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Abstract
Human action recognition is a topic widely studied over time, using numerous techniques and methods to solve
a fundamental problem in automatic video analysis. Basically, a traditional human action recognition system
collects video frames of human activities, extracts the desired features of each human skeleton and classify them
to distinguish human gesture. However, almost all of these approaches roll out the space-time information of the
recognition process. In this paper we present a novel use of an existing state-of-the-art space-time technique, the
Space-Time Interest Point (STIP) detector and its velocity adaptation, to human action recognition process. Using
STIPs as descriptors and a Support Vector Machine classifier, we evaluate four different public video datasets to
validate our methodology and demonstrate its accuracy in real scenarios.
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1 INTRODUCTION
As computer vision trends come and go, there are top-
ics that remain widely studied, such as human action
recognition. This field is being studied over the last
three decades, using numerous techniques and methods
to solve a common problem.

In [GBS07], human action recognition is described as a
key component in many computer vision applications:
video surveillance, human-computer interface, video
indexing and browsing, recognition of gestures, anal-
ysis of sports events and dance choreography.

Many approaches were developed in the last years,
but most of them have computational limitations, some
of wich are: difficulty to estimate the motion pattern
[Bla99], aperture problems, discontinuities and smooth
surfaces [lLL06]; all related with the motion estimation
technique used, like optical flow or more complex tech-
niques, such as eigenshapes of foreground silhouettes,
described in [GKRR05].

Some approaches, in recent successful works, use
human action recognition information from video
sequences as a space-time volume of intensities,
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gradients, optical flow, or other local features
[ZMI01a, SI05].
Our methodology is similar to the proposed approach
of [SLC04] in which the classical space-time inter-
est point detector is discussed and classified using a
Support Vector Machine (SVM). However, only lo-
cal spatio-temporal and histograms of local features
were used. This limitation shows that for small videos
dataset it properly works, but for large and complex
video datasets, a global spatio-temporal descriptor is re-
quired.
In this paper, we use an existing state-of-the-art detec-
tor of human action recognition as a descriptor, without
the assistance of other descriptors. Section 2 describes
the main related works about human action recognition.
Section 3 presents a detailed explanation of the space-
time interest points techniques used in this work. In
Section 4, the proposed methodology is shown and in
Section 5, experimental results are discussed. Section 6
is dedicated to conclusions and further work.

2 RELATED WORKS
Commonly, human action recognition is divided
into two major classes, model-based recognition and
appearance-based recognition [BD01, Lap04].
Many works use a human model [Roh94, GD96], gen-
erally obtained by recreating the human body using a
three-dimensional model with degrees-of-freedom that
allows distinct poses, representing a certain movement
that corresponds to an action. With more degrees-of-
freedom, a larger number of body positions can be
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achieved, creating a greater number of different move-
ments and, consequently, represented actions. A gen-
eral model-based approach, as described in [Kan80],
calls for a robust background and foreground segmen-
tation to be able to distinguish between the picture do-
main and the scene domain. However, they are an
easy way to estimate and predict the feature locations
[BD01].

According to [BD01] appearance-based approaches are
focused on representing an action as a motion over time
and the motion recognition is achieved from appear-
ance, since it has a space-time trajectory. In [DB97], an
image template is used to recognize an action in video
and it is obtained by accumulating motion images from
specific key frames, in order that an image-vector is
constructed and matched against previously generated
ground-truth templates. This approach is used to con-
struct a view-specific representation of action.

The approach described in [LL03] uses combined
techniques based on appearance (e.g. [ZMI01b] and
[MS04]) to achieve a novel motion event detector using
local information and a 3D extension of Harris corner
detector, named space-time interest points (STIP). One
advantage of this representation is that it does not need
previous segmentation or tracking [LAS08].

Over the years, numerous STIPs detectors have been
proposed: the methodology shown in [DRCB05] uses
a space-time cuboid to represent an interest point,
achieved from the convolution of a quadrature pair
of 1D Gabor filters with a 2D Gaussian smoothing
kernel; an evolution of the first presented STIP is
proposed by [LL04], adapting the velocity and spatio-
temporal scale features, in order to obtain a stable
video representation.

