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Annotation 

 
The primary goal of thesis is to summarize current knowledge about renewable energy 

sources, especially fuel cells, which will be used in teaching. This topic must be sufficiently 

detailed and clear at the same time. It must comply with the requirements for topic by teachers 

and by students as well. The task is therefore to submit the findings of theoretical description 

of membranes for fuel cells so that they are useful in teaching and also to prepare a study 

material for those among students who are interested in this topic. The secondary aim is to 

create a laboratory exercise for physical practicum where students shall investigate properties 

of polymer membranes for fuel cells using the latest instruments in research centres. These 

measurements must be easy to understand and must be easily performable by the students 

themselves. Another objective of this work is to collect knowledge about renewable energy 

sources from student using a questionnaire survey, which will be later to use result to prepare 

laboratory tasks and study materials. Another goal of this work is preparation of new composite 

membranes for fuel cells. The achieved results will be published in impact journals and 

conference proceedings. 
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Anotace 

Hlavním cílem práce je zpracování současného poznání o obnovitelných zdrojích energie, 

speciálně o palivových článcích, do celku, který bude použitelný ve výuce. Takový celek musí 

být dostatečně podrobný a zároveň přehledný. Musí splňovat požadavky, které vznášejí učitelé 

i sami studenti. Cílem je tedy podat poznatky teoretického popisu membrán pro palivové články 

tak, aby byly použitelné ve výuce a také aby tvořily studijní materiál pro studenty, kteří mají 

zájem o toto téma. Dílčím cílem je vytvoření laboratorní úlohy pro fyzikální praktikum, kde by 

mohli studenti zkoumat vlastnosti polymerních membrám pro palivové články za použití 

nejnověších měřících přístrojů umístěných ve výzkumném centru. Taková úloha musí být 

snadno pochopitelná a musí být slehce proveditelná pro samotné studenty. Dalším dílčím cílem 

práce je shromáždění znalostí o obnovitelných zdrojích energie u studentů za použití 

dotazníkového šetření, jehož závěry budou použity pro přípravu laboratorních úloh a studijních 

materiálů. Dalším dílčím cílem je příprava nových kompozitních membrán použitených 

v palivových článcích. Získané výsledky budou publikovány v impaktovaných časopisech a na 

konferencích. 

 

Klýčová slova 

Palivový článek, membrány, kompozit, Nafion, polyvinyl alkohol, pedagogyka, motivace 
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1. Introduction 
 

1.1.  Membrane 

Membrane in the broadest sense can be described as a barrier that separates two different 

regions and manages the exchange of matter, energy and information between the regions in a 

very specific way. 

The word membrane comes from Latin word “membrana” that means a skin (Jones, 1987). 

Today’s word ‘membrane’ has been extended to describe a thin flexible sheet or film, acting as 

a selective barrier which enables the transport or the retention of compounds between two 

medium. Different types of driving forces can be at the origin of the transport across the 

membranes. They are associated with different types of membrane processes. For dialysis of 

solutes, it is a difference of compound concentration. In the case of electrodialysis and related 

electromembrane processes, an electric field between electrodes located on the two sides of the 

membrane enables the selective separation of ionic species in solution. The history of synthetic 

membrane began in 1748 when Abble Nollet demonstrated semi-permeability for the first time 

that animal bladder was more semi-permeable to water than to wine. One century later, Fick 

published his phenomenological law of diffusion, which we still use today as a first-order 

description of diffusion through membranes. These membranes were made from an ether-

alcohol solution of cellulose called “collodion”. After that a lot of research was carried out in 

this area which gave the pathway to advanced technologies and innovations such as dialysis, 

different permeability of gases at rubber, osmotic pressure, and Donan’s ion equilibrium 

phenomena. 

Synthetic membranes have occupied an important place in the chemical technology. They 

are widely used in many technically and commercially important separation processes including 

desalination, gas separations and to clean food and organic products. They are also key 

components in systems for the conversion of energy as well as energy storage. Membranes have 

very important function in artificial organs and drug delivery devices.  

Although membranes are widely used scientific and technical instruments in modern 

industrial society, general ideas about the functioning of the membranes are very limited. Many 

people constitutes the membrane as a filter, allowing to separate solid particles from liquid. The 

membranes are much more complex, both in its structure and functions. Membranes may be 

solid or liquid, homogeneous or heterogeneous, isotropic or anisotropic. The thickness of the 
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membrane can be a fraction of a micrometer or a few millimeters. The electrical resistance may 

vary from million ohm/cm to fraction ohm/cm. 

With the development of new membranes having better chemical, thermal, and mechanical 

properties, the selectivity and energy efficient transport facilities of membranes have increased, 

and is likely to extend far beyond its present level. Presently, there exists many different kinds 

of membranes which can be divided according to their application, structure or their chemical 

composition. 

The greatest use of membranes is in separation processes. Membrane separation processes 

operate without heating and therefore use less energy than conventional thermal separation 

processes such as distillation, sublimation or crystallization. The separation process is purely 

physical and both fractions (permeate and retentate) can be used. The widely used membrane 

processes include microfiltration, ultrafiltration, nanofiltration, reverse osmosis, electrolysis, 

dialysis, electrodialysis, gas separation, vapor permeation, pervaporation, membrane 

distillation, and membrane contactors. All processes except for pervaporation involve no phase 

change. All processes except (electro)dialysis are pressure driven. Microfltration and 

ultrafiltration is widely used in food and beverage processing (beer microfiltration, apple juice 

ultrafiltration), biotechnological applications and pharmaceutical industry (antibiotic 

production, protein purification), water purification and wastewater treatment, the 

microelectronics industry, and others. Nanofiltration and reverse osmosis membranes are 

mainly used for water purification purposes. Dense membranes are utilized for gas separations 

(removal of CO2 from natural gas, separating N2 from air, organic vapor removal from air or a 

nitrogen stream) and sometimes in membrane distillation. The later process helps in the 

separation of azeotropic compositions reducing the costs of distillation processes. 

Table 1. Classification of semipermeable membranes
Pore size Molecular mass Process Filtration Removal of 

> 10  “classic” filter   

> 0.1 μm > 5000 kDa microfiltration < 2 bar larger bacteria, yeast, particles 

100-2 nm 5-5000 kDa ultrafiltration 1-10 bar bacteria, macromolecules, proteins 

2-1 nm 0,1-5 kDa nanofiltration 3-20 bar viruses, 2-valent ions 

< 1 nm < 100 Da reverse osmosis 10-80 bar salts, small organic molecules 

 

Membranes can also be used in some special devices like electrolyzers, ozone production 

units, vanadium batteries and fuel cells.  
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Polymer electrolyte membrane (PEM) electrolysis is the electrolysis of water in a cell 

equipped with a solid polymer electrolyte (SPE) that is responsible for the conduction of 

protons, separation of product gases, and electrical insulation of the electrodes. The PEM 

electrolyzer was introduced to overcome the issues of partial load, low current density, and low 

pressure operation currently plaguing the alkaline electrolyzer. 

The electrolyte is a thin, solid ion-conducting membrane which is used instead of the 

aqueous solution used in the alkaline electrolyzers that can be built with materials as simple as 

two pencils. The reactions are as follows: 

Anode:  4H+ + 4e- → 2H2       (1) 

Cathode:  2H2O → O2 + 4H+ + 4e-      (2) 

Overall:  2H2O(l) + 4H+ + 4e- → 2H2 + O2 + 4H+ + 4e-   (3) 

In order to convert electrical energy into chemical energy, catalysts are needed to split the 

water into hydrogen and oxygen. 

