

model 

 

4. RESULTS AND DISCUSSION 
We evaluate the pose deformation by recruiting eight 

female and eight male subjects. These subjects can be 

classified into underweight, normal, overweight and 

obesity according to their BMI values. Figure 4 

shows four examples of the shape customization 

results, which are compared to their scanned models. 

Figures 6 and 7 show, respectively, all female and 

male subjects’ customized models in standard pose. 
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Figure 4. Four shape customization results 

 

Figure 5. Female customized models in standard 

standing pose 

 

Figure 6. Male customized models in standard 

standing pose 

We deformed all subjects’ customized models into 

other poses dynamically. Figure 7 and Figure 8 show 

dynamic pose deformation examples of these 

subjects, and these poses are given in the pose dataset 

of SCAPE model. Comparing with the rigid part 

deformation based on the articulated models, our 

method generates realistic pose deformations on 

customized models, similar to that of the SCAPE 

model, even in poses with maximum bending angles. 

 

Figure 7. Dynamic deformed female models 

 

Figure 8. Dynamic deformed male models 

In order to evaluate the pose deformation 

comprehensively, we scanned two female subjects in 

three different poses, as indicated on the right of 

Figure 9. We estimated their pose or skeleton data by 

manually select marker points from scanned models. 

Based on these pose data, we deformed the 

corresponding customized models as shown on the 

left of Figure 9.  

As poses of scanned model are estimated, the 

estimated skeleton is not exactly equal to the real 

pose in the scans. Having said that, we can see the 

shape of the scanned models and the deformed 

models resembles, except some local areas, e.g. the 

chest areas. That is because the pose induced non-

rigid deformation is transferred from the SCAPE 

model (a male scanned subject) to other customized 

models. Non-rigid deformation can be viewed as 

muscle deformation, yet the same muscle model is 

used for all people. Although the model can generate 
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realistic mesh models in a wide range of poses, the 

current method cannot capture the fact that more 

muscular people are likely to exhibit greater muscle 

deformation than others, and, conversely, that muscle 

deformation may be obscured in people with 

significant body fat.  

 

Figure 9. Comparison between pose deformation 

models and the corresponding scanned models 

We can improve the current method using scans of 

different example subjects in different poses to learn 

the non-rigid deformation, and we transfer the 

deformation from one of the example subject that has 

the closest shape characteristic as that of the 

customized model. 

5. CONCLUSION 
We have presented human modelling method that 

automatically obtain 3D shape model using two 

orthogonal-view photographs. We also present an 

efficient method to deform any customized model 

into dynamic poses. Pose deformation is done by first 

grouping the triangles mesh of the customized model 

into articulated rigid parts with the assistance of 3D 

shape representation constructed in the step of shape 

modeling. Next, the human model is transformed in 

the form of rigid part rotations. Then, we learn the 

skin surface (non-rigid) deformations from a pose 

dataset to correct the defects in rigid deformation. 

The non-rigid deformation is transferred from pose 

dataset to the customized model so as to have realistic 

pose induced shape deformations on customized 

model. We optimize the procedures to realize very 

efficient pose deformations on customized models 

with diverse shapes. 
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