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ABSTRACT

With the recent advances in remote sensing of objects and environments, point cloud processing has become a
major field of study. Three-dimensional point cloud collected with remote sensing instruments may be very large,
containing up to several tens of billions of points. This imposes the use for efficient and automatic algorithms to
extract geometric or structural elements of the scanned surfaces. In this paper, we focus on the estimation of normal
directions in an unorganized point cloud and provide a curvature indicator. We avoid point-wise operations to ac-
celerate the running time for normals estimation. Instead, our method rely on an innovative anisotropic partitioning
of the point cloud using an octree structure guided by the geometric complexity of the data and generates patches
of points. These patches are then approximated by a quadratic surface in order to estimate the normal directions
and curvatures. Our method has been applied to six models of various types presenting different characteristics and
performs, in average, 2.65 times faster than multi-threads implementations available in current pieces of software.
The results obtained are a compromise between running time efficiency and normals accuracy. Moreover, this

work opens up promising perspectives and can be easily inserted in wide range of workflows.
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1 INTRODUCTION

With the current advances in photogrammetry and the
availability of instruments recording 3D information
(e.g. depth sensors and laser scanning devices from
airborne, terrestrial or mobile platforms), point clouds
are becoming commonly used in various fields. Data
acquired with these tools often contain several tens of
millions of points. Processing these large data sets is
still a challenge and computing geometric information
such as normals or curvature is a real issue. A major dif-
ficulty in such processing is the absence of neighbour-
hood information: unlike meshes, point clouds are un-
structured raw data. Consequently, extracting informa-
tion from a point cloud can be time consuming. Thus,
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there is a need for new algorithms oriented towards fast
point cloud processing.

Normal directions are crucial geometric information
for surface analysis. They are a key variable for a
large range of algorithms and point clouds analysis
approaches [LiO8].  Therefore, normal estimation
techniques have been widely studied (see review by
[K109]). However, the estimations of point’s normal
can be challenging and computationally expensive.
Normals estimation can be divided into three major ap-
proaches: optimisation-based, local-weighting-based,
Hough transform, and Voronoi-based.

The optimisation-based approach locally approximate
the point cloud with a predefined surface model from
which normals can be computed. The two main mod-
els fitted to the data are planes [Ho92], and quadratic
surfaces [K109]. However other second-order surfaces
such as spheres have also been used to approximate the
point cloud [Zh16]. Planes can be fitted by using ei-
ther classical least square fitting, or principal compo-
nent analysis (PCA) [GuO1]. In local-weighting-based
approach, normal directions are estimated by differ-
ent combinations of the normals deduced from a point
and its neighbours [Ji05]. This approach can be ei-
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Figure 1: Overview of the methodology.

ther applied on a local Delaunay triangulation of the
point cloud, on kNN graphs, or on Reinmann graphs
[K109]. Hough transform is an alternate approach that
considers a point and its neighbourhood. For each point
of the cloud a reduced amount of triplets is selected,
the Hough transform then provide a reliable accumu-
lator from which robust normal directions can be ex-
tracted [Bo12]. This point-wise approach can be sup-
ported by a neuronal network to improve its robust-
ness to noise and outliers [Bo16]. The Voronoi-based
approach considers the shape of each Voronoi cells
[Am99]. The algorithms using Voronoi poles to es-
timate normal directions may also provide curvature
additional information [de05, Mell]. The above ap-
proaches are based on point-wise normal estimations
and require neighbours finding procedures. While a
neighbourhood query can be achieved efficiently with
support of accelerating structures such as octrees or
KD-trees, the repetition of this procedure for each point
is time consuming.

In the present study we propose a new method, follow-
ing an optimisation-based approach, as a solution to im-
prove the efficiency of normals estimation on large in-
core point clouds. Our first specific objective is to avoid
point-wise operations. To reach this goal, we developed
two distinct procedures that rely on an innovative adap-
tive subdivision of the point cloud. We propose two
novel rules to guide this subdivision in accordance to
the local geometric complexity of the point cloud rather
than the local density. Our second specific objective is
to analyse their efficiency and accuracy in different sit-
uations to evaluate their behaviour and the comparative
gain in efficiency with currently available algorithms.