In [WTVG08] a Hessian-based approach is proposed,
using the determinant of the Hessian as a saliency mea-
sure, being able to extract scale invariant features and
densely cover the video content. And in in [CHMG12],
a selective method which applies surround suppression
combined with local and temporal constraints is shown,
including a Bag of Videos model to build a vocabulary
of visual-words for action recognition process.

3 SPACE-TIME INTEREST POINTS
According to [Lap04], the main purpose of the STIPs
is to perform the event detection directly from the spa-
tiotemporal data of the image, considering regions that
have distinct locations in space-time with sufficient ro-
bustness to detect and classify. [LL03] use a 3D ex-
tension of Harris corner detector to detect these interest
points.

[HS88] accentuate image areas that have maximum
variation of image gradients in a local neighborhood.
The goal of the Harris interest point detector is to

find spatial locations where the image has significant
changes in both directions.

Classical STIP
We consider the classical STIP (C-STIP) as the one pro-
posed by [LL03] and its mathematical representation
will be reviewed below.

Considering an image sequence I(x,y, t) and its scale-
space representation as

S(·,α2,β 2) = I ∗G(·,α2,β 2) (1)

where α2 is the spatial variation, β 2 is the temporal
variance and G is a Gaussian convolution kernel

G(x,y, t,α2,β 2) =
exp(−(x2 + y2)/2α2− t2/2β 2)√

(2π)3α4β 2

(2)

To detect interest points in I, it is necessary to search for
meaningful eigenvalues λ1,λ2,λ3 of a second-moment
matrix γ

γ(·,α2,β 2) = G(·,sα
2,sβ

2)∗ (∇I(∇I)T ) (3)

that uses spatio-temporal image gradients
∇I = (Ix, Iy, It)T within a Gaussian neighborhood
of every point.

And compute the local maxima of the extended Harris
corner function R

R = det(γ)− k trace3(γ)

= λ1λ2λ3− k(λ1λ2λ3)
3 (4)

where k is the sensitivity factor.

Thus, STIPs of I are discovered by detecting local pos-
itive spatio-temporal maxima in R.

Velocity adapted STIP
[LL04] adapted the local velocity and scales of C-STIP
to compensate the relative motion between the object
and the camera. To adapt the scales, a normalized
Laplacian operator is calculated for each detected in-
terest point in R (Equation 4)

∇
2I = Ix,norm + Iy,norm + It,norm (5)

where Ix,norm, Iy,norm and It,norm are the second-order
derivatives of I normalized by the scale parameters. The
space-time maxima of the Harris corner function and a
selection of points that maximizes the Laplacian nor-
malizes operator is a method to adapt the previous C-
STIP implementation [Lap05]. Lastly, to perform the
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velocity adaptation, we have to consider the Galilean
transformations that affects the time domain. To can-
cel these effects we have to redefine the an operator of
interest γ ′′ in terms of a velocity-adjusted descriptor, us-
ing a structure similar to that presented by [LK81]. The
Equation 3 can now be redefined as

Rv = det(γ ′′)− k trace3(γ ′′). (6)

4 MATERIALS AND METHODS
As stated earlier, our approach is based on [LL03]
technique, here nominated as C-STIP, and on [LL04],
named V-STIP.

The state-of-the-art STIP is used as a local detector. To
use it in a recognition and classification process, an ad-
ditional descriptor, such as Histogram of Oriented Gra-
dients (HOG) [DT05] or optical flow [BFB94], is used
to improve the local features. Our methodology uses
STIP as a descriptor without the aid of any other de-
scriptors.

Following the flowchart described in Figure 1, each step
of our proposed method will be more detailed.

Figure 1: Our proposed methodology flowchart.

Input
For a complete evaluation of our proposed method-
ology, A number of specialized public video data
sets were used to recognize human action. The main
datasets used were:

• KTH [SLC04];

• UCF101 [SZS12];

• Weizmann [BGS05];

• YouTube [LLS09].

For each dataset, four different actions were studied in
our proposed approach. An image sample of the se-
lected actions and datasets is described in Table 4.

