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ABSTRACT
Vector representation of the images, maps, schematics and other information is widely used, and in computer pro-
cessing of these data, comparison and similarity evaluation of two sets of line segments is often necessary. Various
techniques are already in use, but these mostly rely on the algorithmic functions such as minimum/maximum of
two or more variables, which limits their applicability for many optimization algorithms. In this paper we propose
a novel area based criterion function for line segment similarity evaluation, which is easily differentiable and the
derivatives are continuous in the whole domain of definition. The second important feature is the possibility of
preprocessing of the input data. Once finished, it takes constant time to evaluate the criterion for different trans-
formations of one of the input sets of line segments. This has potential to greatly speed up iterative matching
algorithms. In such case, the computational complexity is reduced from O(pt) to O(p+ t), where p is the number
of line segment pairs being examined and t is the number of transformations performed.
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1 INTRODUCTION
Evaluating similarity of two scenes is a frequent task to
deal with in many technical applications. Due to inevi-
table error of the measuring devices and dynamic nature
of the world around us, we can rarely (if ever) get two
exactly same results and test them for equality. Instead,
we usually get similar results in similar situations, and
this is where some metrics of similarity becomes essen-
tial. A human observer usually spots the similarity un-
consciously due to our evolutionarily developed sense
for pattern matching, but a machine, which did not have
millions of years for its development, is reliant on nu-
merically evaluable algorithms.

Although the notion of similarity may look straightfor-
ward at first, it is a quite complex task to solve in ge-
neral. Some situations require invariance to all affine
transformations [1]. Other applications require inva-
riance only to a subset of possible transformations as
described in [2] and [3], where invariance only to rigid
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transformations and scaling is demanded. On the ot-
her hand, all transformations are important in motion
estimation applications [4], [5], path planing [6] and
simultaneous localization and mapping (SLAM) pro-
blem in robotics [7]. Many applications exist for 3D
object detection [8] and 3D scene matching [9], where
incomplete line segments often appear and the simila-
rity criterion should take this into account. Another set
of algorithms is used for polygons [10] or polyline cur-
ves [11]. Mathematically well described is the Frechet
distance [12], but its domain of operation are polylines
and in case of isolated line segments it simplifies to bare
comparison of distances, similar to algorithms above.

Wideness of requirements being put on the similarity
criterion leads to a set of algorithms with different pro-
perties for different situations, rather than a single over-
complicated method for everything. Specialization also
enables deeper optimization, which is necessary in time
and resource critical applications. Our research is focu-
sed on mobile robotics and SLAM, which requires 2D
similarity criterion variant to all transformations with
zero output for any two line segments lying on the same
line. This behaviour is of a great importance, because
the robot, due to an obstructed view, rarely observes an
object as a whole. Partial information about the edges
of the surrounding objects results into uncertainty about
their real dimensions, because we do not know, which
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part of the real edge has the robot actually sensed. This
uncertainty is expressed as a perfect match anywhere al-
ong a line defined by an infinite extension of the static
line segment. Only two or more skew line segments can
solve this ambiguity and define a single transformation
between the new and the static data.

Solutions mentioned above represent possible approa-
ches, but are hard to describe mathematically because
of inbuilt conditional statements and require repeated
recomputation in the iterative fitting algorithms, which
limits performance significantly. The method described
further in this paper satisfies the requirements and sol-
ves the issues described.

2 STATE OF THE ART
The most relevant criteria to our demands are based on
the Hausdorff distance. Valuable comparison of the es-
tablished line segment distance functions [13] evaluates
three of these similarity metrics.

Basic Hausdorff distance function for line segments, as
described in [10], is defined as:

dl1,l2(l1, l2) = sup inf d(PPP,QQQ)
PPP∈l1 QQQ∈l2

,

dl2,l1(l1, l2) = sup inf d(PPP,QQQ)
PPP∈l2 QQQ∈l1

,
(1)

dcrit(l1, l2) = max(dl1,l2 ,dl2,l1), (2)

where d(P,Q) is some distance metric (Euclidean in
most cases), dl1,l2 is longest perpendicular distance
from l2 to l1 and vice versa in the second case. The
criterion distance is the higher value of these two.

Modified Hausdorff line segment distance originates
from [14] and the definition is as follows:

dcrit(l1, l2) = min(‖ l1 ‖,‖ l2 ‖)sin(α), (3)

where ‖ lx ‖ denotes length of the particular line seg-
ment and α is the angle formed by l1 and l2.