2 METHODOLOGY

The normal estimation method we developed is built
on a simple idea: surfaces are composed of a combina-
tion of uniform areas (with respect to the geometrical
variation and hence, containing no sharp elements) and
sharp features. Consequently, the point clouds result-
ing from remote sensing of these surfaces also contain
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uniform and sharp parts. The proposed fast normal es-
timation procedure takes advantage of this characteris-
tic. We avoided costly point-wise fittings by partition-
ing the input point cloud into patches in an anisotropic
division. Unlike classical subdivisions that are only
guided by the point density, our subdivision takes into
account the geometry of the data. Indeed, it is designed
to split the point cloud anisotropically according to the
set of normals. The fast normal estimation procedure
is then applied on patches of points instead of point-
wise. More precisely, to achieve our objective effi-
ciently, we developed the methodology summarised by
the flow diagram of Fig. 1. This methodology is a com-
promise between running time and normal directions
accuracy. The proposed method improves the running
time efficiency based on two main aspects. First, it es-
timates normal directions at a patch level which lowers
the computing time . It should also mitigates the im-
pact of noise on normals estimation on large patches in
the sense that with larger areas to approximate comes
more information about the underlying surface. Select-
ing a local scale for surface fitting. Second, it provides
a curvature indicator and principal curvature directions,
which are important geometric features for further pro-
cessing.

The proposed method has four distinct steps. As
demonstrated by Zhao et al. (2016), the use of a
point cloud subdivision prior to shape fitting shortens
the computational time. The first step of our method
addresses patches creation by diverting the octree
structure from its initial purpose. Unlike Zhao et
al. (2916), who use an octree partitioning guided
by the point density, our patch partitioning builds an
anisotropic subdivision of the data according to its
geometry.

We calibrated the octree subdivision of a point cloud
on its local uniformity rather than adopting the usual
strategy using the point density. Figure 2 illustrates this
anisotropic subdivision: areas containing sharp features
such as ground-wall, wall-wall or wall-roof junctions
are highly subdivided. whereas bare ground or inner
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Figure 2: Anisotropic subdivision of an input urban point cloud (left), using o3 criterion (centre), or RMSE criterion
(right). Sharp features creates small patches while uniform surfaces generates large patches. On an almost constant
point density, the octree sudvision still creates patches of various size since it is ruled by geometric complexity.

walls are less divided and result in larger patches. This
anisotropic octree recursively divides a point cloud into
two sets of patches (Fig. 1b, 1d): (1) locally smooth
patches, and (2) patches containing sharp features (we
will refer to them as edge patches). The recursive
subdivision also includes a surface fit for each gener-
ated patch (Fig. 1c, 1d). This way, we generate large
patches in even areas and process them at once. Unlike
point-wise approaches, our method does not require
the computation of a neighbourhood for each point of
the input cloud. As a consequence, the complexity of
our approach is drastically lower than point-wise ap-
proaches. The second step of the method involves es-
timating normals and curvatures inside each resulting
uniform patches using the fitted surfaces (Fig. le).
Since these surfaces are not oriented, the resulting nor-
mal directions are possibly inconsistent across neigh-
bouring patches. Therefore, the third step is designed to
improve the coherence of the normal field. To do so, we
take advantage of the fast node neighbourhood access
given by the octree structure to generate a consistent
orientation of normals (Fig. 1f). Eventually, the forth
step blends the computed normals and curvatures along
nodes boundaries in order to guarantee the smoothness
of the resulting normal field (Fig. 1g).

2.1 Anisotropic subdivision

The first step of our method divides the point cloud
along an octree subdivision guided by the local unifor-
mity of the point cloud. Starting from the root of the
octree ¢, which contains the entire point cloud, nodes
are split into eight octant patches until a uniformity cri-
terion is satisfied.

We developed two procedures to create the anisotropic
subdivision. Each of them uses a different criterion to
stop the recursive subdivision. The first procedure stops
the subdivision when the flatness of the patches is suffi-
cient (Fig. 1b): the corresponding criterion is based on
a flatness index (Fig. 3). The second procedure stops
the subdivision as soon as the patches can be accurately
approximated by a surface model (Fig. 1d): the corre-
sponding criterion thus is based on the modelling error.

to avoid an over-
Indeed,

Both criteria are designed
segmentation of the initial point cloud.
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only patches containing sharp features will be further
divided, hence generating large patches for uniform
areas, and small patches for sharp features, that is,
an anisotropic subdivision. The two procedures have
different strengths and balance running time and
accuracy, as discussed in the results and the discussion
sections. While the first procedure is based on flatness,
it requires less computations but captures fewer details
on the point clouds. Indeed, figure 2 shows that the
03 criterion is more permissive regarding the presence
of sharp features and creates patches containing a
small amount of sharp features such as ground-wall
junctions. The second procedure based on modelling
error is more accurate, but involves more calculations.
While the verification of the first criterion requires the
use of plane fitting operations, quadratic surface fitting
is necessary for the evaluation of the second criterion.

