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ABSTRACT

In this paper, we discuss the challenge of generating the screen-space ambient occlusion (SSAO) visual effect on
the state-of-the-art HoloVizio light field display. We detail the main features of modern SSAO techniques that are
currently being applied during visualization on conventional 2D displays, and describe difficulties that potentially
can appear when implementing this visual effect on 3D light field or similar systems. The main contribution of this
paper is our own modification of the SSAO algorithm for light field displays. The paper also includes suggestions
on the possible ways to improve its visual quality and performance.
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1 INTRODUCTION

Ambient occlusion (AO) is a technique of modeling the
behavior of ambient light. It takes into account all ir-
regularities of the surface of a virtual scene. After this
technique is applied, rough surfaces look more con-
trast and realistic. This effect creates an impression that
the scene elements with relatively bigger depth appear
darker, while elements on the top remain light (e.g.,
like at the pencil drawing of a human face on Figure
1). Physical explanation of the described phenomenon
is that the incoming light is easily reflected by the top
parts of the surfaces, but vanishes at their bottoms be-
cause of multiple reflections with absorption.

Currently the main approaches to implement AO are
the global illumination techniques [Chris10, DimOS,
Tab04], the methods using simplified scene geometry
[Bun0O5, Laine10, Shan07], and the screen-space ambi-
ent occlusion (SSAO) techniques [Hoang10, Mitt07].

The global illumination approach is based on the simu-
lation of the physical properties of light itself. It is usu-
ally implemented in graphical frameworks that target
the generation of complex photo-realistic effects. This
includes caustics, multiple reflections, refractions, at-
mospheric conditions, indoor or outdoor lighting, etc.
The ambient occlusion effect is present here as a natu-
ral consequence of the physical behavior of light. The
main drawback of this approach is that it is usually far
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Figure 1: Drawing of a human face by Franco Clun.
Details with relatively bigger depth (with their neigh-
borhoods) are painted darker.
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away from being able to run in real-time, which re-
sults in its applications for offline-only systems, like the
ones that are used in the production of photo-realistic
posters, movies, or design solutions (e.g., architectural
design).

Other approaches can be considered as a simplifica-
tion of the global illumination approach. They are usu-
ally designed to simulate some particular visual effects.
This paper focuses on the screen-space ambient oc-
clusion (SSAO) method that simulates ambient occlu-
sion taking into account only visible parts of the virtual
scene.

All techniques described above work well with conven-
tional 2D displays. However, it is far from trivial to
make them work on the state-of-the-art 3D visualization
systems, like augmented or virtual reality (AR and VR),
stereoscopic displays that work with glasses, multi-
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view displays, or light field displays (LFDs). Light field
displays — such as the HoloVizio system [Balazs14,
BaloghQ7] — require much more computational power
for rendering compared to the visualization on 2D dis-
plays. Because of this, graphics algorithms need to be
as light-weight and as efficient as possible. Based on
its attributes, the SSAO can be considered to be a fair
solution for this type of systems.

This paper introduces the adaptation of SSAO algo-
rithm of CryEngine 2 (see [Mitt07]) to the HoloVizio
light field display, as well as some improvements for it.

The paper is structured as follows. Section 2 provides
a brief overview of the state-of-the-art work performed
in the topic of surface shading. This is followed by the
overview of the HoloVizio light field visualization sys-
tem in Section 3. The operation of the conventional
SSAO technique is detailed in Section 4, followed by
our contribution of a 3D SSAO extension in Section 5
and possible quality improvements in Section 6. Sec-
tion 7 describes the performance of our algorithm. The
paper is concluded in Section 8, also pointing out po-
tential continuations of the investigated topic.

2 RELATED WORK

It is intuitively understandable that human observers
can perceive the variations of depth by the level of dark-
ness of the appropriate parts of the image. This fact was
empirically proven [Lan00], together with some clarifi-
cations on the accuracy of subjective depth estimation
under certain conditions. This evidence gives us the sci-
entific justification of using the ambient occlusion fam-
ily of algorithms to depict the variation of depth by the
variation of light intensity.