In the UCF101 dataset the following classes were used:
biking, jumping jack, punch and walking with dog, with
ten videos per action lasting about five seconds. In KTH
the used classes were: boxing, handwaving, running
and walking, having ten videos per action with an es-
timated duration of twenty seconds. In Weizmann the
used classes were: bend, gallop sideways, jump in place
and skip, with nine videos per action and lasting about
two seconds. Finally, YouTube used the classes: bas-
ketball, diving, soccer juggling and volleyball spiking,

consisting of seven videos per action with an approxi-
mate duration of seven seconds.

All selected video classes in the used datasets were ran-
domly separated into training set (70%) and validation
set (30%) and the actions were chosen in a way that it
is possible to make a fair comparison between the both
techniques C-STIP and V-STIP.

STIP Extraction
Since the state-of-the-art approach is C-STIP and V-
STIP is its upgrade, our approach uses the methods
showed in Section 3 to extract STIPs.

For the C-STIP implementation, the Equations 1 to 4
were used, generating a feature vector that is mathe-
matically described in Section 3. Additionally, the ref-
erence structure can be found in [LL03].

The V-STIP implementation uses Equations 1 to 5, also
producing a feature vector. For more details of the tech-
nique, we refer to [LL04].

Support Vector Machine
Support Vector Machines (SVMs) are state-of-the-art
classifiers that produces an hyperplane based on the
training data [CV95]. This achieved hyperplane has a
prediction of the class labels of the validation data with-
out further information besides its features. In [CV95]
a more detailed structure of SVM is described.

Considering a training set of (xi,yi), i = 1, ..., l, where
xi ∈ ℜ is a feature vector and yi ∈ {1,2,3,4} its class
labels, a Support Vector Classification (SVC) algorithm
[BHHSV01] with a radial basis kernel, as shown in
Equation 7, is used to train and predict the validation
set class labels.

K(x,y) = exp(−γ ‖x− y‖2) (7)

where here γ is the kernel parameter.

From the trained and validated C-STIP and V-STIP
models, we evaluated all classes using a Mean Aver-
age Precision (MAP) measure, similar to [CHMG12]
and [DOS15].

5 RESULTS
To train the SVM classifier, parameters were varied to
evaluate which one achieve the better performance, lo-
cal and global respectively. The selected parameters
were: Harris corner function sensitivity factor (k), spa-
tial variation (α) and temporal variance (β ), all vari-
ables described in the Equation 4.

To evaluate our methodology, four different training
scenarios (TS) for each implementation will be pre-
sented as it follows: TS1: α = 4, β = 2 and k = 0.01;
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KTH UCF101 Weizmann YouTube

Boxing Biking Bend Basketball

Handwaving Jumping Jack Gallop Sideways Diving

Running Punch Jump in Place Soccer Juggling

Walking Walking with Dog Skip Volleyball Spiking
Table 1: Datasets samples.

TS2: α = 4, β = 2 and k = 0.05; TS3: α = 9, β = 3
and k = 0.05; TS4: α = 16, β = 4 and k = 0.05.

After exhaustive evaluations, these training scenarios
described above were selected from the best achieved
results, improving our proposed methodology perfor-
mance and denoting the direct influence of them on the
MAP measure in action recognition process.

The achieved results are compiled, for each dataset and
selected action, in confusion matrices found in Tables 5
to 5, where the best precision measure was highlighted.

In Tables 5 to 5, it is shown a MAP measure achieved
from all classes based on the confusion matrices,
summarizing the global results, presenting the results
for C-STIP and V-STIP methodology, classified using
the SVM schema described in Subsection 4, for each
dataset.
Discussions
Due to the great amount of information that can be de-
tailed using the confusion matrices, we opted to discuss
the most relevant to evaluate the performance of the
whole classification process given the proposed train-
ing scenarios.

For the first training scenario in Table 5, it is possible
to notice that the process of classification of the dataset

KTH, even with few false positives, was efficient to the
majority of the videos in each class. This result was ex-
pected, since the KTH dataset is simpler and the human
action is performed in clean environments with high
contrast between the subject and the background, for
all actions.