2.1.1 Local plane fitting
Plane fitting

Let 0 € € be an octree node, {p1,p2,--+,pm} be the
points contained in o, and p be their centroid. It has
been proven that computing the least square fitted plane
P going through p and approximating the points p; can
be obtained by a centred PCA of the p; [Pa02]. Indeed,
such a plane is completely determined by its normal 7.
Hence, least square fitting is equivalent to minimising
the following least square error:

Farr £ (252)

i=1 i=0 ( 1)
1, S
= W”l XCOV([],‘)XVZ
where Cov denotes the covariance matrix, and

pi=pi—p. Given A; > A, > A3 the eigenvalues of
the covariance matrix, and v}, v3,v3 the associated
eigenvectors, the fitted plane P is actually the plane
containing p and whose normal direction is v3.

Flatness index

The residuals of the PCA plane fitting are given by As.
Thus these residuals may be considered as a flatness in-
dicator. However, A3 not only depends on the number
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Figure 3: Different point cloud dispersion represented
as ellipsoids and corresponding PCA results. Eigenvec-
tors are scaled according the eigenvalue. The colours
represents the height map of each ellipsoid for a better

appreciation of the shape.
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of points considered, but also on the size of the point
cloud. Hence we selected an indicator o3 called surface
variation [Pa02], providing an homogeneous, orienta-
tion, and scale independent indicator:

A3

= M+ + 23

)
From the PCA properties, 03 can be seen as the ratio
of inertia kept by the plane normal over the total in-
ertia of the point set. This normalisation produces an

1
index o3 € |0, 3] that is independent of the patch size

and of the number of points considered: the lower o3,
the flatter the corresponding sampled surface (Fig. 3b).
This index can be applied as a criterion to regulate the
anisotropic recursive subdivision.

2.1.2  Quadratic surface fitting

The second procedure models patches as quadratic sur-
faces for a closer approximation of their geometry.
Computing a best-fit surface requires a local frame. An
efficient way to obtain this system is to compute an ap-
proximate tangent plane using the previously described
PCA plane fitting, and to consider the orthogonal re-
sulting basis B = (vi,v2,v3), along with P its origin.

points, we control the subdivision and eventually stop
it according to either of the two criteria presented:
(1) the o3 criterion, and (2) the RMSE criterion. The
octree creation using the o3 criterion performs a PCA
plane fitting and stops the subdivision according to a
threshold over o3 (Fig. 1b). In the RMSE criterion,
after the initial PCA plane fitting a quadratic surface
is fitted and subdivision is stopped according to a
threshold over the resulting RMSE (Fig. 1d).

The o3 criterion therefore requires less computations
and as resulting patches have a o3 value lesser than
a given threshold, they are relatively flat and do not
contain folds or sharp features. The RMSE criterion
requires more calculations since both PCA plane fitting
and quadratic surface fitting are computed at each level
of the recursive subdivision. However, this criterion
assesses more accurately the patches and improves the
anisotropy of the resulting subdivision.

Starting from this subdivision, each patch is them
modelled by an elevation surface to compute normals.
Whereas the RMSE criterion directly provides an
approximating surface (Fig. 1d), in the case of the 03
criterion, we eventually fit a quadratic surface in the
least squares sense over each patch. (Fig. 1c).

Regardless of the criterion applied, we set two addi-
tional conditions for a patch to be split. At critically
small scales, point clouds no longer represent the sam-
pled surfaces. Therefore we use a threshold on the
patches dimensions D, to avoid dividing further small
nodes. Finally, since we use PCA to locally fit a plane,
we set a threshold n,,;, on the number of points con-
tained within the patch to ensure a reliable geometric
fitting.