Currently, the most precise method to depict the
variation of light intensity in a given scene is to
make a physically-based simulation. This approach is
directly implemented in the global illumination (GI)
frameworks, and it is widely applied in the creation
of modern movies and cartoons [Chris10, Tab04].
However, using GI techniques is not always an
optimal solution for real-time rendering — such as
virtual and augmented reality, video games, or the
real-time preview during the editing of 3D graphics —
as these techniques come with higher requirements for
computational power.

Another approach to render the photo-realistic images
is to use the ray tracing family of methods. This
includes the ray tracing method in its classic form
[Wald09, Whit79], path tracing (also known as the
Monte Carlo ray tracing [Veach97]), bidirectional
path tracing [Laf93], etc. However, these mentioned
approaches usually require additional computational
power and necessitate the construction of additional
acceleration structures (e.g., BVH, BIH, kd-trees,
octrees, etc.). Also, despite of numerous algorithmic
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and hardware improvements, and the fact that they are
already being widely applied offline, they are still only
entering the market of existing real-time solutions at
the time of this paper.

One way to avoid the unnecessary complexity of ray
tracing algorithms in real-time frameworks is to trace
the whole beam of light instead of a single ray. This
method is called cone tracing, and can be applied
in real-time to compute the illumination term only
[Cras11].

Instead of doing a complete simulation of light behav-
ior, one can try to imitate only a few necessary visual ef-
fects, including the AO effect. The mathematical back-
ground for these effects can be derived from the render-
ing equation [Kaj86], altogether with the other effects
produced by the global illumination approach. Rather
straightforward method to produce the AO effect in a
given point of the virtual scene is to trace a limited num-
ber of rays in different directions from this point, and to
check whether or not they intersect another surface of
the scene (see Figure 2). In this case, the AO term is
usually defined as the ratio of the number of rays that
do not result in intersection to the total number of the
emitted rays [Bun0S, Dim08, Laine10, Shan07].

Zany

Figure 2: Conventional AO approach. Arrows represent
rays emitted from the point of interest. Black squares
designate the points that increase the AO value, white
circles — that do not.

Several improvements and modifications have been
made within the family of AO algorithms. Dimitrov
et al. [DimO8] introduced the horizon-split ambient
occlusion. Laine and Karras [LainelO] developed a
ray-tracing-based method that takes into account the
neighboring set of geometrical primitives (i.e., trian-
gles). The evaluation of light intensity with the help of
an additionally constructed simplified representation of
the scene geometry in form of disks is introduced by
Bunnell [Bun05], and by Shanmugam et al. [Shan07]
— in the form of balls.

The main difference between the AO and SSAO algo-
rithms is that the SSAO algorithm computes the AO
value for visible surface only (see Figure 3), while
conventional AO algorithm uses the whole scene for
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this purpose. In conventional graphics pipeline, visible
scene geometry can easily be constructed using addi-
tional depth texture that contains the information about
the depth of each pixel.

Figure 3: Approximation of the scene geometry by its
visible parts (thick black line) used in the SSAO-family
of algorithms.

Figure 4: Screen-space ambient occlusion. Black
squares designate the invisible samples, white circles
are for the visible samples.

The collection of SSAO methods is implemented in
CryEngine 2 [Mitt07], which is well-known for the Far
Cry video game. In this approach, the random points
(samples) are generated within a certain volume around
the point of interest (hit point) on the visible surface.
The AO value is defined through the ratio of invisi-
ble samples to the overall number of generated sam-
ples. Hoang and Low [Hoang10] suggested the multi-
resolution SSAO that can be combined with other SSAO
methods, the main idea of which is to measure the AO
term for different radii and merge obtained information.