Modified perpendicular line segment Hausdorff dis-
tance [11] relies on the perpendicular distance between
an end point of one line segment and the corresponding
line segment as a whole. If a line segment is described
as lx = {PPPx1,PPPx2} then the perpendicular distance can
be written as d⊥(lx,PPPyz), where x,y,z ∈ {1,2} are ap-
propriate indices. The criterion is then defined by the
equations:

d⊥1 = min(max(d⊥(l1,PPP21),d⊥(l1,PPP22)),
max(d⊥(l2,PPP11),d⊥(l2,PPP12))),

d⊥2 = min(min(d⊥(l1,PPP21),d⊥(l1,PPP22)),
min(d⊥(l2,PPP11),d⊥(l2,PPP12))),

(4)

wi =
d⊥i

d⊥1 +d⊥2
for i = {1,2}, (5)

dcrit(l1, l2) =
1
2
(w1d⊥1 +w2d⊥2) . (6)

Many other criteria can be found in the literature, but
although they fulfil slightly different requirements, in
general, the concept is quite similar - usage of distances
between points, rarely the angle of the examined line
segment pair, all of them combined using min()/max()
functions. Basic Hausdorff distance (2), and many ot-
hers not mentioned here, does not even give zero results
for line segments lying on the same line. On the other
hand, modified version of this criterion (3) gives zero
results for every collinear pair of line segments, which
is not desirable as well.

The mentioned criteria definitely fulfil the task they
were designed for, but the properties do not meet our re-
quirements and their formulation prevents possible op-
timizations for better performance. The next section
describes a novel criterion, which overcomes these li-
mitations.

3 AREA BASED CRITERION FOR
LINE SEGMENT SIMILARITY

The main thought behind the design of the presented
criterion is following: If the similarity of two points
(zero dimensional objects) in higher dimensional spa-
ces is a distance, then the similarity of two line seg-
ments (1D objects) should be defined by an area (in
more than one dimensional spaces). For the purpose
of the criterion, which should return zero as an extre-
mum for a certain input, we are going to work with the
square of the area. This approach deals with a possi-
ble negative sign of the area without need to employ an
absolute value and ensures, that a zero is the minimal
possible output of the computation.

Let us have two arbitrary line segments AAABBB and CCCDDD, as
depicted in the following Figure 1.

One of the requirements stated above demands zero out-
put, if both examined line segments belong to the same
line. This is satisfied by the squared area of the paral-
lelogram defined by the vectors x and yyy (as depicted in
Figure 1):

S2
ABCD(l1, l2)=‖ (BBB−AAA)×(DDD−CCC) ‖2=‖ xxx×yyy ‖2 . (7)

To keep the notation lucid, we use a magnitude of a
cross product even for a 2D problem. For every cross-
product in this paper a condition of zero z coordinate for
any vector involved is applied. A brief intuitive exami-
nation of the equation (7) reveals the same weakness as
has the Modified Hausdorff distance criterion (3): The
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Figure 1: An example of two line segments l1 defi-
ned by points AAABBB and l2 defined by points CCCDDD and the
middle point SSS. Further equations rely on a substitution:
x = BBB−AAA and yyy = DDD−CCC.

result is zero for any collinear pair {l1, l2}. To obtain
fully functional criterion, this rule is further narrowed
by introduction of the squared area of the triangle AAABBBSSS,
which is defined by:

S2
ABS(l1, l2) =

1
4
‖ (BBB−AAA)× (SSS−AAA) ‖2, (8)

where SSS = (AAA+BBB+CCC +DDD)/4. This function is zero
for any pair {l1, l2}, where ((CCC+DDD)/2) ∈ (AAA+ txxx) and
t ∈ R.

By summation of the equations (7) and (8) we get the
final criterion:

Scrit(l1, l2) = S2
ABCD +64S2

ABS. (9)

Coefficient 64 balances the influence of both parts of
the criterion, because SABCD is significantly larger than
SABS. The exact value of the constant is justified in the
following subsection, where the criterion is examined
deeper.

3.1 Properties of the criterion
So far, the criterion was developed using intuitive un-
derstanding of the geometrical properties of the cross
product, but this can hardly prove the concept to be wor-
king at all conditions.