As a result of the recursive binary space division, two
main reasons exist for an octree node to include a non
uniform patch that cannot be modelled by a surface.
The first reason is that nodes may contain less than n,,;,

Given a local frame and a point cloud & = {py, p2,-- - , p Jpoints. This happens: (1) mainly when a node contain-

expressed in this basis, we use the classical least square
method ([Pr93]) to fit an elevation surface S of equation
S(x,y) = a® + bxy + cy? + dx + ey + f minimising the
following distance:

n

d(S,2) =Y (zi—S(xi,y))* 3)

i=1

The accuracy of this fitting procedure can be evaluated
with the corresponding root mean square error (RMSE),
which can be used as a criterion to guide the octree sub-
division.

2.1.3 Anisotropic subdivision

Let us now introduce our anisotropic octree subdivi-
sion. Whereas standard octree subdivision iteratively
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ing an edge is recursively split without reaching the de-
sired level of smoothness, or (2) when a node splitting
isolates a few points inside an octant, even if the other
nodes reach the smoothness criteria. The second rea-
son for a node not to contain a uniform patch is that the
patch is more likely to represent a 3D curve than a sur-
face (Fig. 3c). In order to detect these patches, we use
another indicator derived from the PCA plane fitting.
These edge patches are detected by using the following
ratio:
A2
M+A+ A3

No surface can be fitted on edge patches. Similarly,
patches not containing enough points are not modelled
by a surface since they may contain a sharp feature
that cannot be accurately approximated by a quadratic

“4)

o2
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Figure 4: Surfaces are oriented by considering the sign
of implicit surfaces at points sampled on the face of
contact between neighbour nodes.

model (e.g. several piecewise surface). In both cases,
these patches are ignored in the later procedure.

2.2 Normals estimation and curvature in-
dicator

Once uniform patches have been obtained from the
anisotropic octree and modelled by a surface S, normals
can be estimated in an efficient manner. The normal di-
rection at a point p; of the patch is approximated by the
normal of its projection p! onto the surface S. Since the
surface equation is known, obtaining the normal s
straight forward. However, at this point, the orientation
of the fitted surface cannot be assessed (i.e. discrimi-
nating interior and exterior space), and neither do the
normal directions.

Similarly to normal directions, principal curvatures can
be derived from the fitted surface equation. The first
and second fundamental forms of each surface are com-
puted for each point p; as the curvature of their projec-
tion on the fitted surface pg. Hence, the curvature tensor
can be computed to obtain the corresponding eigenval-
ues and eigenvectors. However, because the fitted sur-
faces are quadratic, and since the point cloud division
generates uniform patches, the curvature may not be
captured with high precision. The resulting eigenvalues
of the tensor thus differ from the actual main curvatures
of the surface. Nonetheless, this procedure provides a
potential indicator of the curvature which can be used to
analyse the changes of its value across the point cloud.

2.3 Consistent normal orientation

In order to enhance the consistency of the normal direc-
tions, we propose a way to locally orient surfaces. Start-
ing from a patch, neighbouring patches are probed ac-
cording to their adjacency to propagate a consistent ori-
entation (two patches are considered to be neighbours if
their corresponding octree nodes share a common face).
Let N1 and N, be two neighbour nodes, S; and S, be
the surface fitted in each node, and f the face shared
by N; and N,. In order to orient N, relatively to Ny,
a set of m points are sampled uniformly on the face f.
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Node 1

Figure 5: Normals directions close to a node faces
are weighted with the neighbours node surface. The
weights are computed as a Wendland function around
the faces of contact.

M | CCP | CCQ | CCT | RMSE | o3
M| 17| 24 1.7 0.6 32 6.5
Table 1: Average median error for Meshlab (M), Cloud-
Compare’s plane fitting (CCP), quadratic fitting (CCQ)
and triangulation (CCT), RMSE octree, and 03 octree.

Now, S1 and S, can be seen as the surfaces correspond-
ing to the zero level set of two implicit functions /; and
I, corresponding to their quadratic equation.. At each
point p; sampled on f, the signs of I;(p;) and L(p;) is
computed. The orientation of N, is set to minimise the
difference of signs at the sampled points (Fig. 4).