Using the C-STIP method, the classification for the ac-
tions gallop and bend was often incorrect. However, the
V-STIP method has shown more suitable video classi-
fications in this two classes, as a result of similar STIP
variations in the lower body movements, generating a
larger number of salience in this region. These varia-
tions occur in other scenarios with the same Weizmann
dataset. In the training scenario 4, Table 5, there was
a confusion between handwave and box due to lack of
lateral variation by the subject, showing the influence
of the spatial variation parameter (α) in classification
results.

In the confusion matrices presented in Tables 5 to 5, it
is possible to notice a recurrent confusion between the
classes punch and jumping jack that can be explained by
the upper body movement that is slightly alike between
the selected videos. The V-STIP method was able to
classify better than the C-STIP method, with the major-
ity of correct classifications.
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Method C-STIP V-STIP
Dataset Class box handwave run walk box handwave run walk

box 42 34 8 16 50 34.5 5 10.5
handwave 30 39 16 15 34 42 13 11

run 19 22 47 12 20 22 51 7KTH

walk 24 26 10 40 28 28 7 37
bike jumpjack punch walkdog bike jumpjack punch walkdog

bike 50 16 21 13 45 31 12 12
jumpjack 15 33 35 17 26 47 14 13

punch 11 30 43 16 30 9 44 17
UCF101

walkdog 21 16 29 34 25 7 20 48
bend gallop pjump skip bend gallop pjump skip

bend 35 35.5 17.5 12 52 30 11 7
gallop 20 43 20 17 29 45.5 20 5.5
pjump 13 23 37 28 16 27 53 4

Weizmann

skip 12 18 29 41 36 21 9 34
basket dive soccer volleyb basket dive soccer volleyb

basket 23 31 43 3 14 36 47 3
dive 5 51 41 3 6.5 49 43 2

soccer 6 36 54 4 7 38 52 3
YouTube

volleyb 1 7 16 76 1 4 14 81
Table 2: Confusion matrix for TS1.

Method C-STIP V-STIP
Dataset Class box handwave run walk box handwave run walk

box 43 35 8.5 13.5 52 36 4 8
handwave 26. 5 34 27.5 12 29 42 22 7

run 16 19 56 9 21.5 23 51 5KTH

walk 24 27.5 7.5 41 30 31 4 35
bike jumpjack punch walkdog bike jumpjack punch walkdog

bike 52 14 18 16 49 12 19 20
jumpjack 14 39 33 14 15 33 37 15

punch 10 37 39 14 11 29 44 16
UCF101

walkdog 14 17 32 37 13.5 14 30.5 42
bend gallop pjump skip bend gallop pjump skip

bend 23 37 24 16 42 34 13.5 10.5
gallop 14 34 29 23 26 34 21 19
pjump 10 22 38 30 14.5 20 35.5 30

Weizmann

skip 9 19 33 39 16 17 29 38
basket dive soccer volleyb basket dive soccer volleyb

basket 44 22 32 2 22 34 42 2
dive 8 49 41 2 9 52 37 2

soccer 9 36 52 3 12 38 48 2
YouTube

volleyb 2 5 18 75 2 3 16 79
Table 3: Confusion matrix for TS2.
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Method C-STIP V-STIP
Dataset Class box handwave run walk box handwave run walk

box 48 38 5 9 52 38 3 6
handwave 32 46 14 8 37 43 14 5

run 18 23 52 7 22 23 51 4KTH

walk 26 31 12 30 31 28 8 34
bike jumpjack punch walkdog bike jumpjack punch walkdog

bike 65 9 15 11 57 10 20 13
jumpjack 10 34 43 14 16 27 42 15

punch 6 31 49 14 8 26 53 14
UCF101

walkdog 12 17 29 43 10 14 27 49
bend gallop pjump skip bend gallop pjump skip

bend 35 34 17 14 62 22 8 9
gallop 24 49 16 11 44 35 12 9
pjump 14 26 34 26 24 23 28 24

Weizmann

skip 10 20 31 39 23 16 25 37
basket dive soccer volleyb basket dive soccer volleyb

basket 63 13 23 1 20 33 45 2
dive 8 51 39 2 9 53 36 2

soccer 11 35 52 2 13 37 49 2
YouTube

volleyb 1 5 13 81 2 4 12 82
Table 4: Confusion matrix for TS3.