Another type of device that uses a polymeric membrane is a vanadium battery. This type 

of battery uses a liquid electrolyte containing vanadium that occurs in four oxidation states [1]. 

The entire device works by changing the oxidation states of vanadium and the electrolyte thus 

forms a mixture of different states of the same substance separated by a polymeric membrane.  

There are transitions between each oxidation states that release or require protons, 

electrons, respectively. We can write these processes as: 

 2+ - + + 0

2 2VO H O- VO 2H    0,99  vs. SHEe E V      (4) 

 3+ - 2+ 0V V    -0,26  vs. SHE ,e E V       (5) 

where 0E  indicates the standard electrode potential and the SHE standard hydrogen electrode. 

The reactions are controlled by the necessary transition of protons through the polymer 

membrane and electron movement in the outer circuit. 

Ozone is usually produced by a silent discharge around which air or pure oxygen flows. In 

the case of oxygen, the concentration of the ozone is about 15 wt% in the produced gas. If air 

is used, the concentration is reduced to about 2 wt%. The industrial production of ozone and its 

subsequent distribution is practically excluded, because ozone is highly explosive at high 

concentrations, and transport would be very dangerous. Ozone is produced directly in places 

where it will be used for cleaning purposes. Ozone production using polymeric membranes and 
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suitable electrodes has more favorable parameters than production by silent discharge or UV 

absorption. 

The principle of electrochemical production of ozone is not very different from electrolysis. 

The production of oxygen and hydrogen from the water takes place under lower anodic 

potentials (equation (6)), the reaction (7) predominates with an increasing electrode potential, 

+ 0

2 22H O O 4H 4      1,229 Ve E        (6) 

+ 0

2 33H O O 6H 6      1,511 Ve E        (7) 

Basic information on hydrogen fuel cells has been published, for example, in the great 

Larminie [2] book. The polymeric membrane forms the central component of these devices, 

where it separates the reducing part from the oxidative part. It is obvious that the membrane is 

exposed to a chemically aggressive environment. Resistance to these influences is an essential 

parameter that a polymeric membrane must meet. But essential are its electrical properties. For 

electrons it must form an impermeable barrier, positively charged particles (in this case the 

protons) must pass from the anodic part to the cathodic part. 

The fuel cell works on principle of decomposition of hydrogen molecules on the anode 

where electrons and hydrogen protons are separated. The electrons are conducted to the outer 

circuit and can do work. At the cathodic part oxygen molecules are decomposed (due to 

electrons from the outer circuit), and in the presence of the introduced hydrogen protons 

combine into electrically neutral molecules of water. The emerging water is an important part 

of the water management of the fuel cell. The un-moistened membrane is not proton-

conductive. However, too much water may clog the fuel inlets and the cell does not provide the 

required power. 

The research and development for membranes depends on many parameters such as solute 

type, separation technique, commercial viability, market demand and so on. By determining the 

quantitative relationship between membrane structures and its casting properties such as 

formulation and casting condition, a fine polymer structure can be engineered to satisfy social 

requirements. By governing the membrane fabrication method and its casting properties, 

membrane with specific characteristics and desired performances can be produced. Currently, 

intensive research work is underway in to improve and develop new types of membranes to 

meet the stringent industrial requirements covering a diverse range of applications especially 

for water purification and biological applications. 
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The designing of a particular membrane plays a very significant role in shaping-up the 

properties (such as physical, chemical, thermal and mechanical) and performance of the 

membrane. The successful use of membrane processes depends on a proper selection of 

membrane material. Extensive research has been conducted to develop new membrane 

materials (Wiesner and Chellam 1999). Inorganic membranes, although having very high 

chemical and temperature resistance, are now still of little commercial use due to brittleness 

and expense. The main inorganic materials used for membranes are oxide ceramic [3-5], porous 

glasses [6-8], carbon-like solids [9], porous metals (like sintered stainless steel) or dense metals 

(like Pd or Pd-based alloys for H2 separation). Organic polymers remain the most widely used 

commercial membrane materials. They are usually constructed by coating a thin active 

polymeric layer onto a microporous support to provide desirable mechanic strength while 

having higher water permeability and chemical resistance. The polymers typically used for the 

active layer include cellulose acetates [10, 11], polyethersulfone [12, 13], 

polyvinylidedefluoride [14, 15], polyacrylonitrile [16], polyamides [17, 18], polypropylene [19, 

20], and polysulfones [21, 22]. 

Different types of materials are used for different types of membranes. Cellulose acetate is 

used for the separation of ethanol and water [23], or water-oils separation [24], polysulfone is 

used for reverse osmosis for desalination and brackish waters [25, 26], poly(vinylidene fluoride) 

is used for filtration of blood or separation algal from water [27, 28], polyaluminium chloride 

is used for bio-waste filtration [29], aromatic polyimides and polyamides are used for 

nanofiltration or gas separation [30-33].  

Membranes based on poly(ether sulfone) or poly(vinyl alcohol) have been synthesized, 

tested and reported for fuel cells [34, 35]. However, commercially available Nafion (prepared 

by polytetrafluoroethylene) is extensively used for low temperature PEM fuel cell applications. 

Research centers around the world are trying to develop new membranes to improve the 

existing membrane processes or to develop membranes for use in new applications. 

 

1.2.  Historical development of membranes 

The first documented study of membrane phenomena and the discovery of the concept of 

osmosis can be found at Nollet (1748) [36]. He found that when the pig bladder placed on the 

one side into contact with the mixture of water and ethanol on the other side with pure water, 

the water will pass through the membrane preferentially. Nollet was probably the first to 

recognize the relationship between a semipermeable membrane, osmotic pressure and volume 
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flow. More systematic studies on the material transport in a semipermeable membrane were 

made by Graham (1833) [37]. He studied diffusion of gases through various media and 

discovered that rubber has a different permeability for different gases.  

Most of the early studies of membrane permeability were carried out with natural materials 

like animal intestines, bladder or rubber elastic elements. Traube in 1867 [38] was the first to 

introduce artificially prepared semipermeable membrane precipitating cupric ferrocyanide in a 

thin layer of porous porcelain. This type of membrane has been used Pfeffer in his fundamental 

studies of osmosis. These findings were used van't Hoff in 1887 [39] and this work led directly 

to the van't Hoff equation. Maxwell took these findings and others for the development of the 

kinetic theory of gases. 

Later, the preferred collodion (nitrocellulose) membranes, because of possible 

reproducibility. In 1907 Bechhold proposed technique for the preparation of nitrocellulose 

membranes graded pore size, as determined by assay of bubbles [40]. Other workers, especially 

Elford [41], Zsigmondy and Bachmann [42] and Ferry [43] Bechholdovu improved the 

technique and in early 1930 have been microporous membranes commercially available 

collodion.  

Membranes have found their first major use in filtering drinking water at the end of the 

Second World War. Source of drinking water serving a community in Germany and elsewhere 

in Europe broke down, and filters for water safety were urgently needed. Research efforts to 

develop these filters were supported by the US military, were evaluated by Millipore 

Corporation, the first and still the largest US manufacturer of microfiltration membranes. In 

1960, it became part of the development of membranes of modern science but developed 

membranes were used in only a few laboratories and rarely for specialized industrial 

applications. 

Use of membrane separation process prevented the four basic problems: they were too 

unreliable, too slow, too expensive and too non-selective. Solving each of these issues have 

developed over the last 30 years and membrane separation processes are now commonplace. 