2.4 Normals blending

Since patches are analysed separately, the junction
between the fitted surfaces of two neighbouring patches
are discontinuous. Thus, two points inside a small
neighbourhood radius may have divergent normals.
To minimise this potential bias, we propose a way
to blend the normal direction at the nodes junctions
taking into account the local information of multiple
surfaces. Note Ni,N, two neighbouring nodes of size
dy and d; and f the face they share. We define a radius
of influence r: )

. min(dy,d>) 5)

3

around f in which normals will be blended (Fig. 5). At
each point p, one or several nodes and their surfaces S;
will then influence the estimation of its normal direc-
tion. The normal direction .4, at p will be ultimately
estimated as a weighted sum of the normals 7l at p on
the set of surfaces S;:

=Y on (6)

where ﬁf is the normal at p; estimated on the surface S;,
and the weights ®; are computed based a Wendland’s
function of the distance d; from p to f; (Fig. 5):

wi(d):{(l—d)i(4d+1) ifd<r o

0 else
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Figure 6: Models used to tests our methods. From left to right: Angel, Blade, Bunny, Tree (Urban and Lucy
models are shown in Fig. 2 and 7). Colours are only used to emphasise the point cloud rendering.

In order to blend local estimates smoothly inside a lim-
ited radius, we choose to weight normals along bound-
aries using Wendland’s functions. Indeed, such func-
tions are smooth (to any given degree of derivability)
while having a compact support. Linear interpolation
is clearly not smooth enough whereas Gaussians func-
tions are not compactly supported (whereas we intend
to blend estimates only along the boundary).

3 RESULTS

We tested our methodology on six different point clouds
with various characteristics and number of points (Fig.
6). These models are indeed representative of a large
range of applications: arts, forestry, urban environ-
ments and industrial applications. Additionally, while
the Lucy model contains a higher number of points, the
Angel model shows variations in point sampling where
the point cloud is denser around the details of the statue.
Note also that the Tree point cloud contains a little
noise, mainly around the foliage due to the particular
limitations of TLS instruments in forest environments.
Four out of six models (Angel, Bunny, Blade, and Lucy)
are accessible from the Stanford 3D Scanning Reposi-
tory, or the Large Geometric Models Archive of Geor-
gia Institute of Technology. They were available as a
mesh with known normal directions which were used
as reference directions. The other two point clouds rep-
resent a tree (acquired with terrestrial laser scanning),
and a simulated urban environment. These six data
sets were used to analyse both the running time effi-
ciency and the accuracy of our method. Results from
our method were compared with those obtained by two
geometric modelling pieces of software providing nor-
mals estimation procedures. In Meshlab, the normals
estimation is based on a point-wise k-neighbours oper-
ation. CloudCompare includes three different methods:
point-wise local plane fitting, point-wise local quadratic
surface fitting, and triangulation. Our anisotropic oc-
tree subdivision with both criteria (o3 and RMSE), were
also evaluated for a total of six different methods.

The running time for all six normal estimation meth-
ods on the six point clouds are presented in Fig. 8
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(note the logarithmic scale). We ran the tests on an
Intel© Core™ {7-4790 CPU (3.60 GHz). Our meth-
ods outperformed the methods in Meshlab and Cloud-
Compare on all tested point clouds in terms of running
time. More specifically, the 03 octree was faster than
the RMSE octree. These results can be explained by (1)
the higher tolerance of the o3 criterion to sharp features
which induces less subdivisions of the point cloud, and
(2) the need to compute the quadratic surface fitting at
each level of recursion when using the RMSE criterion,
whereas this surface fitting is only computed on the oc-
tree leaves when the o3 criterion is selected.

The complexity of the anisotropic subdivision is related
to the size and the local uniformity of the point cloud.
In contrast, since Meshlab and CloudCompare perform
point-wise operations, the resulting complexity is then
dependent on the number of points in the cloud. In
point wise optimisation-based approach, for each point,
a neighbour query is required before fitting a surface
to the extracted neighbourhood (either with a plane fit-
ting, a quadric surface fitting, or a plane fitting followed
by a quadratic surface fitting). Such neighbour finding
procedure can be achieved in &'(log(n)). Denoting by
F the complexity of the chosen fitting procedure and
S the complexity of the accelerating structure creation,
the overall complexity of point-wise approaches is thus
O(S+ (n*(log(n) +F))).

The complexity of our methodology, in the worst case,
is that of the octree creation (that is S = O(n(d + 1)
where d is the depth of the octree) plus a PCA plane
fitting and a surface fitting in each node of the oc-
tree. The overall complexity of the normal estima-
tion in an anisotropic octree containing M nodes is thus
O(S+ (M=% (PCA+F))). In the vast majority of point
clouds, M < n. Hence the low complexity of our ap-
proach compared to point-wise approaches witnessed
by empirical results.

