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Abstract
Conventional UAV (abbr. Unmanned Air Vehicle) auto-pilot systems uses GPS signal for navigation. While the
GPS signal is lost, jammed or the UAV is navigating in GPS-denied environment conventional autopilot systems
fail to navigate safely. UAV should estimate it’s own position without the need of external signals. Localization,
the process of pose estimation relatively to known environment, may solve the problem of navigation without GPS
signal. Downward looking camera on a UAV may be used to solve pose estimation problem in combination with
visual odometry and other sensor data. In this paper a vision-based particle filter application is proposed to solve
GPS-denied UAV localization. The application uses visual odometry for motion estimation, correlation coefficient
for apriori known map image matching with aerial imagery, KLD (abbr. Kueller-Leiblach distance) sampling for
particle filtering. Research using data collected during real UAV flight is performed to investigate: UAV heading
influence on correlation coefficient values when matching aerial imagery with the map and measure localization
accuracy compared to conventional GPS system and state-of-the-art odometry.

Keywords
Particle Filter Localization, GPS-Denied Navigation, Visual Odometry, KLD Sampling, Correlation Coefficient

1 INTRODUCTION
GPS signal used for UAV navigation is vulnerable to
signal jamming and spoofing [8]. Encoded military
standard GPS signals are safe against spoofing, al-
though they are still vulnerable to jamming and are
not publicly available. Conventional autopilot systems
fail to navigate safely since there is no available
alternatives to GPS positioning. UAV should estimate
it’s own position without the need of external signals.
Localization, the process of pose estimation relatively
to known environment, may solve the problem of
navigation without GPS signal. Particle filters have
solved localization problem for autonomous robots
[11] using laser scanners and panoramic vision [1].
Mixed particle filter algorithm may address robot
localization issue with better precision over long
distance and long duration flights. Algorithm enables
navigation in GPS-denied environment and contributes
to UAV safety as a GPS backup system.
Downward looking camera on a UAV may be used to
solve pose estimation problem [5, 9] in combination
with visual odometry and other sensor data. Such solu-
tion may deal with this problem to certain limitations:
the visible area of the camera must contain enough
visual features for tracking throughout the flight. Er-
rors are accumulating and errors add up to infinity,
within infinite flight time. Similar problem of mobile

robot localization was solved using Monte Carlo local-
ization [13]. Particle filter mixed with wheel odometry
approach was used in [4], where a mobile robot used
ceiling mosaic and a upward facing camera to local-
ize it‘s position using particle filters. Research by H.
Andreasson [1] demonstrates successful application of
particle filter with panoramic vision for robot localiza-
tion. Stereo vision systems have been successfully ap-
plied to low/medium size UAVs due to it‘s low weight
and versatility. The problem of two cameras is the rigid
distance between them, which limits the useful altitude
range [3]. Computer vision techniques were demon-
strated to be able to solve "kidnapped robot problem"
(or global localization problem) using visual odometry
and Extended Kalman-filter based SLAM (abbr. Syn-
chronous Localization and Mapping) in [3]. This solu-
tion recovers flight trajectory from homography calcu-
lated from image feature matching. This method is vul-
nerable to bad results if there is not enough landmarks
in the image. In this paper a particle filter algorithm is
proposed that integrates data from visual odometry and
uses KLD sampling technique for UAV localization in a
previously known map. The results are compared with
conventional GPS system and position calculated from
visual odometry only.
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Figure 1: Proposed particle filtering algorithm including visual odometry

2 VISION-BASED PARTICLE FILTER
LOCALIZATION

This paragraph shows the theory behind particle fil-
ter localization and algorithms used in particular steps
particle filtering. Fig. 1 shows the schema of the pro-
posed algorithm. Each step is described in subsections
in details.

2.1 Particles
Particle is a hypothesis for the aircraft’s possible posi-
tion in map. A number of particles is maintained in the
algorithm to evaluate more than one possible location
of the aircraft and propagate the possibilities over time.
Each particle is assigned an image similarity value on
time t

bt = bt−1
Rt +1

2

that is calculated using UAV image similarity value
Rt with the map image on the particle location. Ini-
tial particle density value is assigned b0 = 1. Particles
are also assigned weight value which is used during
sampling. The particle weight wi is calculated by nor-
malizing all probabilities wi,t =

bi,t
∑

n
j=0 bt, j

, where n is the
number of particles, i is single particle index, t is time
of current iteration.