Loos and Sloan [Loos10] introduced the volumetric ob-
scurance method (see Figure 5) that calculates the cu-
mulative length of the unoccluded rays (depicted by
thick gray lines on Figure 5) coming from the camera
position instead of their number (as in the SSAO ap-
proach of Mittring [Mitt07]). The work of McGuire et
al. [McGuirel 1] describes the application of a similar
method in the industrial Alchemy framework.
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Figure 5: Volumetric obscurance.

3 OVERVIEW OF THE HOLOVIZIO
SYSTEM

Probably, one of the most commonly accepted ways to
parameterize light field is the 4D two-plane parameter-
ization (see Figure 6). Each ray of light in light field is
defined by the points of it’s intersection with two paral-
lel planes (screen plane and observer plane), and each
point of intersection is parameterized by two coordi-
nates.

observer
plane

e

-

screen
plane

N\

Figure 6: Two-plane 4D parameterization.

Two-plane parameterization is commonly used for full
parallax light field displays. But for horizontal-only
parallax displays (like HoloVizio system) the observer
plane can be substituted by observer line [Balazs14]
(see Figure 7). In this case, 4D two-plane parameter-
ization can be replaced with 3D plane-line parameteri-
zation (two coordinates for the screen plane, one for the
observer line). Analogously to two-plane parameteriza-
tion, the observer line can be imagined as the possible
positions of the viewer with respect to the actual screen.

Introduced plane-line parameterization is actually used
in the most simple architecture of the HoloVizio sys-
tem. In this form, HoloVizio system consists of actual
physical screen (represented by the screen plane) with
special diffuse properties, and a row of optical mod-
ules placed behind the screen. Each ray of light emitted
by an optical module traverses through the screen with-
out obstacles in horizontal direction, but diffused uni-
formly in all vertical directions to be able to hit the ob-
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Figure 7: Horizontal parallax 3D parameterization.

server line (see Figure 8). More advanced architectures
of the HoloVizio system may include convex display or
different placing of optical modules, but the main con-
cept remains the same. Real-life HoloVizio system may
contain different number of optical modules (e.g., it is
80 for HoloVizio C80 cinema system).

screen
plane

-~

N
h

optical
modules

observer

<
N

Figure 8: Distortion of particular rays of light coming
from a single optical module.

For the practical reasons, we differentiate the follow-
ing Euclidean 3D spaces: the world space, the physical
space, and the image space. In the world space, the
coordinates of the virtual scene are expressed. In the
physical space, X axis is parallel to the observer line, Y
axis goes vertically up, and Z axis is perpendicular to
the screen plane. Physical space is introduced to sim-
plify the calculation of the distortion of light that comes
through the screen. Image space is defined for each op-
tical module separately. In this space, the actual input
2D texture of the optical module is computed. X and Y
axes in the image space are X and Y axes of the texture,
and Z axis is the same as Z axis in the physical space.

The transformation from the world space to the phys-
ical space is affine and invertible. It can be set up by
defining a perpendicular parallelepiped in each space
(also known as the region of interest, ROI), and calcu-
lating the transformation from one to another. While
the transformation from the physical space to the image
space is not affine and not invertible. The relations be-
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tween all three mentioned spaces is depicted on Figure

9.
( World space )
A

Affine

( Physical sp;’ce )

Non-affine

( Image space )

Figure 9: Relations between the world space, the phys-
ical space, and the image space.

Although the contribution of this paper is specifically
made for HoloVizio light field displays, the introduced
algorithm can be extended to other types of light field
systems. The main reason to apply the introduced so-
Iution to a concrete system would be the necessity to
use additional hierarchy of 3D spaces, similar to one
depicted on Figure 9.