When comparing computing time, we found that the
CloudCompare triangulation method is, on average, the
most efficient concurrent of our methods. The RMSE
anisotropic octree subdivision speeds up, on average,
the normals estimation by a factor 2.65 in comparison
with the CloudCompare triangulation. This factor rises
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Figure 7: Estimated normal directions and curvature on
the lucy model using the RMSE criterion. Point cloud
is rendered using estimated normal directions (left), and
curvature indicator (right).

to 4.92 when considering the o3 octree. Overall, the
03 octree performs in average 2.09 times faster than the
RMSE octree.

We also analysed the normal estimation accuracy and
computed the curvature indicators for all six methods
on four of the point clouds: the Angel, Bunny, Blade,
and Lucy models (Fig. 7). To do so, we considered the
normals of the mesh models as the reference. Hence,
we evaluated the estimation error as the angle between
the reference normals and the estimated ones (Fig. 9).
Let us also point out that no normal vectors were es-
timated on the points identified as belonging to edge
patches (corresponding to sharp features). These points
are actually discarded during the comparison proce-
dure. The RMSE octree produces an error distribu-
tion similar to the plane fitting and triangulation meth-
ods from CloudCompare but with higher errors on the
Bunny model. The o3 octree however is less accurate
with error distributed on a larger range. Average me-
dian errors are summarised in table 1. As illustrated in
figure 9, even though the values of the curvature indica-
tor differs from the actual Gaussian curvature, the vari-
ations of this indicator are actually relevant and capture
the reliefs of the statue.

Finally we illustrate the differences between each
method, including the tree and urban data sets (Fig.
10). A difference pattern emerges as the anisotropic
octree 03 induces higher differences for each compared
method, and for the majority of data set. Overall, the
difference between Meshlab and CloudCompare is
regular, and the octree RMSE presents low difference
variations with these methods. However, the data sets
characteristics influence the resulting differences as
shown in the Tree and Angel data sets. The differences
observed on the Tree data set are due to the high geo-
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Figure 8: Comparison of computational time for normal
directions estimation using different methods.

metric complexity of the analysed object, as well as the
occlusion effect inherent to terrestrial laser scanning.
The Angel point cloud in turn has a non homogeneity
of the point sampling on the surface which may impact
the neighbourhood search operations. On the contrary,
the Urban point cloud present lowest inter-methods
differences including the o3 octree. This is explained
by the simplicity of the sampled scene: the point cloud
is mainly composed of flat surfaces such as soil, walls,
and roofs.

4 DISCUSSION

We achieved our objective and developed a method for
fast normal estimation. Indeed, tests have demonstrated
the running time efficiency of our methods. The calcu-
lations by surface patches instead of point-wise opera-
tions reduces the complexity of the normals estimation.
Whereas the implementation of our anisotropic subdivi-
sions is mono-thread, the CloudCompare normals esti-
mation methods are multi-thread processes taking ad-
vantage of the eight cores available on the computer
used during the tests. Thus, using thread partitioning
libraries could even increase the benefit in terms of run-
ning time. Besides normal directions, our methods also
provide a curvature indicator unavailable with the other
tested pieces of software.

Comparing our methods on six data sets with different
characteristics (number of points, sampling density, and
type of model) provided sufficient content for evalua-
tion. Our two methods differ in terms of running time
efficiency and accuracy. Whereas the RMSE octree per-
forms slower than the 03 octree, it generates errors in
the range of the Meshlab and CloudCompare methods.
The 03 octree subdivision, however, produces larger er-
rors, mainly due to its inability to capture details and
sharp features. Nonetheless, the 03 octree reached the
same accuracy as other methods when it was applied on
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Figure 9: Distribution of error angle between original model normals and estimated normals for different methods.
Above 45 degrees, the frequency continues to decrease for each method.

a point cloud with a majority of flat surfaces. Further-
more, patches identified as edge cannot be modelled by
a surface. Consequently, normals are not estimated on
such points, which, in turn, impacts the surface orienta-
tion along neighbouring patches.