2.2 Particle sampling
Sampling is the stage of the Particle Filter when
particles are re-sampled according to their weight.
Each iteration re-samples particles to find the most
plausible UAV location over time. KLD-sampling

technique was selected due it’s to ability to dynamic-
ally adjust particle count thus reducing computational
costs when it is not necessary. Sampling uses Kueller-
Leiblach distance [6] to calculate minimal number of
particles that keeps particle probability distribution the
same. The technique has shown good results against
other sampling techniques on simulated flight data - it
provides the same localization accuracy, but dynamic
particle count allows to decrease computational times
up to 1.7 times [7].

2.3 Odometry
Visual odometry is the process of calculating aircraft
(or robot) motion from camera images. In this setup
monocular SVO [5] (abbr. Semi-direct Visual Odo-
metry) with downward facing camera is used to calcu-
late motion. SVO algorithm was selected due to high
accuracy compared with other algorithms and real-time
execution on embedded is possible due to semi-dense
algorithm implementation.

SVO algorithm was selected because of more accurate
positioning compared to other algorithms and real-time
execution on embedded platforms. SVO algorithm was
shown to run 55 frames per second on an embedded
flight computer.

2.4 Motion model
Motion model is used for dead-reckoning of the UAV
pose from odometry data (visual and movement speed
sensors). The UAV pose may be described using six
parameters
〈x,y,z,θroll ,θpitch,θyaw〉 in space relative to the known
environment. Parameters x, y and z are the coordinate
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Figure 2: Simplified planar motion model for UAV

locations in 3D environment. Parameter z is equivalent
to altitude, which can be measured using sensors (baro-
meter, laser) with relatively high precision.
In the case of localization in orthophoto map the alti-
tude is only required for image pixel scaling, so it can
be ignored during localization. Roll and pitch angles
are required for the calculation of camera relative elev-
ation angle and image center on the map. Those para-
meters can be ignored by using camera gimbal hard-
ware in the case if camera is configured to always look
downward. The search space thus is narrowed down to
pseudo-planar movement using only three parameters
(see fig. 2), where aircraft pose Pt = 〈x,y,θyaw〉, where
θyaw is UAV heading angle (UAV platform angle to
North). Figure 2 shows planar movement of the particle
with appriori position 〈x,y,θ〉 and posteriori position
〈x′,y′,θ ′〉. Particle movement is described as transla-
tional movement δ̂tran = δtran + εtran, where

• δ̂tran is planar movement with an extra noise

• δtran is measured movement change measured by
sensors (usually odometry)

• εtran is additional random noise value

Rotational movement is described as δ̂rot = δrot + εrot ,
equation explanation is analogues to translational
movement.

The pose update can be calculated after new sensor data
using these equations [12]:

x′ = x+α1δ̂trancos(θyaw +α3δ̂rot)

y′ = y+α2δ̂transin(θyaw +α3δ̂rot)

θ
′
yaw = θyaw +α3δ̂rot

, where:

• x′, y′ and θ ′yaw are posterior UAV location relative to
the orthophoto map

• αn - measurement noise scale coefficients, selected
manually

• δ̂tran - translational (movement speed) measurement
with measurement noise εtran, obtained:

δ̂tran = δtran + sample_normal(εtran)

• δ̂rot - rotational (heading angle) measurement with
measurement noise εrot , obtained:

δ̂rot = δrot + sample_normal(εrot)

• sample_normal is Gaussian distribution sampling
function:

sample_normal(ε) = ε ·gaussian(0, 1
3 )

2.5 Particle propagation
This step of the Particle Filter uses sensor data, odo-
metry and motion model to propagate the particles after
re-sampling. Propagation moves the old re-sampled
particles into their current locations according to move-
ment that happened since last Particle Filter iteration.

2.6 Particle map matching
Template matching technique is used to match image
viewed by the camera and cropped image from map
on the particle pose. Matching is done using mono-
chrome gray scale images to make the matching faster.
The pixel gray scale value y is calculated using formula
from OpenCV library [2]:

yx,y = 0.299rx,y +0.587gx,y +0.114bx,y

, where rx,y, gx,y and bx,y are the respective red, green
and blue pixel values on image x and y coordinates.
Normalized correlation coefficient (CCOEFF) from
OpenCV [2] library was used to calculate image
similarity Rt on time t between camera image T and
cropped map image I:

Rt =
∑

w
x=0 ∑

h
y=0(T

′(x,y) · I′(x,y))√
∑

w
x=0 ∑

h
y=0 T ′(x,y)2 ·∑w

x=0 ∑
h
y=0 I′(x,y)2

, where

• T ′(x,y) = T (x,y)−
∑

w
x′=0 ∑

h
y′=0 T (x′,y′)

w·h

• I′(x,y) = I(x,y)−
∑

w
x′=0 ∑

h
y′=0 I(x′,y′)

w·h
• w,h are the image dimensions (width and height).