The key discovery which transforms membrane separation from the laboratory to the 

industrial process, the development of anisotropic reverse osmosis membrane with a high flux, 

at the beginning of 1960 in the Loeb-Sourirajan [44]. These membranes are composed of ultra-

thin selective surface film applied to the much stronger, but more microporous material that 

provides mechanical strength. Flow in a first Loeb-Sourirajan reverse osmosis membrane was 

10 times higher than any available membranes. Reverse osmosis has been practically used for 

seawater desalination. 
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In parallel with the development of membranes for industrial applications ran independent 

development of membranes for medical separation processes, particularly the development of 

artificial kidney. W. J. Kolf [45] demonstrated the first successful artificial kidney in the 

Netherlands in 1945. It took nearly 20 years to improve the technology for use on a large scale, 

this development was complete in 1960. Since then, the use of membranes in artificial organs 

become the main life-saving procedure. Another important medical use of the membranes are 

controlled drug delivery systems. The key figure in this area was Alex Zaffaroni, who founded 

Alza, a company dedicated to the development of these products in 1966. Membrane 

technology developed by Alza and its competitors are widely used in the pharmaceutical 

industry to improve the efficiency and safety of medications. 

The period from 1960 to 1980 produced a significant change in membrane technology. 

Following the initial Loeb-Sourirajan technology have been developed other processes for the 

manufacture of high performance membranes, including the interfacial polymerization and the 

laminated casting or coating. Using these processes, membranes with selective thin layers of 

about 0.1 microns or less, are currently manufactured by a variety of companies. 

The main development in 1980 was the emergence of industrial gas membrane separation 

processes. The first main impulse was the development of membranes for hydrogen separation, 

with which came in 1980 Monsanto Prism [46]. Within a few years, Dow manufactures systems 

for separating nitrogen from the air, and Cynara Separex and manufactures systems for 

separating carbon dioxide from natural gas. Gas separation technology evolves and expands. 

The ultimate development in 1980 was at GFT, the first commercial evaporative systems for 

dehydration of alcohol. 

Although there are always membranes in nature, systematic study of synthetic membranes 

began about 100 years ago, and the first practical use of membranes does not take more than 50 

years. History of membrane science and technology is therefore relatively short. 

 

1.3.  Proton Exchange membranes PEM 

Polymer electrolyte membrane fuel cells (PEMFC) are considered as a promising source 

of clean forms of energy that possess the remarkable properties (such as self-starting at low 

temperatures, high power density etc.), to replace the prevailing batteries used in electronic 

products. An integral part of PEMFC unit is the “polymer electrolyte membrane” which lies 

between anode and cathode, to provide proton conductivity and to prevent internal electronic 

current between the two electrodes [47]. PEM needs to have specific properties that enable it to 
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work well in FCs: (1) high proton conductivity to support high currents with minimal resistive 

losses and zero electronic conductivity; (2) adequate mechanical strength and stability; (3) 

chemical and electrochemical stability under operating conditions; (4) extremely low fuel or 

oxidant by-pass to maximize columbic efficiency; (5) low water transport through diffusion, 

and (6) electro-osmosis and capability for fabrication into membrane electrode assemblies [48]. 

Over the last century, substantial research has been conducted in developing new proton 

exchange membranes. For example Hickner describes new membranes based on poly(arylen 

ether [49], Kerres made membranes on polysufone basic [50], Rikukawa prepared hydrocarbom 

polymer membranes [51], Mikhailenko made membranes base on sulfonated polyether ether 

keton  [52], Li and Lobato worked on polybenzenimidazol membranes [53, 54], Bae made 

membranes base on polystyrene [55].   

 

1.3.1. Nafion 

Nafion®, which has long been considered the state-of-the-art material for proton exchange 

membranes, is commercially produced by DuPont and has a polyperfluoroacid structure as 

shown in Figure 1. It is the first of a class of synthetic polymers with ionic properties which are 

called ionomers. Nafion's unique ionic properties are a result of incorporating perfluorovinyl 

ether groups terminated with sulfonate groups onto a tetrafluoroethylene (Teflon) backbone. 

 Nafion is synthesized by free radical polymerization and is extruded in the sulfonyl 

fluoride form. It is then hydrolyzed and acidified to convert it to the membrane form. Typically, 

about 13 mol% of the vinyl ether monomer containing the pendent sulfonyl group is employed 

to achieve an optimized equivalent weight of 1100 (meq of sulfonic acid/g of the dry polymer). 

Commercially, Nafion is available by their trade names Nafion 117, 115 and 112. In the case 

of Nafion 117, the first two numbers represent 1100 equivalent weight, while the 7 represents 

the thickness in mils (1 mil = 0,0254 mm). 

 

Figure 1. Structure of Nafion. 

Nafion soon became a standard for PEMFC and remains so till today. The DuPont Nafion 

materials, both sulfonate and carboxylate varieties, are not entirely unique, as similar 

perfluorinated ionomers have been developed by others such as the Asahi Chemical Company 
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(commercial name: Aciplex) and the Asahi Glass Company (commercial name: Flemion). The 

comonomer chemical structures of and further information on these materials are given in the 

recent review article by Doyle and Rajendvan [56]. Now commercially unavailable, but once 

considered a viable alternative, the Dow Chemical Company developed a somewhat similar 

perfluorinated ionomer that resembled the sulfonate form of Nafion except that the side chain 

of the former is shorter and contains one ether oxygen, rather than two ether oxygens, that is,   

-OCF2-CF2-SO3H [57, 58]. 

The greatest interest in Nafion in recent years derives from its consideration as a proton 

conducting membrane in fuel cells. It is clear that the tuning of these materials for optimum 

performance requires a detailed knowledge of chemical microstructure and nanoscale 

morphology. In particular, proton conductivity, water management, relative affinity of 

methanol and water in direct methanol fuel cells, hydration stability at high temperatures, 

electro-osmotic drag, and mechanical, thermal, and oxidative stability are important properties 

that must be controlled in the rational design of these membranes. This is a challenge for Nafion 

materials in which the possible chemical variations are rather limited. And, of course, all of 

these objectives must be achieved while maintaining low cost for this perfluorinated ionomer 

in the vast consumer market as well as in military applications. While a number of alternate 

polymer membranes, including nonfluorinated types, have been developed, Nafion is still 

considered the benchmark material against which most results are compared. 

A number of systems used Nafion membranes are simply proposed rather than in actual 

commercial applications. For example membranes in fuel cells, electrochemical energy storage 

systems, chlor-alkali cells, water electrolyzers, Donnan dialysis cells, electrochromic devices, 

and sensors, including ion selective electrodes, and the use of these membranes as a strong acid 

catalyst. 

The development of new PEMs for PEMFC systems is one of the most active areas of fuel 

cell research. To overcome the drawbacks of the Nafion membrane, many types of novel PEMs 

have been developed, and some have shown the potential to substitute Nafion, especially under 

high operational temperature.  

 

1.3.2. Poly(vinyl alcohol) (PVA) membranes 

PVA is a hydrophilic semi-crystalline polymer produced by polymerization of vinyl acetate 

to poly(vinyl acetate) (PVAc), and subsequent hydrolysis of PVAc to PVA. This reaction is 

incomplete resulting in polymer with different degree of hydrolysis [59]. Commercial PVA is 



19 
 

available in highly hydrolyzed grades (degree of hydrolysis above 98.5%) and partially 

hydrolyzed ones (degree of hydrolysis from 80 to 98.5%) [60]. The degree of hydrolysis or the 

content of acetate groups in PVA affects its chemical properties, solubility and crystallizability. 

 

Figure 2. Structure of PVA. 

