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There is not a universal method enabling testing of all types of defects. Very popular are techniques based on current-voltage characteristics measurement. This type of testing allows determination of electric parameters of a measured cell [6]. These methods can easily determine a damage of a solar cell. Fast measurement time of these methods makes them popular for a use in a serial production process. However, the current-voltage methods cannot spatially locate defects and, therefore, are not suitable for a more detailed analysis. Their other disadvantage is that they are contact methods. Contacting is a complication in an inspection procedure and represents a possible risk, because solar cells are usually very thin and brittle and can be damaged during the testing. Different inspection methods are used for a spatial location of defects, however, most of them also need contacting of tested cells. Electroluminescence methods, which advantages and disadvantages are described for example in [7], belong to the most popular. These methods are fast enough and have good spatial resolution. However, they also need contacting and can be used on cells with a grid structure (an electrical conductor) only [7].  Active thermography based methods are a different group of inspection methods often used for solar cells testing [3][5][8]. Active thermography methods [9] use an external excitation source to induce a thermal process in a tested sample. A thermal response of the sample is then measured by a thermographic camera. The response is reflected by small temperature changes of a tested sample surface. These changes are related to local differences of thermal properties, surface and subsurface defects or concentration of local heat sources. Different excitation sources and procedures can be used for different applications. The commonly used excitation sources are for example flash lamps, halogen lamps, ultrasound, hot air or electric current. The common methods are pulsed, lock-in and step excitation. These methods are called thermographic testing or infrared testing [10]. The thermographic testing is used in a lot of applications, often for composite structures inspection [11], but for example also for optical components [12]. Lock-in thermographic methods are commonly used for solar cells inspection as well. These methods are based on a periodical excitation of a measured sample with a lock-in frequency and temperature response recording by a thermographic camera. The response is than processed with one of the lock-in algorithm, which allows noise reduction and improves detectability of defects. More about lock-in processing can be found in [13] or more in detail in book [14].  There are several lock-in techniques used for solar cells testing.  Most of them use a light source for the excitation - a light illumination of a measured sample.  The light source should have a specification close to sun irradiation parameters (a wavelength range and intensity).  These methods are called as ILIT (illuminated lock-in thermography) and their approaches differ based on a tested solar cell state (for example open circuit or short circuit). Other thermographic lock-in inspection methods use an electric current for the excitation. A comparison of different lock-in thermography methods for solar cells testing is described for example in [5].  Different lock-in thermography approaches can be used based on inspection requirements and type of defects, which should be found. Lock-in thermography can be in solar cells applications [15] used for example for an analysis of weak ohmic shunts, strong ohmic shunts, bulk defects in cells, cracks, local I-V characteristic or breakdowns. However, even if thermography is in principle a noncontact method, many of lock-in thermographic methods for solar cells testing need a contacting of the cells. That means these techniques have similar constrictions and disadvantages as the electroluminescence methods. Noncontact lock-in approaches can be used even for cells without an electrode structure and the cells are in this case open circuited. These 

techniques are therefore often called VOC-ILIT (open circuit voltage illuminated lock-in thermography) [16]. The main disadvantage of the lock-in thermography is a longer inspection time - an inspection takes mostly from several minutes to tens of minutes [3][17] and these methods are therefore not suitable for serial testing. Pulsed thermography [18][19] is another very popular active thermography method. A tested sample is excited with one very short pulse, which length is typically a few milliseconds. A thermal response of the sample is measured by an infrared camera, which should be a high speed and high sensitivity camera in the most cases. The pulsed thermography using a flash lamp as the excitation source (flash-pulse thermography) is a suitable method for an inspection of different materials. The inspection depths are from a top surface up to several millimeters under the surface [20]. The temperature response is mostly processed by different algorithms to suppress noise and improve a detectability of defects. More about algorithms for post-processing used in pulsed thermography can be found for example in [21] or [22]. The pulsed thermographic testing is well established in a lot of applications (composites testing for example [18]) due to its short measurement time and noncontact nature. However, it is commonly not used for solar cells testing. This experimental work was focused on the analysis of possibilities of flash-pulse thermographic methods for a solar cells inspection. The use of flash-pulse thermographic methods would keep the advantage of noncontact measurement (no need of a contacting) and it could significantly shorten a measurement time compared to the lock-in thermography. Thus, in this work, the inspection experiments using both methods were performed, the results were analyzed, a usability of the flash pulse thermographic methods was discussed and some conclusions were made including an explanation of basic differences between the methods. A comparison of the FPT and LEDLIT methods was made using artificially made defects. The defined defects were made by laser technology, which allowed creation of different types of defects at defined positions. The defects were made by a different laser beam intensity and so it was possible to make defects of a different significance (a different damage level). This approach enabled an easy comparison of both thermographic methods.  