To provide a mathematical proof of the existence and
shape of the minimum of the criterion function, we need
to examine every possible mutual position and length of
both line segments l1 and l2, which means eight varia-
bles in total. Situation can be simplified by understan-
ding the geometrical properties of the criterion. Both
area functions (7) and (8) are independent of the po-
sition of the origin, because all vectors resulting form
the subtractions become invariant to translation. Inva-
riance of the area functions with respect to rotation of
both line segments is evident from an alternative form
of equation (7):

S2
ABCD(l1, l2) =‖ xxx× yyy ‖2=‖ xxx ‖2‖ yyy ‖2 sin2(α). (10)

Since lengths of the vectors and the angle between them
are not affected by the rotation of the whole pair and
formula (8) can be rewritten in the exact same way, we
can claim, that the criterion provides results indepen-
dent on that kind of transformation.

The value of the criterion function (9) is definitely de-
pendent on the scale, but for the purpose of minimum
search, that dependency is irrelevant. Multiplying a pa-
rabolic function by a constant does not affect the loca-
tion of its minimum.

Combination of the previous findings implies a re-
markable simplification of the minimum search task.
Thanks to the invariance of the criterion to the trans-
lation and rotation and omission of the scale factor,
we can fix one line segment at a constant position and
examine only the remaining four independent variables
defining position and length of the second one. Mini-
mum of the criterion function (9) is then given by the
solution of the following system of equations:

∂Scrit

∂Cx
= 0,

∂Scrit

∂Cy
= 2(Cy−Dy)+2(Cy +Dy) = 0,

∂Scrit

∂Dx
= 0,

∂Scrit

∂Dy
=−2(Cy−Dy)+2(Cy +Dy) = 0,

all for l1 = {AAA,BBB}= {{0,0},{1,0}}.

(11)

The equations are not simplified, because at this stage
we can easily compare magnitudes of the first deriva-
tives of both components of the criterion function (9).
The coefficient 64 was chosen to equalize these mag-
nitudes, which are now 2 for both components of the
non-zero equations.

System of equations (11) directly provides conditions
for critical points of the criterion function:

Cy = Dy = 0,
Cx,Dx ∈ R, (12)

which means any line segment lying on the x axis.

To reveal nature of the critical points, we compute the
Hessian of the criterion function (9). Generally it is
defined as:

Hi, j =
∂ f (x1, . . . ,xn)

∂xi∂x j
for 1≤ i, j ≤ n. (13)
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As l1 is set constant at the beginning of this examina-
tion, Scrit is a function of l2 only, therefore we can write
it as Scrit(Cx,Cy,Dx,Dy). The Hessian is then:

H =


0 0 0 0
0 4 0 4
0 0 0 0
0 4 0 4

 . (14)

H is positive semi-definite, which implies, that only mi-
nima or saddle points can exist in the critical points de-
fined by the conditions (12). Since Scrit(Cx,Cy,Dx,Dy)
under conditions (12) is always zero, the continuous
subspace of the critical points can only be the minimum
of the function (9).

Now we can claim, that the criterion (9) truly satisfies
requirements formulated in the semifinal paragraph of
the Introduction. The only remaining feature to be des-
cribed is an optimized procedure for similarity evalua-
tion of multiple line segment pairs at once.

3.2 Expansion for a set of line segment
pairs

In practice, there are a lot of situations, where two sets
of line segments are being tested for similarity. An
overall similarity is then given by a sum of similari-
ties of all corresponding pairs from both sets. During
scan to map matching in robotics, or image to image
registration in computer vision applications, one set is
often considered static (remains constant during com-
putation) and the other is dynamic (i.e. manipulated
using rigid transformation). The transformation is ite-
ratively adjusted to minimize the overall similarity cri-
terion. The established similarity criteria require trans-
formation of the second set of line segments and recal-
culation of the output value any time, the transforma-
tion changes. Our criterion allows to precompute the
result and then transform it in constant time, regardless
the number of pairs being examined.

Let the line segment l1 = {AAA,BBB} be static and the l2 =
{CCC,DDD} belong to the transformed set. The transforma-
tion is described by a rotation matrix R and translation
vector ttt:

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, ttt =

[
tx
ty

]
, (15)

where θ is the angle of rotation and tx and ty are trans-
lations in the direction of the x and y axes and af-
fects an arbitrary point in accordance with equation
PPP′′′ = RPPP+ ttt. Equations (7) and (8), with transforma-
tion of l2 included, look as follows:

S2
ABCD(l1, l2) =‖ (BBB−AAA)× (R(DDD−CCC)) ‖2, (16)

S2
ABS(l1, l2) =

1
64
‖ (BBB−AAA)×

(AAA+BBB+R(CCC+DDD)+2ttt−4AAA) ‖2 . (17)

The overall similarity for a set of N line segment pairs
is then given by:

Stot =
N

∑
i=1

Scrit,i

= s2
∑(xxxi · yyyi)