PVA is one of the widely used synthetic polymers owning to its excellent physical 

properties such as high tensile strength and flexibility, superior barrier to oxygen and aroma, 

and ease of formation in films. It is also biodegradable under suitable conditions. In addition, 

PVA is biocompatible and nontoxic. Because of these excellent properties, PVA films have 

been developed for biomedical applications. 

PVA appears to be very attractive material for preparing proton exchange membranes 

(PEM) because this polymer can function as an excellent methanol barrier. PVA also has both 

very good mechanical properties and chemical stability, which are adequate for preparing 

PEMs. Although PVA itself does not have fixed charges, several organic groups like hydroxyl, 

amine, carboxylate, sulfonate, and quaternary ammonium can be incorporated to impart 

hydrophilicity and/or ionic group. 

Hydrophilic PVA membranes are used in many applications, most notably in 

organic/inorganic separations, pervaporation, biomedical applications, catalysis, controlled 

drug release, etc. [61–64]. These membranes have a highly hydrophilic nature, which is 

considered as an advantage for some applications, but in most cases it becomes a hindrance due 

to the high swelling capacity of the membranes in water. To enhance the stability and 

performance of PVA-based membranes, a variety of chemical modifications have been 

employed, e.g., cross-linking [65–67], electrospinning [68–70], blending [71], sol–gel process 

[72, 73], and grafting [74, 75].  

Cross-linking is considered as a suitable way to alter the physical and chemical properties 

of membranes. The polyhydroxy structure of PVA enables easy cross-linking with various 

multifunctional compounds capable of reacting with –OH groups to obtain three-dimensional 

networks. A majority of the commercially available asymmetric PVA membranes are cross-

linked by the phase-inversion technique [76, 77]. Recently, M’barki et al. [78] proposed a 

unique greener method to prepare porous polymer membranes by combining thermally induced 
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phase separation and cross-linking of PVA in water. Their results showed that cross-linking 

control was the key step to obtain a porous membrane morphology. A different approach was 

followed by Casimiro et al. [79], who prepared PVA-supported catalytic membranes for 

biodiesel production by the mutual c-irradiation method. They used adipic acid (AA) and 

succinic acid (SA) as crosslinkers and a commercial ion-exchange resin as the catalyst. The 

results showed that a slight increase in the c-radiation dose leads to an increase of the membrane 

catalytic activity.  

 

1.4.  Objectives  

Though Nafion membranes are commercially successful, certain limitations [80-87] 

prevent the use of the membranes above 80C. Hence, they are regarded as inappropriate 

membranes for PEM fuel cells and therefore, intense research efforts are currently focused 

towards modifying these membranes to improve the thermal stability and proton conductivity. 

Several research activities have been implemented to modify Nafion using zirconium 

phosphate [88], organic-inorganic hybrid materials [89], tetraethylorthosilicate (TEOS) [90], 

sulfonated graphene oxide [91], Pd nanophases [92] and ionic liquids [93], for better 

temperature stabilization and proton conductivity. 

In the present work Nafion 115 was modified by polyfurfuryl alcohol (PFA) using the same 

procedure as mentioned in [94]. However the impregnation time of membranes in PFA solution 

was gradually increased from 24 h to 120 h, to investigate the influence of PFA loading on the 

performance of the membranes. It was anticipated that highly cross-linked, chemically stable 

PFA domains with a low swelling rate increased ion conductivity and mechanical and thermal 

stability of the composite membrane. The results have been published in Journal of 

Macromolecular Science [95]. 

Hydrophilic PVA membranes are used in many applications, but lately they have been 

widely utilized as polymer electrolyte membrane (PEM) for fuel cells. In order to design a good 

membrane many parameters are involved, such as the properties of casting solution, preparation 

conditions (temperature, relative humidity and time), reactants etc. Membrane should have 

good water resistance, mechanical, thermal stability and ion conductivity.  

In this work the PVA membranes was modified by TEOSfor better water resistance, 

mechanical and thermal properties, and sulfosuccinic acid (SSA) to increase ion conductivity. 

The results have been published in Journal of Materials Science and Journal of Physics [96, 

97]. 
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2. Pedagogy 

 

2.1. Didactic 

Didactics is the pedagogical discipline that deals with education and teaching. Didactics 

can be defined as a theory of education and teaching. It is therefore a tool of teachers use to try 

to do streamline their teaching more effectively. 

J. A. Comenius (1592-1670) as a creator of didactic systematic in his work Methodology 

large (1657) sees didactics as a "universal art to teach everything to everyone". This concept 

involves a Comenius didactics educational theory, the system not only teaching students of 

different age levels, but also issues of education, especially moral education. This study defines 

the outline didactics (general didactics) as a theory of learning and teaching. General 

Methodology deals with the content and also the process in which the students learn the content 

i.e., teaching and learning. In addressing educational issues, topics are closely associated with 

pedagogical disciplines such as general education, history of education, philosophy of 

education, sociology of education and training, educational psychology, special education. 

Basically, didactics uses knowledge as well as a number of other disciplines, such as biology, 

sociology, ethics, etc. 

Very interesting is concept of didactic from the leading Czech expert, Jarmila Skalková: 

We define the didactics as the theory of education and teaching. It deals with the issue of 

educational content, which, as a result of the socio-historical experience of humanity, becomes 

in the process of teaching the individual ownership of the students. It also deals with a process 

that characterizes the activities of a teacher and students, in which students acquire this content 

[1]. 

 

2.1.1. Motivation 

Any human activity would hardly do without motivation. If we want to identify the cause 

of any human behaviour, you have to look for the cause that motivated him. In psychology, the 

concept of motivation usually seen as the driving force influencing behaviour [2]. It is derived 

from Latin word moveo, which means to move. Motivation activates human activity, giving it 

a specific direction and goal. It is the basic condition of purposeful activity of individuals in 

each area. We differentiate between several kinds of motivation and it is clear that this is an 

important element of the human psyche. Each person wishes to meet their needs and behaves 

in a manner that leads to the fulfilment of these needs. Individual needs have diverse origins. 
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Some are directly associated with physiological processes, others are based on the need for self-

fulfilment. In general, “needs” can be divided into two categories: (a) Primary needs 

(biological) - these needs have their origin in physiological processes in the human body such 

as hunger, thirst, rest or sleep. (b) Secondary needs (psychological) - these needs are based on 

a person's personality. Here we can include the need for social recognition, for security and for 

self-realization. If you are filled with various biological and psychological needs, then the 

organism is in a state called Homeostasis (balance). For example, sleep deficit organism leaves 

this state and is motivated to restoring homeostasis (in this case sleep). The teaching practice is 

important to meet the psychological needs, however, biological needs also play an important 

role. It is witnessed that students are not too motivated just before lunch or late evening. These 

are the factors that must be considered when planning for major tests and discussing more 

challenging curriculum. 

Interestingly, the primary needs can be subdivided into more specific categories. For 

example, the need for hunger or thirst. At different time intervals of the day we observe the 

need for a particular kind of food or drink, for example, coffee or tea. The need for "specific 

hunger" can identify the physical needs that require balancing deficits of specific substances 

like fats, carbohydrates, proteins, vitamins, etc. The aforementioned example of the need for 

drinking tea/coffee is more commonly practiced [3]. 

Motivation can be further divided into internal motivation (intrinsic motivation) and 

external motivation (extrinsic motivation). Intrinsic motivation is based on inner motivation of 

man. This is his own interests and own needs. External motivation is determined by the 

environment, when this environment directs the man and put him on claims that are trying to 

accomplish. In education, we meet with both kinds of motivation. Intrinsic motivation is a 

natural part of children's learning. They observe spontaneous interest in learning, which is often 

very intense. Supporting this interest is a fundamental objective of the teaching process. 