2. EXPERIMENTAL SETUP Results of flash-pulse and LED lock-in thermographic inspections of solar cells were compared in this work. Artificial defects were made on the tested solar cells by a laser. The thermographic inspections were performed before and after the defects were made. Relations between thermographic inspection results and some of found defects were shown on current-voltage characteristics (IVC) measurement. Thermographic methods are in general a tool for finding interesting spots, often called as indications, which physical origins should be further investigated [5]. These investigations were not a subject of this research. However, to avoid confusions, we have in this paper assigned probable defect types to indications, which did not come from the known artificial laser made defects. 
A. Experimental samples The experiments were performed on multi-crystalline solar cells. Three samples labeled as solar cell no. 1-3 were used. Artificial defects were created on the top side of the cells no. 1 and 2 using a pulsed laser SPI G3-HS 20 W [23] with scanning head Scancube 10 with f-theta objective (f=160 mm). The defects are illustrated in Fig. 2. The defect on the cell no. 1 was in the form of a line parallel to busbars going across the entire cell in its center. The defect was made using the laser parameters: 100 % power, speed 100 mm/s, pulse-
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therefore were more significant and detectable also by the FPT. The indications of these defects were very weak and partly disappeared in a very contrast area in the center of the cell. This area was not indicated on the defectogram of the original cell. A region of different contrast compared to the rest of the cell, which was situated between the laser made defects, could also be found on the LEDILIT defectogram, but it was much less distinct. Thus, it was not fully clear if this region on the FPT defectogram was in relation with the artificial defects or was caused by an inhomogeneous heating. Defects D3 and D4 were not detected by the FPT. The laser made defects (D1-D4) damaged the emitter. These defects as well as the cracks and local shunts on the original cell influenced the photo-voltaic effect during the excitation, as it was explained in the section 3.A. Thus, all defects were very clearly indicated by the LEDILIT inspection. It was also shown that the CNR evaluation corresponded to a different intensity of the damages caused by different laser power – the higher laser power caused the higher CNR of the indications of the defects. The FPT inspection did not indicate all of the artificial defects made by the laser. However, the defects made by the higher heat input (D1 and D2) as well as some of the original shunts were identified also by the FPT. It demonstrates that the FPT is not as sensitive as the LEDILIT, but it is also able to find some more significant defects. The solar cell no. 2 was partly damaged during the manipulation before the thermographic inspection of the cell with the defects created by the laser. A breaking of a part of the cell was evident on both LEDILIT and FPT inspections results at the lower right corner of the cell. However, this damage did not have an influence of any previous results (IVC results for example) and it was not supposed that it affected the thermographic inspections. 
C. Solar cell 3 The FPT and LEDILIT inspections results together with photos of a top and bottom side of the cell no.3 are shown in Fig. 9. The FPT defectogram was evaluated by the 1st derivation ROOT method (AT labeling, method based on approximation and derivation of the response signal) because these results were better than results by the pulse-phase evaluation. The LEDILIT defectogram was obtained by the DPR method and phase results presentation.  

 Fig. 9 The solar cell no. 3: photography of the cell from top and bottom side, FPT inspection defectogram and LEDILIT defectogram. 

The thermographic inspections of the cell no. 3 brought quite different results compared to the cells no. 1 and 2. The busbars were much more distinct on the both FPT and LEDILIT defectograms, but no local shunts or cracks similar to these on the cells no. 1 and 2 were found either by the FPT or LEDILIT methods. However, an area-type indication was found out at a central part of the cell by the FPT inspection (marked by an arrow in Fig. 9, the image “Flash Pulse – top”). It was discovered that it was related to an inhomogeneity at the bottom side of the cell (see Fig. 9, the image “Photography – bottom”). The inhomogeneity found by the FPT inspection on the back side of the cell was caused by some type of a liquid. The liquid was probably soaked in a bottom layer of the cell. This caused a change of thermal properties of this area, which was identified by the FPT inspection. This inhomogeneity didn’t influence the photo-voltaic effect and, therefore, it was not detected by the LEDILIT inspection. 
