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Abstract. Last stage blades are a key element of steam turbines and in 
many ways determine the turbine configuration alongside with the overall 
turbine performance. The total efficiency of the low pressure turbine 
section can be increased by extending the last stage blades. The design 
process of such long blades involves a flutter analysis using CFD tools 
which have to be validated by measurements in test facilities under various 
operating conditions. Experimental data obtained from a subsonic wind 
tunnel with an oscillating turbine blade cascade, which is available at the 
Department of Power System Engineering at the University of West 
Bohemia, was compared with simulations in ANSYS CFX currently used 
in the Doosan Škoda Power. The paper provides a brief summary of 
experimental rig description, CFD tool setup and the results for the case 
of a travelling wave mode with the pure torsion motion of amplitude of 
0.5°, Ma = 0.2, reduced frequency of 0.38 and angle of attack +5°. 

1 Test rig description 
An in-draft wind tunnel which is shown in Figure 1 is utilized for experimental 
investigations of subsonic flutter in a blade cascade. Air enters to the system through 
a system of filters and turbulence reducing screens and then accelerates in a convergent 
nozzle before moving into a test section with a turbine blade cascade in a linear 
configuration which is shown in Figure 2. For the flutter investigation, this blade cascade 
consists of eight blades and the four central blades (3-6) are flexibly mounted and each has 
two degrees of freedom presenting bending and torsion motions. Because aerodynamic 
forces and moments are weak and can be supressed by blade inertial loading, the blades are 
made of carbon fibre. The construction of the test rig enables that the blade cascade can be 
adjusted for different angles of attack. In this paper, the case with the angle of attack +5° is 
presented. 

Upstream of the cascade, there is a Pitot probe which is used for the steady flow inlet 
velocity measurement as well as the inlet static and the total pressure measurement. 
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Inlet flow static temperature was obtained using a thermometer sensor also situated in 
the upstream part. Downstream of the cascade, there is a traversing mechanism with a Pitot-
static probe in order to measure the pressure profiles downstream of the blade cascade. 
Before leaving the wind tunnel, the airflow discharges in the drum chamber and runs 
through the outlet duct towards the blower vacuum inlet. 

 

 
Fig. 1. The wind tunnel model. 

 

 
 

Fig. 2. Schematic of the test section, top view with the upstream probes, the linear blade cascade and 
the traversing plane. 

The movements of central four blades (3-6) are controlled and simultaneously measured 
by four electromagnetic shakers, which are alternately attached at the top and bottom of 
a supporting frame as shown in Figure 3. From the measured signals the aerodynamic work 
per cycle done by the fluid on each moving blade can be calculated. Because flow has 
induced blade bending deformation during the measurement of the torsion motion, 
experimental data were corrected thus numerical simulations were performed on rigid 
blades [1]. 
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Fig. 3. Supporting frame with four electromagnetic shakers. 

2 Computational part 
A package of ANSYS 18.2 tools was used for performing CFD analyses. The numerical 
model was created for the angle of attack equal to +5°. The static pressure, the total 
pressure and the static temperature in the measurement points upstream of the cascade were 
monitored during entire calculations and then their final values were compared with 
the experimental data. The position of this upstream measurement can be seen in Figure 2. 
The traverse plane downstream of the cascade, also depicted in Figure 2, was another 
important reference point. Static and total pressures at 50 % of the blade height of 
the channel were monitored and their profiles were compared with the experimental data as 
well. 

2.1 Domains for numerical analysis and used mesh 

Before carrying out CFD calculations, it was necessary to simplify the 3D CAD model of 
the wind tunnel test section. Adjacent tunnel parts out of the main flow were removed and 
the model was separated into two sections (Figure 4). After several preliminary 
computations, the CFD model was further simplified and also improved (Figure. 5). 
Details about model simplifications and improvements can be found in [2]. 
 

 
Fig. 4. Domain used during preliminary computations. 
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Fig. 5. Simplified and optimized domain with the detail of the blades. 
 

A hexahedral mesh with an appropriate boundary layer, where the first element height is 
equal to 1.10-5 m, on the blades and the adjacent walls was created for the whole 
computational domain in ANSYS ICEM CFD 18.2. The mesh which was used for steady-
state simulations can be seen in Figure 6. There is also shown that, for unsteady 
simulations, the domain was reduced. 

 

 

 
Fig. 6. Computational mesh for steady-state (16 million elements) and unsteady simulations 
(3.5 million elements) with the detail of blades. 

This inlet part was cut off 
for the unsteady 
simulations. 

The domain inlet 
for steady-state 
simulations. 

The domain inlet 
for unsteady 
simulations. 