Extrinsic motivation is often associated with prestige. Pupils try their surroundings (parents, 

teachers, classmates, etc.) to convince their success. Their reward could be a success in the 

evaluation. Since this is the motivation associated with the performance, we talk often about 

power motivation. This kind of motivation is closely associated with reward or praise. After a 

good performance must be followed by appropriate praise, which further motivates pupils and 

show an increased interest in other studies. This is supported by creativity, which is among the 

most important skills of scholars. As already indicated, it provides the need of external 

motivation and a kind of prestige among fellow classmates. Different kinds of competition 

within the classroom support this kind of motivation and can lead to increased performance in 
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the class. The highly competitive environment of the class, however, can result in too intensely 

experienced failure. An appropriate degree of motivation thus leads to increased student 

performance. Extrinsic motivation is closely connected with the social environment that 

surrounds the pupil outside school. 

Motivation is divided according to many aspects. Individual breakdown may vary 

significantly and is often criticized for their sloppiness or lack thereof. One of the interesting 

breakdown of the model is designed by A. H. Maslow. This model is its hierarchical 

arrangement, progressing from basic physiological needs to higher intellectual. The model is 

depicted as a pyramid, with the first individual meets the needs at the base of the pyramid and 

subsequently needed at higher levels. 

 

 

Figure 3. Maslow's Hierarchy of Needs. 

One of the general division of motivation is based on the components of conscious and 

unconscious. Already the name suggests that these two components is related to the awareness 

of the various motifs. Conscious motivation is when an individual is fully aware of the motives 

of his/her behaviour. Conversely, unconscious motivation is the driving force of an individual 

without the awareness of the motives of their behaviour. 

Many people today are increasingly aware of the need to start taking care of the earth. The 

pollution from traditional energy sources, which every day enters the air, water and soil is 

alarming. But the effort to start using renewable energy sources, which behave much more 
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friendly to nature is very improbable. Czech Republic is currently one of the countries with the 

cleanest air in the world, but if we do not make use of renewable energy sources and take better 

care of our nature, after few years, we can’t go outside without a mask in our mouth. The 

inclusion of laboratory tasks performed on top equipment in research centres is designed to 

motivate students for future work and to do much advanced research in one of the domestic or 

international research centres.  

Ecological thinking is a need to instil in children from an early age and extend this 

awareness while in school. The doctrine of renewable energy sources should appear in the high 

school curriculum to the extent that the students had a chance to decide whether to go to 

university to study a discipline that focuses on renewable energy sources and to prepare students 

for future work in this sector. The inclusion of several laboratory exercises in the course of 

Physics Lab can motivate students to study science for future work in the research centre. The 

prospective physics teachers can motivate the spread of the knowledge about renewable energy 

during their teaching activities. 

The aim of the study, is to find a way to motivate students to study technical subjects on 

pedagogical faculty or on other technical faculties and subsequently teach students, work in 

research centres or in industry sector. 

Currently, the study on technologies related to renewable energy source is a burning issue 

in the scientific community worldwide. Among the renewable energy sources we can also 

include fuel cells. A fuel cell is an electrochemical cell that converts the chemical energy from 

a fuel into electricity through an electrochemical reaction of hydrogen-containing fuel with 

oxygen or another oxidizing agent. Fuel cells can be a promising source of clean electricity in 

the future. Cells with less power could be used for vehicles, cells with high power could be 

situated in houses as one of the electricity sources. In conjunction with solar panels and/or 

vanadium batteries, the house may be completely energy independent. 

Unfortunately the knowledge of university students about renewable energy sources, 

especially about fuel cells is insufficient. This fact is confirmed by the questionnaire survey.  
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2.2. Questionnaire survey of knowledge about renewable energy among college students 

The issue of renewable energy sources, especially fuel cells, isn´t sufficiently represented 

in teaching at primary and secondary schools. Renewable sources are neglected, even though 

their use is becoming increasingly important for the company and its importance is increasingly 

debated. Every school discuss the issue differently, so it is not clear what level of knowledge 

have university students. The aim of this investigation is to determine to what extent we can 

dominate college students to the basic terms and concepts of teaching about renewable energy. 

Usability survey results lies in the possibility of accurate drafting of teaching the subject in the 

basic university course. Processed results are also valuable feedback for secondary school and 

university teachers. 

The questionnaire survey was conducted among 344 students of University of West 

Bohemia in Pilsen. Respondents were selected from students of Astronomy for everyone 

Astronomical knowledge on the first grade of primary school, Basic of chemistry for natural 

science, Organic chemistry, General and physical chemistry and Chemistry. These subjects 

were opened by the Department of Mathematics, Physics and Technical Education and the 

Department of Chemistry, Faculty of Education, and had a high attendance at the seminars. 

Respondents had therefore a positive approach to physics and chemistry. Investigations were 

carried out in the winter semester of the academic year 2016/2017. 

Each question in the questionnaire has been created to monitor very basic knowledge about 

fuel cells. In addition to these basic questions, other questions following the fundamental 

concepts of the whole science of energy sources were created. In the final part of the 

questionnaire, students in the form of open questions should cite the fuel that is used in fuel 

cells. 

Before completing the questionnaire, the students were informed about the anonymous 

questionnaire and purpose of its processing. Students were also reminded to fill in all the 

questions. Highlighted was the question no. 8, which assumes for a successful resolution the 

selection of improper claims. To complete the questionnaire there was not specified timeout, 

all respondents completed the questionnaire within 15 minutes of the deal. When evaluating the 

questionnaire, the success of solving the questionnaire depended on the age of respondents. 

Next we processed to draw the correlation between the successes of solving the questionnaire 

given to the field of study and the age of respondents. 

In the first part of the questionnaire respondents filled personal information by which we 

can determine the age structure, the field of study, faculty or year of study. These data were 
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graphically presented. All dates in the each graphs are given in percentages. The questionnaires 

in Czech and in English language are connected (Appendix 1, 2). 

From the Figure 4 is clear that a significant majority of respondents achieved the age 

between 20 and 22 years. 

 

Figure 4. Age of respondent. 

Each of the respondents in the questionnaire survey stated subject studied and faculty. From 

the data obtained, it is clear (Figure 5) that the vast majority of respondents studied on the 

Faculty of Education. 

 

Figure 5. Faculty of respondent. 

Abbreviations used of each faculties: FPE - Faculty of Education, FEL - Faculty of 

Electrical Engineering, FAV - Faculty of Applied Sciences, FF - Faculty of Philosophy, FEK - 

Faculty of Economics, FST - Faculty of Engineering, FPR - Faculty of Law and FZS - Faculty 

of Health Studies. 

Individual items of the questionnaire were evaluated separately. For each question is given 

the exact wording and graph that shows the percentage distribution of responses. Questions 1-
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13 were formulated as closed with a single correct answer. The respondent had a choice of four 

possible answers. 

Question 1 

Text: As fuel for the diesel engine is used: 

  a) coal   b) gasoline 

  c) diesel  d) methanol 

This question follows the basic knowledge of the difference between diesel and gasoline 

engines, which are currently the two most used types of engines, especially for automobiles. 

Fuel for diesel engines is the only diesel, while gas is used in gasoline engines, methanol can 

be used as fuel for fuel cells and coal is not used as a fuel for engines. 

 

Figure 6. Question 1. 