D. Results summary The results of the performed experiments showed differences between the FPT and LEDILIT inspections, which were based on different properties of the excitation sources (intensity, wavelength, homogeneity) and excitation procedures (periodical vs. pulsed). Different excitation principles led to different processes during the interaction of the excitation light with the measured solar cells and thus also to different excitation mechanisms. The LEDILIT (VOC-ILIT) excitation was based on long-term periodical excitation by a relatively low-intensity source. A response of the tested cells was influenced by residual currents [8] that induced a sufficient thermal response on the defects. This effect was stronger than a direct heat excitation from the LED source. Another advantage was that it was not too complicated to make a flat light source from a number of LED diodes of different colors (i.e. different wavelengths). It followed that the source was very homogeneous and a specific combination of LED diodes could be used for a LED source wavelength range optimization. The residual currents were induced also by the flash pulse. However, these currents were mostly not sufficient to play a significant role in a thermal response of the defects by the used experimental configuration (the used flash lamp, pulse-length etc.). The thermal response of the cells to their flash light excitation was therefore mostly a consequence of a heat transfer process caused by a direct heating by the flash lamp. It means that the response was mostly made by inhomogeneities or discontinuities, which influenced the heat transfer process. As a consequence, the small defects (local shunts) and cracks connected with the photovoltaic effect were not indicated or their indications were very weak. The more significant defects were indicated also by the FPT, however, the indications of these defects was not as distinct as at the LEDILIT inspections.  The flash-lamp was basically a more localized light source. Thus, the FPT inspections were also more sensitive to geometrical configuration imperfections. It led to excitation inhomogeneities and decreased a detectability of the small defects. On the other hand, the FPT inspection was much faster and was able to detect also an inhomogeneity on the back side of the cell. This inhomogeneity, which caused a change of thermal properties of the back side only and was not connected with a photo-voltaic effect, was not indicated by the LEDILIT inspection.  
4. CONCLUSION A usability of the two active thermography methods for solar cells inspection was analyzed in this work: the LED lock-in (LEDILIT) and the flash-pulse (FPT) thermography. Three solar cells were used for the experiments. The solar cells were inspected in their original state and two samples were also tested after artificial defects were made on their top surface using the laser technology. The thermographic 



measurement was accompanied by the measurement of the electrical properties (IVC) of the cells. It was confirmed by the IVC measurement that all laser made defects had influence on the solar cells performance and were more significant than original small defects, which were indicated mostly by the LEDILIT inspections. The LEDILIT inspections detected all laser made defects and also a number of small original defects (shunts, cracks) on the cells no. 1 and 2. The more significant defects were more distinct on the defectograms. No defect was found by the LEDILIT on the solar cell no. 3, which was the same type but made by a different producer. The most significant defects only were indicated on the top side of the cells by the FPT inspections. The FPT inspection however detected an inhomogeneity on the back side of the cell no. 3, which was not connected with a photo-voltaic effect and was not indicated by the LEDILIT inspection. It can be concluded that for defects connected with the photo-voltaic effect the LEDILIT inspection provided a better detectability than the FPT inspection. It can be therefore stated that this method is fully usable for solar cells testing. A disadvantage of this method was a longer inspection time, which was about 7 min for the used measurement set-up. This conclusion corresponds to other published results [3][17]. For this reason, the LEDILIT is not too suitable for a serial production testing. It was also not possible by the used LEDILIT measurement configuration to indicate defects, which were not connected with the photo voltaic effect, because the excitation source was too weak. The FPT was able to indicate more significant defects only on the top side of the cells. The photo-voltaic effect played not so significant role at the FPT inspections. That means, it could only inspect those defects, which could sufficiently affect a thermal process induced directly by a flash pulse. That is the reason why this method is not so common for solar cells testing. The advantage of the FPT was a short inspection time, which was about 10 s in our case. Another advantage of the FPT was that it made possible to inspect also defects at the back side of the cell, which were not connected with the photo-voltaic effect and which were not detected by the LEDILIT.  It is worth mentioning that a performance of solar cells is the most important and the well measurable property for their producers, testers or solar modules manufacturers. Inspection methods, which are able to reveal defects connected with a decay of the performance, are therefore more attractive for these users. These defects are related to the photo-voltaic effect and the LEDILIT technique is therefore more suitable for their inspections. However, some defects, which do not have a direct influence on an electric performance of solar cells, can bring problems in a future. It can, for example, lower a lifetime of the cells. It was shown in this paper that FPT methods could be more suitable for inspection of some defects, which are not connected with the photo voltaic effect. It can be assumed that both introduced inspection methods could be optimized by an improvement of a measurement configuration (more homogeneous light source, higher power of an excitation source, more suitable wavelength of the excitation light etc.). 
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