The domain 
outlet. 
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2.2 Solver setup 

ANSYS CFX 18.2 was used as the main computational tool. For steady-state simulations, 
the flow field was modelled as steady, viscous and fully turbulent. The medium was 
defined as air. The ideal gas law was used to describe its thermodynamic properties. 
The two-equation eddy-viscosity SST k-ω turbulent model with an automatic wall function 
was used for turbulence modelling. Second order accurate approximations for all terms in 
the governing equations were applied. 

For unsteady simulations, the basic settings were the same as for the steady-state 
simulations. Moreover, a time period was specified as the reciprocal value of the tuned 
frequency (1/82.2 Hz). The total number of time steps per period was chosen to be equal to 
100 which corresponds to the time step Δt = 1.21710-4 s. The total number of periods per 
run was set to 6. The blade motion was defined according to the measurement as a pure 
torsion oscillation of amplitude of 0.5° around the middle of the blade chord. 
The calculations were performed for full range of inter blade phase angles (IBPA = 0 ÷ 
360°) with the step of 30°. 

2.3 Boundary conditions 

For steady-state simulations, the total pressure and the total temperature were defined at 
the domain inlet (see Figure 6). Using an iterative process, these inlet parameters were 
determined in such a way that the total pressure in the traverse plane downstream of the 
blade cascade was approximately equal to the measured values and the inlet static 
temperature was equal to the upstream measured value. The mass flow rate value was 
adjusted in a reasonable range so that the static pressure distribution in the traverse plain 
matches the experimental data. For unsteady simulations, the boundary conditions at the 
inlet of reduced domain (see Figure 6) and at the outlet were taken from the steady-state 
simulation results. A total pressure and a total temperature profile as well as velocity 
vectors were defined at the inlet and the mass flow rate was defined at the outlet. 

2.4 Steady-state CFD model validation 

 
 

Fig. 7. Experimental and numerical results of static pressure in the traverse plane downstream of 
the cascade – see Figure 2) for defined conditions: Ma = 0.2, angle of attack +5°. 
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Fig. 8. Experimental and numerical results of total pressure in the traverse plane downstream of 
the cascade – see Figure 2) for defined conditions: Ma = 0.2, angle of attack +5°. 

 
A comparison between the experimental and numerical results of the total and static 
pressures in the traverse plane, which is situated downstream of the cascade, is depicted in 
Figures 7 and 8. Both measurement and CDF simulation were carried out at 50 % blade 
height. As expected, the numerical results correspond reasonably well with the 
experimental data. Several possible explanations of the difference between the results are 
presented in [2]. 

3 Unsteady CFD and measurement comparison 
As a common indicator of the potential danger of flutter, the aerodynamic work in Eq.1 is 
used. This work is defined as the work done by the fluid on the blade per vibration cycle: 

 tApAW
Tt

t A
cycle dd

0

0

 


 nv  (1) 

where T is the period of one vibration cycle, t0 is the time at the start of the vibration cycle, 
p is fluid pressure, v is the velocity of the blade caused by imposed vibrational 
displacement, A is the surface of the blade and n is the surface unit normal vector. When 
the aerodynamic work per cycle done on the blade is positive, the blade is aerodynamically 
unstable (i.e. flutter). The aerodynamic work calculated during the unsteady numerical 
simulations is in excellent agreement with the experimental values as shown in Figures. 9-
12. 
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Fig. 9. Experimental (EXP) and numerical (CFD) results of the aerodynamic work done on blade #3. 

 
Fig. 10. Experimental (EXP) and numerical (CFD) results of the aerodynamic work done on blade #4. 

 
Fig. 11. Experimental (EXP) and numerical (CFD) results of the aerodynamic work done on blade #5. 
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Fig. 12. Experimental (EXP) and numerical (CFD) results of the aerodynamic work done on blade #6. 

4 Conclusions 
Aerodynamic work, which is an important parameter indicating the potential danger of 
blade cascade flutter, was evaluated from experimental measurements and CFD simulations 
for the case of a travelling wave mode with the pure torsion motion of amplitude of 0.5°, 
Ma = 0.2, reduced frequency of 0.38 and angle of attack +5°. The experiments were carried 
out using an in-draft wind tunnel where a turbine blade cascade in a linear configuration 
with four flexibly mounted blades is installed. ANSYS CFX 18.2 was used to carry out 
the unsteady numerical analyses. In this test case, both CFD analysis and measurements 
showed excellent agreement. Further validation of flutter prediction and parametric study 
are necessary to verify dominant trends in flutter behaviour. 
 
This research was founded by the European project Flexturbine, H2020 research and innovation 
programme under grant agreement No. 653941. 
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