Although respondents were reminded to fill all issues and options for marking only one 

correct answer, they appeared questionnaires without marked answer or with labelled more 

answers. Because it was a very small number of such questionnaires they hadn´t been excluded 

from the evaluation. The graphs show that most students know that we use gasoline or diesel 

engines. Less than half the students could not correct assign the diesel for the diesel engine. 

Question 2 

Text: Fuel cell: 

 a) converts electrical energy to chemical  b) use solid fuels 

 c) converts chemical energy to electrical  d) is a kind of perpetuum mobile 

The second question is focused on the knowledge of the basic principle of a fuel cell which 

is able to convert chemical energy into electrical energy. To convert electrical energy into 

chemical energy don´t use fuel cells, but e.g. galvanic cells or batteries. Solid fuels aren´t used 
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in the fuel cells. Perpetuum mobile is not in accordance with the laws of thermodynamics to 

assemble. 

 

Figure 7. Question 2. 

Evaluation of this item is quite unique compared to the first question. The graph shows that 

most students are able to identify the basic principle of the fuel cell. 

Question 3 

Text: PEMFC stands for: 

 a) fuel cells with alkaline electrolyte   

 b) fuel cells with phosphoric acid 

 c) fuel cells with polymeric membrane   

 d) fuel cells with solid oxide 

The third question is quite difficult. All types of fuel cells exist and to determine the exact 

label you need to have some experience with the issue. Students can also find the correct 

answers from the English name for the fuel cell with a polymer membrane - polymer electrolyte 

membrane fuel cell (PEMFC). 

 

Figure 8. Question 3. 
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Distribution of responses shows, that the students don´t have a basic overview of the types 

of fuel cells. Though most students have marked the correct answer c) the wrong answers have 

much greater advantage. 

Question 4 

Text: Provide the fuel that is used in fuel cells: 

___________________________________________ 

This question follows the material, which the respondents thought that it is used as fuel in 

fuel cells. There are several types of fuel cells, which are divided by the type of electrolyte. 

Usually pure hydrogen is used, but it is possible to use other types of fuels such as methane, 

methanol, propane, carbon monoxide, ammonia, hydrazine, zinc, sodium, or carbon. As an 

oxidizer is exclusively used pure oxygen. 

 

Figure 9. Question 4. 

Distribution of responses shows Figure 9, where we can see that the students include the 

entire spectrum of fuels. 46 respondents marked one of the correct answers. 
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This issue is already focused on the knowledge of basic concepts of organic chemistry. 

Mentioned chemical macromolecular material has clearly defined structural formula. 

 

Figure 10. Question 5. 

The graph shows that most students are able to correctly identify the structural formula for 

polyvinylalcohol. The same number of responses for b) and d) shows that students chose answer 

b) for polymeric character formula and the answer d) due to alcohol groups occurring in the 

formula. 

Question 6 

Text: Nafion is membrane produced on the basis of: 

a) polyvinylalcohol 

b) polysulfone 

c) hydrochloric acid 

d) polytetrafluorethylene 

Question six is very specific and examines deeper knowledge of students in the field of 

polymeric membranes. Nafion is one of the most commercially available polymeric membranes 

on the world market. The basic structure of the membrane consists sulphonated 

polytetrafluoroethylene. Polyvinylalcohol and polysulfone are used to produce different types 

of membranes. HCl itself isn´t used for membranes production. 
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Figure 11. Question 6. 

Nevertheless, the true answer d) is one of two most common answers, it is not clear that 

students have basic knowledge in polymer membranes. 

Question 7 

Text: Polymerization is a chemical reaction in which: 

a) from polymers are formed monomers 

b) from small molecules formed high molecular substances 

c) from alcohol is formed acid 

d) is formed ester and water 

This question is focused on the basic knowledge of the principle of polymerization, where 

small molecules are formed to high-molecular structures. Answer a) is the opposite of the 

polymerization, c) is oxidation, d) is esterification. Polymerization is the basis chemical 

reaction in formation of polymeric membranes. 

 

Figure 12. Question 7. 
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The graph shows that the vast majority of students can correctly identify the principle of 

polymerization. 

Question 8 

Text: The fuel cell is not formed: 

a) anode 

b) cathode 

c) membrane or electrolyte 

d) spark plug 

Students were specifically warned about this question, it contains a negative response. It is 

focused on the composition of the fuel cell. The basic elements occurring in the fuel cell 

includes an anode, cathode and membrane or electrolyte. 

 

Figure 13. Question 8. 

Most of the students by this question correct determined that the answer d) spark plug does 

not occur in the fuel cell. 

Question 9 

Text: Functions of the membrane in a hydrogen fuel cell is: 

a) transmit protons 

b) transmit electrons 

c) transmit gas 

d) not transmit protons 

Question 9 deals with the basic functions of the membrane in a hydrogen fuel cell. Its 

function is to allow the hydrogen protons H+, electrons simultaneously go to the electric circuit. 
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Answer d) is the opposite of the correct answers. When through the membrane passes the gas 

H2, it is an undesirable property of the membrane. 

 

Figure 14. Question 9. 

The results for this question suggest that students know the basic principle of operation of 

the fuel cell. 

Question 10 

Text: Teflon is stands for: 

a) polyvinylalcohol 

b) polytetrafluorethylene 

c) polyethylenterephthalate 

d) polyethylenglycol 

Tenth question ascertains knowledge of one of the most common polymer materials known 

as Teflon. Teflon is an abbreviation for polytetrafluoroethylene. It is used for many household 

items such as pans and tableware. Polyvinylalcohol is used for producing foils, polyethylene 

terephthalate particular for PET bottles, polyethylene glycol is used in the cosmetic and 

pharmaceutical industries. 
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Figure 15. Question 10. 

Majority of respondents correctly assigned the shortcut of Teflon to the polymer substance 

polytetrafluoroethylene. 

 

Question 11 

Text: Rheology is the science that deals: 

a) magnetic phenomena 

b) electrical phenomena 

c) the chemical reactivity of substances 

d) investigation and modelling of deformation properties of substances 

Question 11 had examined the respondents' knowledge about one of the fundamental 

material science. Rheology is the science concerned with the exploration and modelling of 

deformation properties of substances. Magnetic and electric phenomena deals with physics, 

specifically electricity and magnetism, chemical reactivity of substances (generally deals with 

chemistry). 

 

Figure 16. Question 11. 
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The graph shows that most of students haven´t met with the concept of rheology yet. 

 

Question 12 

Text: Thermogravimetry:  

a) examine the deformation of the material in dependence on the mechanical stress 

b) examine the weight change according to the thermal changes 

c) examine the water absorption of material 

d) deal with measuring of temperature 

This question seeks to investigate whether respondents are able to assign the correct 

process to construct thermogravimetry (TG), which examines the change in weight, depending 

on the thermal change. Others processes a), c), d) we can explore using DMA, DVS and 

thermometry in order. 

 

Figure 17. Question 12. 

Most respondents correctly identified the thermogravimetry dealing with weight change 

depending on thermal changes. 

 

Another object of the research was the dependence of the success of respondents on their 

age. Individual questionnaires were therefore evaluated according to the number of correct 
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was not included, because it is an open question, and we are able to determine more than one 

accurate answer for it. The maximum number of correct answers is therefore 11. This number 
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questions 5, 9 and 11 were answered incorrectly. The question 5 can be considered moderately 

difficult, as it requires a basic knowledge of chemistry. Questions 9 and 11 can be considered 
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more difficult for the students due to the lack of appropriate knowledge of these phenomena, 

and the absence of scientific disciplines dealing with these issues in the curriculum of secondary 

schools and higher education in most technical fields. Only one respondent filled wrong 

answers to all the questions. In Figure 18 you can see the graphical representation of the results 

obtained from the students, based on the age group and the average number of correct answer.  