4 THE CONVENTIONAL SSAO ALGO-
RITHM

In 2D case, the physical space does not exist, and the
image space is substituted with the screen space. X
and Y coordinates in the screen space are the same as
X and Y coordinates of the pixel in the final image,
and Z coordinate (depth) corresponds to the distance
from the viewer to the corresponding point of the virtual
scene. The exact way of computation of Z coordinate
depends on whether orthographic or perspective projec-
tion is used. Note that there is an invertible homoge-
neous transformation between the world space and the
screen space. This transformation allows to easily de-
termine the precise position of each visible point on the
scene, if both pixel coordinates and depth are known.

Our algorithm is based on the approach published by
Mittring [Mitt07] (see Algorithm 1). This algorithm
can be implemented as an OpenGL compute shader that
is executed per each pixel of the final image. It takes
the depth texture as the input, as well as two 4-by-
4 matrices that correspond to the world-to-screen and
the screen-to-world transformations. First, it calculates
the position of a point of the visible surface that corre-
sponds to the current pixel in the screen and the world
space coordinates. Then it spawns samples (random
3D points) within a predefined radius R of calculated
point in the world space. Furthermore, there is a check
for each sample whether it is visible (i.e., positioned in
front of the visible surface) or not. If the sample is not
visible, the algorithm adds a value to the AO variable.
In our implementation, the value of AO variable varies
from zero to one.
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Algorithm 1 Conventional SSAO algorithm. Variables
pntScrn and smpScrn represent coordinates in the
screen space, variables pntWrld and smpWrld — in the
world space.

pntScrn.xy < texture coordinate of given pixel
pntScrn.z < depthTexture(pntScrn.xy)
pntWrld < screen-to-world(pntScrn)
. < set of random samples around pntWrld
for each sample from . do

smpWrld < world coordinates of sample

smpScrn < world-to-screen(smpWrld)

surDepth < depthTexture(smpScrn.xy)

if surDepth < smpScrn.z then

increase AO variable

R A A S S

_
e

(center) and armadillo (bottom) for one optical modu-
le. The left column represents the images without the
SSAO effect. Images in the right column are after the
SSAO effect was applied. The grayscale images with
(1 —ao) values are in the center.

The easiest way to apply the desired AO effect is to
multiply each channel of the resulting RGB image by
the (1 — ao) term, where ao is the appropriate value in
the computed AO texture. Figure 10 shows an example
of this effect.

5 THE THREE-DIMENSIONAL SSAO
ALGORITHM

The concept of the image space in HoloVizio system is
very close to the concept of the screen space in conven-
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tional 2D graphics pipeline. X and Y coordinates of a
point in each of these spaces are the pixel coordinate
of the output texture of the shading algorithm, while Z
coordinate represents the notion of depth in it’s partic-
ular way. The main problem of application of the algo-
rithm introduced by Mittring [Mitt07] is that the image-
to-world transformation (analogous to screen-to-world
transformation from algorithm 1) cannot be easily de-
fined for the HoloVizio system.

The solution of the mentioned problem is to compute
the world-space positions of the visible surface before
the application of SSAO algorithm, and to store them
in a separate texture (positions texture). In this case,
the application of the image-to-world transformation
for a point pntImg on the visible surface in the image
space, can be substituted with getting the value of posi-
tions texture at pntImg.xy coordinates (symbol .xy des-
ignates the first two coordinates of a 3D vector). The
final modification of the algorithm is presented in Al-
gorithm 2.

Algorithm 2 SSAO algorithm for HoloVizio. Variables
pntImg and smpImg represent coordinates in the image
space, variables pntWrld and smpWrld — in the world
space.

pntImg.xy < texture coordinate of given pixel
pntWrld < positionsTexture(pScn.xy)
7 « set of random samples around pntWrld
for each sample from . do
smpWrld <— world coordinates of sample
smpImg < world-to-image(smpWrld)
surDepth < depthTexture(smpImg.xy)
if surDepth < smpImg.z then
increase AO variable