The impact of noise on the resulting normals has not
been studied through an extensive validation yet and
is the next step towards a deeper understanding of the
capacities of the proposed normal estimation. Robust-
ness to noise was not the main motivation of the pre-
sented developments, rather we focused on the balance
between computing time and accuracy, as stated ear-
lier (other existing methods were developed to over-
come the problem of noisy data). However, we pro-
vide some elements to analyse the potential response of
our methods. First, given a point cloud affected by a
certain level of noise points, processing larger patches
(larger than point-wise neighbourhoods) improves sur-
face fitting. This in turn should improve the robustness
of normal estimation (let us point out that thanks to
these larger patches, we could also detect and remove
outliers during surface fitting to mitigate their impact).
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When considering a spherical neighbourhood, the cho-
sen radius has to be set carefully: it should be higher
than the distance from noisy points to the underlying
surface. Otherwise, the local dispersion of the cloud is
too important to obtain accurate information. The same
rule applies to the consideration of the k-closest neigh-
bours, which generally implicitly engenders a small
neighbourhood radius. By contrast, the subdivision into
patches allows to analyse a noisy surface over larger ar-
eas. In such case, the noise dispersion in less likely to
amalgamate noise and pertinent information. Overall,
the chosen scale of analysis during the surface fitting is
a critical aspect that has to be carefully considered in
optimisation-based approaches.

Our work opens up several perspectives in terms of per-
formance improvements and new applications. A way
to improve the efficiency of our method is to take ad-
vantage of both the 03 and RMSE criteria to obtain a
compromise between efficiency and estimation accu-
racy. We believe this could be achieved by using a cri-
terion based on the value of A3 rather than the o3 indi-
cator. We also intend to explore the relevance of trilin-
ear interpolation during normals blending and apply it
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Figure 10: Difference of normal directions estimation in degres between the RMSE octree (RMSE), the 03 octree
(03), Meshlab (M) and CloudCompare’s plane fitting (CCP), quadratic fitting (CCQ) and triangulation (CCT).

to estimate normals on currently ignored patches. Oc-
tree structures are a major element in computer graph-
ics and they take part in many algorithms in order to
accelerate the processing. KD-trees are also a popular
space partitioning structure. We chose to use octrees
because of the regularity of the subdivision (the space
is divided into cubes) and because of the efficiency of
octrees for neighbourhood searches; both of these prop-
erties are further required in other workflows. How-
ever, our method could be adapted to KD-trees with
few changes. This might even enhance the anisotropy
of the resulting procedure since patches could be split
at regions of maximum estimated curvature. Doing so
would be highly relevant to obtain the larger uniform
patches.  Another improvement would be to develop
these changes in a multi-thread implementation. Addi-
tionally, the method could be adapted to handle out-of-
core point clouds containing up to several tens of bil-
lions of points. Indeed, once patches have been identi-
fied and approximated with a quadratic surface, the data
points are no longer needed. Thus, the only memory
footprint remaining is that of the octree structure itself,
which is manageable. Therefore, loading separately ap-
propriate chunks of the point cloud is a viable solution
that do not interfere with the normal orientation proce-
dure. Moreover, out-of-core clouds usually represent
wide areas (e.g. an entire and detailed building, or parts
of a city). With these data, it would be recommended
to impose a maximum patch size prior to the octree cre-
ation. For example, patches of 15 m? would have a
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great chance of containing sharp features with a junc-
tions of different surfaces such as wall-ground. This
patch size limit would fasten the procedure by avoiding
several subdivisions and make it easier to handle the
amount of data points. Finally we are currently work-
ing on a point cloud compression method based on the
presented octrees. This lossy compression represents a
highly efficient way to store data and could be used for
fast computing of levels of details.

S CONCLUSION

We have presented two new methods to estimate nor-
mal directions and curvatures on a point cloud which
are major elements in geometric analysis. Both rely on
an efficient anisotropic octree subdivision of the data
and perform faster than the benchmark pieces of soft-
ware tested. Results show that the RMSE criterion is
preferable for capturing great details on the point cloud,
whereas the usage of the faster o3 criterion has to be re-
stricted to point clouds containing mostly flat surfaces
(e.g. urban or indoor environments).

The generated anisotropic octrees represent a multi-
purpose and efficient tool for point cloud handling. In-
deed, besides the normal and curvature estimation pre-
sented here, octrees are included in a wide range of ap-
plications in computer graphics. As an example they
are almost inevitable for visualisation and neighbours
finding, and may be involved in segmentation, clas-
sification, and spatial analysis. Overall, the proposed
methodology can be inserted in various workflows with
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few modifications and gives access to elaborated meth-
ods based on normals directions.
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