2.7 UAV Pose Estimation
True location of the UAV is calculated by recursively
estimating particle belief density values as described in
[12]. Belief is calculated for each particle as conditional
probability

bel(Pt) = p(Pt |P0:t−1,m1:t−1,b1:t−1)

, where

• Pt - predicted aircraft pose on time t

• mt - sensor data (may be IMU, barometer, wind
speed and other data used for dead-reckoning) on
time t
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Figure 3: Correlation coefficient values when matching
map with aerial imagery on all heading angles.

• bt - previously described particle probability
value on time t

The belief is a probability on location Pt , conditioned
on all previous sensor data and all particle probability
density values. The particle with highest belief is con-
sidered to be the true UAV pose for current iteration.

3 EXPERIMENTAL RESULTS
This section describes experimental environment, hard-
ware components used for data collection and obtained
results

3.1 Experimental setup
A fixed-wing UAV was used to collect aerial imagery
and sensor data during 1 km flight. Basler acA640-
120uc industrial camera with global shutter was used to
collect aerial imagery alongside with other sensor data
provided from UAV flight controller. Images was re-
corded in 640x480 resolution at 90 FPS. Data was re-
corded using MPEG2-TS video format and sensor data
was recorded as meta-data alongside the video stream.
The video playback allows data to be read with the
same timing as it was recorded on UAV. Map used for
matching was downloaded from Google Maps [10] us-
ing highest available zoom level. Initial particle count
for the particle filter was set to 500.

3.2 UAV Heading impact on correlation
coefficient

This section investigates magnetometer error impact on
correlation coefficient since it was noticed during loc-
alization experiment. Typical magnetometers used in
UAV’s may contain noise in measuring heading direc-
tion. Fig. 3 presents correlation coefficient values for
6 images captured during real flight and matched with
according orthophoto map images. Table 1 contains av-
erage similarity change values versus heading change.
Data from table 1 suggests that +/- 2 degrees of heading

Figure 4: Flight trajectory reconstruction using odo-
metry (red), particle filter (green) and conventional GPS
sensor (blue).

Figure 5: Particle filter localization and visual odo-
metry absolute errors.

angle error can be ignored, because it affects correlation
coefficient only up to 10% on average.

Table 1: Heading change impact on similarity coeffi-
cient

Average similarity
Heading change, ◦ change, %

+10 67.78
+5 34.59
+2 9.38
-2 10.15
-5 35.49

-10 62.08

3.3 Localization accuracy
In this section we will evaluate localization accuracy
compared with conventional GPS positioning system
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and pure visual odometry positioning. Accumulated
odometry error correction is expected when using
particle filter in combination with odometry. Flight
trajectory reconstruction using odometry and particle
filter localization is presented in fig. 4. Trajectory
errors in meters are presented in fig. 5, the plot shows
that odometry suffers from cumulative errors as it was
introduced in the introduction of the paper. The dashed
lines are the trend-lines of the errors, the vertical line
show the breaking point of the trend-lines at 35 seconds
flight time. Since the breaking point of accuracies
shows that proposed algorithm adds a lot less errors
during long time flights. Additional experiments are
required to validate whether errors won’t add up after
longer flights. Particle filter localization was able to
keep error values in around 50 meter range. After the 1
kilometer flight the final error was reduced by a factor
of 2 compared to localization from visual odometry
only. Proposed algorithm error trend-line slope is
reduced by a factor of 11 times compared with visual
odometry.

4 CONCLUSIONS AND FUTURE
WORK

This paper analyses an application of particle filter for
UAV localization in previously known orthophoto map
using images from downward facing camera on the
UAV platform. The obtained results concludes:

• Flight heading error +/- 2 degrees causes correlation
coefficients errors in up to 10% range. Particle filter
execution was done with +/- 5 degree uncertainty in
UAV heading.

• Experiment on real flight data shows that particle fil-
ter is able to reduce the slope of accumulating errors
with a factor of 11 times compared to visual odo-
metry.

• At the end of experimental flight, particle filter loc-
alization allowed to improve position precision by a
factor of 2 compared with position from odometry
data only.

Future work in the field of this paper would include
additional experiments comparing proposed algorithm
with geo-referencing based localization to benchmark
localization accuracy. An alternative image similarity
coefficient based on deep learning can be proposed in
replacement of correlation coefficient to improve local-
ization accuracy of the algorithm.
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