R AN A i

Algorithm 2 looks very similar to the Algorithm 1. The
most noticeable difference is that rows 2 and 3 of Al-
gorithm 1 are substituted with row 2 in Algorithm 2.
However, there also are two other important distinc-
tions. First, the world-to-image transformation in Algo-
rithm 2 also includes the physical-to-image transforma-
tion described in Section 3, which is not invertible and
cannot be expressed as a simple combination of homo-
geneous 4-by-4 matrices. Second, depth texture used
in Algorithm 2 contains values obtained with the help
of the mentioned world-to-image transformation. Al-
ternatively, taking a value from the depth texture (row
7 in Algorithm 2) can be substituted with two opera-
tions: taking the world-space coordinates from posi-
tions texture, and applying world-to-image transforma-
tion to these coordinates.

6 IMPROVING THE QUALITY

It is possible to improve the quality of the introduced
algorithm by the following methods.
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Generation of samples

In most of SSAO implementations, samples are gener-
ated as a set of points inside a unit sphere (or a ball).
Perhaps the most straightforward way to do this is to
generate the points with uniform distribution within a
bigger volume (cube), and to use the rejection method
to leave only the necessary ones. However, we consider
this method not to be flexible enough. The main reason
for this is that on a small number of samples (around 8)
the generated set can be not very well represented in all
parts of the sphere.

In our implementation, we use the cylindrical param-
eterization to generate points inside the sphere uni-
formly. Algorithm 3 shows the usage of this parameter-
ization. To use this approach to implement the conven-
tional random uniform distribution on the spherical sur-
face, one have to substitute the values &; and &; in this
algorithm with the uniformly distributed random values
from —1to 1.

Algorithm 3 Generation of points on the spherical sur-
face in cylindrical coordinates.

&1, & <« values from —1 to 1;

1:

2: 74 51;

3 @<+ 7wl

i ore V-2
5. X 4 rcosQ;
6: y < rsing;

Algorithm 4 introduces the way to generate the coordi-
nates of the point with uniform distribution in the inner
volume of the ball with a given radius R, based on pre-
generated points on the unit sphere. Thus, to get the
uniformly distributed set of samples within a ball of
radius R, one has to supply Algorithm 3 with &; and
&, uniformly distributed on [—1,1], and Algorithm 4
with 7, <= 0 and rp, < R. In our implementation,
we found that the choice 7,4y < R and 7, < 0.8 - R is
suitable enough.

Algorithm 4 Generation of random radius uniformly
inside the given boundaries.

I:  Xx,y, z < coordinates of a point on the unit sphere
(output from Algorithm 3);

Fmins Ymax <— Min and max boundaries of the radius;
t + uniformly distributed value from 72, to 3.
re Vi

X4 r-x;

Y&rey, zr-z;

The most flexible part in the introduced way to gener-
ate random samples using cylindrical coordinates lies
in different methods to choose & and &, values from
Algorithm 3. One can easily notice that the paramet-
ric space of & and &, values is nothing more than the
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[—1,1] x [-1,1] square in ordinary case. Thus, one
can try to generate the random points in this paramet-
ric space in more sophisticated ways. We implemented
the jittered sampling (subdividing space into grid cells
and generating equal number of uniformly distributed
points inside each cell), the Latin square approach (sub-
dividing space into grid cells and generating only one
random sample in each row and column), and the Pois-
son disk sampling [Brid07]. Although, we have not yet
performed any subjective test that would reflect the sig-
nificant difference in the perceived quality of the result-
ing images for each approach.

Additional blur pass

The algorithmic complexity of the introduced SSAO
approach depends linearly on the number of samples
being used. The common method to speed up the algo-
rithm is to use a smaller number of samples, but com-
pensate it with proper placement (e.g., by the methods
described in the previous subsection). We found that
it is reasonable to use approximately 8 samples. How-
ever, if we use a small number of samples, some vi-
sual artifacts in the final image may appear. To avoid
these artifacts, we can do an additional Gaussian blur
pass with a small kernel radius after the SSAO texture
is rendered (see Figure 11).

o=
Figure 11: Ambient texture before (left) and after
(right) the blur pass was applied. Note that the arti-
facts in form of single white pixels on the left image
that disappear after the blur pass.