Method C-STIP V-STIP
Dataset Class box handwave run walk box handwave run walk

box 50 37 5 8 62 27 4 7
handwave 41 47 4 8 48 44 3 5

run 15 20 61 4 29 20 46 5KTH

walk 29 31 10 30 35 22 7 37
bike jumpjack punch walkdog bike jumpjack punch walkdog

bike 62 11 16 11 53 14 21 12
jumpjack 15 30 41 13 19 29 38 14

punch 13 27 47 13 13 22 51 14
UCF101

walkdog 17 17 31 35 14 15 32 40
bend gallop pjump skip bend gallop pjump skip

bend 48 35 10 7 57 31 6 6
gallop 27 40 18 14 42 33 13 12
pjump 15 20 35 31 28 18 29 25

Weizmann

skip 12 16 28 44 14 15 32 39
basket dive soccer volleyb basket dive soccer volleyb

basket 60 16 23 1 29 31 39 1
dive 11 47 41 1 14 46 39 1

soccer 14 34 50 2 16 35 46 2
YouTube

volleyb 3 6 9 82 3 6 8 83
Table 5: Confusion matrix for TS4.
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Method KTH UCF101 Weizmann YouTube
C-STIP 42% 40% 39% 51%
V-STIP 45% 46% 46% 49%
Table 6: TS1 - Mean Average Precision (MAP).

Method KTH UCF101 Weizmann YouTube
C-STIP 42% 44% 33% 53%
V-STIP 54% 39% 37% 48%
Table 7: TS2 - Mean Average Precision (MAP).

Method KTH UCF101 Weizmann YouTube
C-STIP 44% 47% 39% 61%
V-STIP 45% 46% 40% 51%
Table 8: TS3 - Mean Average Precision (MAP).

Method KTH UCF101 Weizmann YouTube
C-STIP 47% 43% 42% 60%
V-STIP 47% 43% 39% 51%
Table 9: TS4 - Mean Average Precision (MAP).

All the datasets had videos with different duration, as
presented in Subsection 4, and the proposed methodol-
ogy was able to correctly classify the videos, even with
the variable time, showing the robustness of the tech-
nique.

Using the MAP results in Tables 5 to 5 and the C-STIP
method as first reference, the best results for KTH and
Weizmann datasets were in scenario 4, with α = 16,
β = 4 and k = 0.05. For UCF101 and YouTube, sce-
nario 3 have better performances, with α = 9, β = 3
and k = 0.05. These were the best parameters adjust-
ments for the aforementioned datasets.

With V-STIP as reference, the best parameter adjust-
ment for KTH dataset is α = 16, β = 4 and k = 0.05,
that represents scenario 4. UCF101 and Weizmann best
results were with scenario 1, where the parameters were
α = 4, β = 2 and k = 0.01. UCF101 can also be fit with
α = 9, β = 3 and k = 0.05. For YouTube dataset, there
is a tie between two scenarios, TS3 and TS4, therefore it
is possible to use α = 9, β = 3 and k = 0.05 or α = 16,
β = 4 and k = 0.05.

6 CONCLUSIONS
Our goal is to evaluate state-of-the-art techniques of
space-time interest points descriptors using a SVM
classifier to recognize human actions in videos. Two
descriptor implementations were proposed and applied
in known datasets to classify actions, not taking into
consideration the videos resolution and duration.

The proposal of using STIPs as descriptors in its two
variations (Classic and Velocity adaptation) is valid,
since the classification step was able to correctly clas-
sify the majority of the presented actions or classes,

indicating that this work can be used as an alternative
method to address the problem of human action recog-
nition in videos.

Considering unclipped videos, that are videos with dif-
ferent actions occurring at the same time, it is possible
as well to claim that the proposal can also classify the
main action of the scene, once two tested datasets have,
somewhat, this characteristic (UCF101 and YouTube).

The results achieved can be also be used as parameters
directives for an optimization of the adjustment stage of
future works.

Finally, further works will prioritize the diagonals of
confusion matrices, avoiding false positives and im-
proving global results.
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