2

+ c2
∑ ‖ xxxi× yyyi ‖2

+2cs∑(xxxi · yyyi) ‖ xxxi× yyyi ‖
+∑ ‖ xxxi× vvvi ‖2

+2s∑(xxxi · zzzi) ‖ xxxi× vvvi ‖
+2c∑ ‖ xxxi× zzzi ‖‖ xxxi× vvvi ‖
+4ty ∑xx,i ‖ xxxi× vvvi ‖
−4tx ∑xy,i ‖ xxxi× vvvi ‖
+ s2

∑(xxxi · zzzi)
2

+2cs∑(xxxi · zzzi) ‖ xxxi× zzzi ‖
+ c2

∑ ‖ xxxi× zzzi ‖2

+4sty ∑xx,i(xxxi · zzzi)

−4stx ∑xy,i(xxxi · zzzi)

+4cty ∑xx,i ‖ xxxi× zzzi ‖
−4ctx ∑xy,i ‖ xxxi× zzzi ‖
+4t2

y ∑x2
x,i

−8txty ∑xx,ixy,i

+4t2
x ∑x2

y,i,

(18)

where xxx = BBB−AAA, yyy = DDD−CCC, zzz = DDD+CCC, vvv = BBB− 3AAA
and c = cos(θ), s = sin(θ), both from the rotation ma-
trix R. Separation of the variables related to the rigid
transformation and the sums originating from the initial
description of every examined line segment is a cru-
cial result. It allows us to precompute the sums only
once for the whole set and then evaluate the cumula-
tive similarity for any transformation in constant time.
Assuming p is the number of line segment pairs being
examined and t is the number of transformations perfor-
med, the computational complexity of the whole task is
reduced from O(pt) for established criteria to O(p+ t)
for our criterion. This could lead to significant perfor-
mance improvement of iterative matching algorithms,
which rely on completely static, or partially updated
data set. The examples are iterative closest line algo-
rithms by [15] and [7].

4 EXPERIMENTS AND RESULTS
Empirical verification is essential, when any new met-
hod is being released for practical applications. In this
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section, we are going to present synthetic tests proving
features theoretically described in Sec. 3.1 and 3.2 and
show some performance tests demonstrating advanta-
ges of our method, when similarity for a set of line seg-
ment pairs under different rigid transformations is to be
computed.

All experiments were implemented in the C++ pro-
gramming language and compiled with Microsoft Vi-
sual Studio 2015, using the -O2 optimization setting.
No other optimizations were made to keep the tests as
general as possible. The machine used for running the
experiments had a four-core / eight threads, 64-bit Intel
Core-i7-4790K CPU, running on 4.0 GHz. Processor
cache memory is large enough to hold all of the data of
every test performed. Visualization of the results was
done using MATLAB 2015 computing environment.

4.1 Feature verification
For feature verification of our criterion, we have deci-
ded to adopt the methodics introduced in [13]. It clearly
visualizes properties of the criterion under wide variety
of conditions and an interested reader may find results
for other line segment distance functions in the cited
paper in the given format. We believe, that unification
of testing methods will help the readers to compare the
methods and choose the right criterion function for their
needs.

Initial arrangement of the experiment is depicted in Fi-
gure 2. There is a static line segment l1 = {AAA,BBB} =
{{0,0},{100,0}} and a dynamic l2 transformed by va-
rious transformations according to the particular test.
Figure 2 shows the positive direction of the rotation and
the x axis. Rotations are always performed about the
origin of the coordinates.

Figure 2: Schematic depiction of the positions of the
line segments during the verification process as intro-
duced in [13].

The first two tests directly follow [13]. Figure 3 depicts
a situation, where l2 is first translated in the direction
of the x axis and then rotated by a given angle. The
graph clearly shows, that for l2 lying on the x axis, the
criterion returns zero and as the translation increases
and the angle closes to π

2 and 3
2 π the output value grows

rapidly.

Figure 4 shows another important case, where the
length of l2 is varied and then the line segment is

Figure 3: Criterion verification: Translation of l2 by
tx ∈ [0;200] centimetres followed by a rotation by θ ∈
[0;2π] radians.

Figure 4: Criterion verification: Length scaling of l2 in
the interval [1;200] centimetres followed by a rotation
by θ ∈ [0;2π] radians. Sub-plot shows the detail of the
graph for very small lengths of l2.

rotated by the angle θ . Again, the criterion gives
zero output for any l2 coincident with the x axis and
increases as the length grows and θ closes to π

2 or 3
2 π ,

which is desirable. Even for very short l2 the nature of
the criterion is consistent and the detail magnified in
the sub-plot in Figure 4 corresponds to the harmonic
shape observed in Figure 3.