Due to the small number of students in age 18 years, 25 years and over, these respondents form 

a single group. The resulting values among respondents in this group cannot be considered as 

relevant for a small number of students. This age group formed together only 5.35% (Figure 4) 

of the total number of respondents. So small sample is not representative and therefore we doubt 

the relevance of these data. Nevertheless the graph (Figure 18) appears to increase success in 

the age group of 24 years, or 22 and 19 years.  The reason for this increase is not entirely clear. 

It is possible to deduce the relationship between this result and the course of study at a 

university. At the age of 22 years, is starting transition of students from the bachelor's degree 

program to the Master's degree program. At the age of 24 years, students are almost completing 

their studies, so full of masters and engineers. 

 

Figure 18. Age of respondent. 

It was also examined the success of students depending on their field of study. From Figure 

19 it is evident that most successful respondents were students of Mechanical Engineering, 

Faculty of Engineering, who achieved an average number the correct answers 7.2. For a 

successful researcher, with a gain of more than half number of points we can be considered 

students of Bi, Ch, ČJ, TEK, PR, IS and ZL. Table 2 gives an overview of the success of 

individual fields of study. Yellow color indicates the fields in which only two or less students 

participated in the survey. These results can be considered as relevant, and therefore were not 

included in the final evaluation (Figure 19). 
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Figure 19. Age of respondents. 

From the ratio of correct answers for each items we can suggests on high level of 

knowledge regarding the basic concepts of the science of renewable energy sources. General 

terms such as "fuel cell" or "thermogravimetrics" didn´t create major problem to students. Also, 

mutual resolution Teflon and PVA can be regarded as generally successful. Conversely, 

surprising result were obtained for more specific questions relation to fields of polymer 

membranes, Nafion and function of the membranes in the fuel cell. For questions 6 students 

were able to connect answer a) with the previous question number 5. The results also show that 

the majority of students have never met with the concept of Rheology. A small number of 

students correctly reported at least one example in question 4, which is an obvious lack of 

knowledge of materials, which are used as fuel in fuel cells. Overall, I evaluated the 

questionnaire as a demanding and therefore relatively high proportion of correct answers is 

positive. The doctrine of renewable energy sources should be an integral part of teaching 

physics. 

Questionnaire was created to monitor the knowledge of renewable energy sources, 

particularly fuel cells, their components and their analysis. From obtained results, it is clear that 

students approached individual questions separately, so that they didn´t recognize continuity 

issues. This is fairly typical for the evaluation surveys. Students approach the issues, without 

realizing the possible link between these issues. In evaluation of the survey wasn´t a direct link 

between the items, but information from one item could significantly help to solve other items. 

An example might be a question 3, which may be in response to questions 6 and 9 to select the 

answer, which contained the term "membrane". In the results, we can still observe that this 

answer didn´t mark a predominant number of respondents. 
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Table 2. Fields of study 

FPE 

1st grade Teacher 1.st 4,62 

Computer Science Vt 3,45 

Biology Bi 6,66 

Geography Ge 5,33 

Chemistry Ch 6,43 

Physic Fy 5,14 

Mathematics Ma 5,43 

Technical Education TEK 3,86 

Music Hv 4,5 

Applied chemistry ACH 7 

Kindergarten Teacher MŠK 4 

Russian language RJ 6 

Visual culture VV 3 

History D 3 

English language AJ 8 

Czech language ČJ 6,25 

Art Education Vv 3 

FEL 
Environmental Engineering TEK 6,67 

Energetics EN 4 

FDU Product design DD 4 

FST Mechanical engineering SI 7,2 

FPR 
Public administration VSN 5,78 

Law and Legal Science PR 6 

FF 

Sociology So 3 

Archeology ARCH 5 

International relationships MV 4 

Political Science POL 0 

General history OD 5 

Middle Eastern Studies BVS 4 

FEK 

Economic and Regional Geography ERG 5,5 

Business Management PEM 3,5 

Management of business MPČ 5,33 

Project Management Systems SPŘ 5,2 

FAV 

Applied and Engineering Technology AIF 9 

Cybernetics K5T 7 

architecture STA 5,93 

Information Systems IS 6,57 

FZS 
Radiology Asistent RAS 5,38 

Laboratory Assistant ZL 6,57 

 

 

2.3. Tasks for Physical Laboratory practise 

 

In the context of this work, we designed a laboratory task for Physical Laboratory 1. The 

students have completed this exercise in thermal laboratory New Technologies - Research 

Centre (NTC), Department of Engineering special materials (ISM). Total measurement is 

attended by four students of Faculty of Education, Natural Science Studies - Physics. Before 

the measurement the students were introduced to the safety methods and followed by the detail 

experimental procedures of the instrument. Apart from experiments, the students were also 
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explained regarding the interpretation of the results obtained by the thermal instruments. They 

were asked to measure the rheological properties of 5% PVA solution with varying 

concentrations of sulfosuccinic acid. The measurements were performed on a rheometer ARES 

G2 from TA Instruments.  

The aim of this practise is an effort to bring knowledge about fuel cells, especially about 

polymer electrolyte membranes closer to students. Students can due to the similar 

measurements try to work with modern measuring instruments. 

 

2.3.1. Manual for measurement  

 

The manual in Czech and in English language is connected (Appendix 3, 4). Manual has 6 

parties. The Introduction describes PVA membranes, rheology and rheometers. In 

Measurement methods is described setting the task on the rheometer ARES G2. In Tasks have 

students an accurate description of the workflow. In Discussion is discussed the importance of 

the task. The Creating measurement record contains tasks for students. In Literature are 

provide the appropriate resources for the task.  

In the protocol students had to respond 5 questions: 

1) Identify what is happening with the viscosity of the sample due to increasing 

concentrations of substances added to the PVA solution. 

 From obtained graph (Figure 20) students were able to determine what 

happened with viscosity. Viscosity decrease with increasing concentrations of 

SSA. For concentration 0.5, 1 and 2 wt% SSA is viscosity higher then for pure 

PVA. 

2) Use literature [4] and discuss how to change the internal structure of the solution due to 

the concentration of the additives. 

 Understanding the literature was worse for students. The couldn´t say what 

happened with structure of solutions after adding SSA. 

3) Why is for the measurement of polymer solutions using cone and plane geometries. 

What other geometry types would be suitable for these solutions? 

 Students correctly determined the use of the given geometry and designed other 

suitable types. Cone and plane or parallel plane are used for low viscosity 

solutions.  

4) Discuss and assess possible measurement errors. 
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 Possible measurement errors were correctly determined by students. For 

example bubbles in the solution or unequal distribution of the sample between 

geometries. 

5) Describe the difference between Newtonian and non-Newtonian fluids and give at least 

four examples of non-Newtonian fluids. 

 Students were able to find in the literature the difference between the mentioned 

fluids and give examples of non-Newtonian fluids. 

 

 

Figure 20. Viscosity of PVA_SSA solutions. 

 

2.4. Literature 

 

1. Skalková, J.: Obecná didaktika. Grada, 2007. 328 s. ISBN 978-80-247-1821-7 

2. Pavlovský, P.: Soudní psychiatrie a psychologie. Grada Publishing, 2001. 184 s. ISBN 

80-247-0181-2 

3. Hošková, M., Šteflová, J.: Základní pojmy z psychologie II. díl – Pedagogická a sociální 

psychologie. Pedagogická fakulta v Plzni, 1980, 116 s. 