Multi-resolution SSAO

There are usually many details of different size and
shape in the virtual scene. This means that when
the SSAO algorithm is applied, the radius of the
sphere which incorporates the random samples should
depend on the surrounding geometry. However, using
additional information about the needed level of
detail would add some complexity to the algorithm,
making it slower in the end. To solve this problem, we
implemented the multi-resolution ambient occlusion
algorithm (see Figures 12, 13) introduced by Hoang
and Low [Hoangl0]. The main idea of this solution
is to calculate the AO term for a couple of different
radii (5 in our framework) and to merge the obtained
information (we take the maximal AO contribution).
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Model No SSAO | SSAO | Difference
Statue 0.79 7.25 6.46
Ammonite 1.62 8.05 6.43
Armadillo 2.48 8.96 6.48

Apc————————> >
AQ3<€«—— >
ADQQ«—>

AO1 <>

Figure 12: Multiresolution ambient occlusion. Labels
AO1,...,AO4 depict the areas in which the AO term is
computed separately.

5 Z//é \

’ ey -
Figure 13: Ambient texture with single (left) and mul-
tiple AO radii (right).

/8

7 PERFORMANCE

All mentioned techniques were implemented in a single
framework for the HoloVizio system. For this purpose,
we used the deferred rendering scheme. In total, there
are six render passes for each frame:

1. Z prepass — preliminary checking of visibility;

2. G-buffer — generation of diffuse color texture, posi-
tion texture, etc.;

SSAO texture generation;
horizontal Gaussian blur for SSAO texture;

vertical Gaussian blur for SSAO texture;

AN

post processing — application of lights and SSAO ef-
fect.

We measured performance of the HoloVizio framework
on a machine with Intel i17-5820K 3.30GHz CPU and
GeForce GTX 960 video card. The tested HoloVizio
system was virtual, with only one optical module of
1024-by-768 resolution. The rendered models are
shown on Figure 10, and include:

1. statue (5011 faces, 3 textures);
2. ammonite (29520 faces, 4 textures);
3. armadillo (212574 faces, 0 textures).

For each model, we calculated the average time to ren-
der a single frame as the arithmetic average of render-
ing time of 1000 frames (see Table 1) with and without
the application of the SSAO algorithm. Results from
Table 1 show that the time to apply the SSAO effect it-
self can be considered as constant (for one HoloVizio
system), and in the tested virtual system it equals to ap-
proximately 6.45 milliseconds.
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Table 1: Average time to render a single frame in mil-
liseconds.

An example of the model of statue displayed on a real
HoloVizio system with the SSAO effect is shown on
Figure 14. The photo displayed in the figure was cap-
tured by a regular digital camera.

Figure 14: The model of statue rendered on the
HoloVizio 640RC system!. Left image is rendered
without SSAO effect, right image — with. Note that the
images above are rendered with the help of multiple op-
tical modules, not a single one. These images are not
the same with the images for the optical modules from
Figure 10.

8 CONCLUSIONS

In this paper, we proposed the modification of the
method used for generating the SSAO effect, in order
to make it suitable for the state-of-the-art HoloVizio
light field system, and described several ways to im-
prove its quality and performance. This algorithm can
also be applied to different light field systems or sys-
tems that aim to generate immersive 3D environments

! Mentioned model of HoloVizio system is out of the market
now, and the closest analogue to it is the HoloVizio 722RC
system by the time of this paper.
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(e.g., virtual reality, augmented reality, stereoscopic
displays, etc.). Further research on this topic shall
include modifications of other techniques (e.g., global
illumination) of conventional 2D frameworks to make
them compatible with light field systems and 3D
visualization in general.
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