The two following tests are meant to demonstrate, that
for any l2 moving along the l1 (i.e. x axis in these ex-
periments), the value of the criterion remains the same.
Figure 5 shows a situation, where l2 is first rotated and
then translated along the x axis. The graph clearly de-
monstrates, that the translation has no effect and the
enumerated similarity remains the same.

Similar behaviour appears, when l2 is scaled at first,
then rotated by the fixed angle π

4 and translated along
l1. The output of the criterion (see Figure 6) is quadra-
tically dependant on the length of l2, but the translation
does not affect it in any way.

All four experiments prove the theoretical findings from
Section 3. If l2 and l1 lie on the same line, the criterion
returns zero, which corresponds to conditions (12). The
tests also illustrate the fact, that the value of the crite-
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Figure 5: Criterion verification: Rotation of l2 by θ ∈
[0;2π] radians followed by a translation by tx ∈ [0;200]
centimetres.

Figure 6: Criterion verification: Length scaling of l2
in the interval [1;200] centimetres followed by a ro-
tation by a fixed angle π/4 radians and translated by
tx ∈ [0;200] centimetres at the end.

rion is not affected by translation of l2 in the direction
of l1, which is mathematically proved in the system of
equations (11).

4.2 Performance verification
Though the equation (18) might seem enormous at first,
there are many repeating terms, so the sums can be
precomputed with reasonable amount of additions and
multiplications. The same applies to later evaluation for
various transformations. In fact, careful examination of
equations (16) and (17) reveals, that the number of ba-
sic floating point operations is roughly the same in both
cases.

In this set of tests the performance of a naive and the op-
timized algorithms is compared. The naive implemen-
tation of the criterion function for a set of line segment
pairs stems from the equations (16) and (17). First, it
computes the transformation of the dynamic line seg-
ments and then the errors. Contrary, the optimized al-
gorithm first computes sums of the equation (18) and
then evaluates the criterion for each particular transfor-
mation.

Figures 7 and 8 show the timings of the proposed crite-
rion function. Both exhibit the predicted behaviour sta-

Figure 7: Processing time of a naive implementation of
the criterion for various number of line segment pairs
being processed (LSP) and transformations performed
(TR).

Figure 8: Processing time of the optimized implemen-
tation criterion for various number of line segment pairs
being processed (LSP) and transformations performed
(TR).

ted in Section 3.2. Naive implementation corresponds
to Q(pt) computation complexity, while the optimized
algorithm is O(p+ t). To emphasize the benefits of the
optimization Figure 9 shows the speed-up over the ba-
sic version. The performance gains are present even
for the lowest numbers of transformations and line seg-
ment pairs, but the small percentage of improvement
is highly implementation dependant and redeemed by
a larger memory footprint of the optimized algorithm.
The most significant improvements can be observed,
when both p and t grow up, which is a frequent case.
In such situation, the large performance gains are doub-
tless.

5 CONCLUSION
This paper presents a novel area-based line segment si-
milarity criterion. Contrary to usual alternatives, the
criterion function is fully differentiable and the deriva-
tives are continuous in the whole domain of definition.
The criterion is designed to give zero output for any
two line segments lying on the same line, which makes
it well applicable, wherever a small vector image is to
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Figure 9: Seed-up of the optimized criterion over a
naive implementation for various number of line seg-
ment pairs being processed (LSP) and transformations
performed (TR).

be fitted into a larger one (e.g. scan to map matching
algorithms in robotics).

The criterion also supports precomputation. Many al-
gorithms iteratively transform a line segment set by a
rigid transformation and compare it to a static set. Pre-
computation reduces computational complexity of such
algorithms from O(pt) to O(p+ t) (p is a number of
line segment pairs being examined and t a number of
transformation performed).

All of these features were theoretically derived and
practically tested in the appropriate parts of the paper.
Testing procedure was selected to correspond with ot-
her publications to provide the reader with consistent
information. We hope, that this decision will help him
to compare various approaches and choose the most re-
levant for his needs.

Future work is going to be focused on application of
the presented approach in a mapping system for mo-
bile robots and measurement of the practical perfor-
mance gains. An interested user of the algorithm may
benefit from multithreaded implementation, SIMD in-
structions, loop unrolling and many other techniques,
which can improve the performance significantly, but
are highly platform dependant. We hope, that features
of the described criterion will open new possibilities not
only in robotics, but in shape registration tasks in gene-
ral.
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