4. Chien, H. C., Tsai, L. D., Huang, C. P., Kang, C. Y., Lin, J. N., & Chang, F. C. (2013). 

Sulfonated graphene oxide/Nafion composite membranes for high-performance direct 

methanol fuel cells. international journal of hydrogen energy, 38(31), 13792-13801. 
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3. Experimental 
 

3.1. Material 

 

All the chemicals were of analytical grade and used as received. Deionized water was 

utilized for all the membrane preparation experiments. 

3.1.1. Solvents 

Table 3. Used solvents. 

Materials/Chemicals Code Chemical Structure Company 
 
Isopropanol 

 
(CH3)2CHOH 

 

 
Sigma Aldrich 

 
Hydrogen peroxide 

 
H2O2 

 

 
Lach-Ner 

 
Sulphuric acid 

 
H2SO4 

 

 
Lach-Ner 

 
Sodium hydroxide 

 
NaOH 

 

 
Lach-Ner 

 
Hydrochloric acid 

 
HCl  

Merck Chemicals 

 

3.1.2. Monomers 

Table 4. Used monomers.  

Materials/Chemicals Code Chemical Structure Company 
 
Nafion 115 

 
N115 
 
 
 
 

 

 
Sigma Aldrich 

 
Furfuryl alcohol 
 

 
FA 

 

 
Sigma Aldrich 
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Poly(vinyl alcohol) 

 
PVA 

 

 
Sigma Aldrich 

 
Sulfosuccinic acid 

 
SSA 

 

 
Sigma Aldrich 

 
Glutaraldehyde 

 
GA 

 

 
Sigma Aldrich 

 
Tetraethyl 
orthosilicate 

 
TEOS 

 

 
Merck Chemicals 

 

3.1.3. Tools 

Magnetic stirrer with heating, magnetic stirring bars, Petri dishes, glass beakers, pipettes 

and pipette pumps, micropipettes and plastics tips, glass flasks, tweezer, spoon, scalpel, 

graduated cylinder, plexiglass plates, electric oven, automatic film applicator. 

 

 

 

 

 

 
Figure 21. a) electric owen, b) automatic film applicator, c) plexiglass plates. 

 

3.2. Membrane preparation 

 

3.2.1. Modification of Nafion 

The chemical modification of Nafion 115 membranes by poly(furfuryl alcohol) (PFA) is 

shown in Scheme 1. Commercial N115 membrane sheet was cut in the size 50x50 mm and 

boiled in 2% hydrogen peroxide (12,6 ml 30% H2O2 + 200 ml H2O) at the temperature 90°C 

for 1 hour. The obtained membranes were then rinsed with deionized water and boiled in 0.5 

http://www.bmelabandscience.com/store/index.php?main_page=product_info&cPath=12_15_36&products_id=652&zenid=ajvh211klp8hutv90qkevgq171
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M sulphuric acid (5.3 ml H2SO4 + 194.7 ml H2O) following the same conditions as H2O2, in 

order to remove the impurities present in the membranes. The acid treated membranes were 

thoroughly washed with distilled water. They were then immersed in 0.5 M NaOH and heated 

at 90°C for 1 h, to convert the membrane into Na+ form. This helps to improve the mechanical 

properties of the membrane and to withstand the following process. Subsequently, they were 

rinsed in water and dried in the oven at 80°C for 30 min. The purified Na+ membranes were 

immersed in solution mixture consisting of 13.9 ml furfuryl alcohol (FA), 46 ml isopropanol 

and 36 ml deionized water for 24 h, 48 h and for 120 h, respectively (represented as NF24, 

NF48 and NF120). Further, the impregnated membranes were transferred into a 1.0 M sulfuric 

acid solution (10.7 ml H2SO4 + 189.3 ml H2O) at room temperature for 2 min, and placed in an 

oven at 80°C for 2 days to initiate polymerization of the FA inside the Nafion. Membranes were 

prepared based on the work [1]. The assimilation of PFA into Nafion matrix is shown in Figure 

22.  

To test the repeated loading of these membranes, modified NF24 membrane was activated 

and was immersing in the FA solution mixture for the next 24 h (NF242), and again for next 

24 h (NF243). 

 

Figure 22. Incorporation of PFA into Nafion domains via in-situ polymerization. 

 

Table 5. - Immersion of Nafion 115 in PFA 

Immersion in PFA solution Sample code 

24 hours NF24 

48 hours NF48 

120 hours NF120 

2x24 hours NF24x2 

3x24 hours NF24x3 
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Scheme 1. Chemical modification of N 115 membrane. 

3.2.2. Preparation of PVA membranes 

a) PVA/SiO2/GA composite membranes 

Composite PVA/SiO2/GA membranes were developed by the solution casting method.  

Firstly, PVA (5 wt% in water) solution  was prepared by continuous stirring at 90°C until the 

complete dissolution was achieved. Subsequently, TEOS mixtures and GA were directly added 

to the PVA solution at room temperature and the stirring was continued for 4 h. The composition 

of each solution is specified in Table 6. The prepared solution was poured into the film 

applicator equipped with a glass plate and was fabricated into membranes with uniform 

thickness. The expected reactions and membrane structures are shown in Schemes 2 and 3. 

Table 6. - Composition of polymer solutions, PVA, TEOS, GA  

Sample Solution mixture Composition 

5PVA 5% PVA 25ml H2O, 1.25g PVA 

5PVA_1TEOS 5% PVA, 1%TEOS 
25ml H2O, 1.25g PVA, 0.25ml TEOS 

(0.00625ml HCl, 0,0625ml H2O) 

5PVA_2TEOS 5% PVA, 2%TEOS 
25ml H2O, 1.25g PVA, 0.5ml TEOS 

(0.0125ml HCl, 0,125ml H2O) 

5PVA_3TEOS 5% PVA, 3%TEOS 
25ml H2O, 1.25g PVA, 0.75ml TEOS 

(0.01875ml HCl, 0,1875ml H2O) 

5PVA_4TEOS 5% PVA, 4%TEOS 
25ml H2O, 1.25g PVA, 1ml TEOS (0.025ml 

HCl, 0,25ml H2O) 

5PVA_1GA 5% PVA, 1%GA 25ml H2O, 1.25g PVA, 0.25ml GA 

5PVA_1GA 5% PVA, 2%GA 25ml H2O, 1.25g PVA, 0.5ml GA 

5PVA_1GA 5% PVA, 3%GA 25ml H2O, 1.25g PVA, 0.75ml GA 

5PVA_1GA 5% PVA, 4%GA 25ml H2O, 1.25g PVA, 1ml GA 

5PVA_1TEOS_1GA 5% PVA, 1%TEOS_1%GA 
25ml H2O, 1.25g PVA, 0.25ml TEOS 

(0.00625ml HCl, 0,0625ml H2O), 0.25ml GA 

5PVA_1TEOS_2GA 5% PVA, 1%TEOS_2%GA 
25ml H2O, 1.25g PVA, 0.25ml TEOS 

(0.00625ml HCl, 0,0625ml H2O), 0.5ml GA 

5PVA_1TEOS_3GA 5% PVA, 1%TEOS_3%GA 
25ml H2O, 1.25g PVA, 0.25ml TEOS 

(0.00625ml HCl, 0,0625ml H2O), 0.75ml GA 

5PVA_1TEOS_4GA 5% PVA, 1%TEOS_4%GA 
25ml H2O, 1.25g PVA, 0.25ml TEOS 

(0.00625ml HCl, 0,0625ml H2O), 1ml GA 

2% H2O2

90°C, 1 hr
H2O

0.5M H2SO4

90°C, 1 hr
H2O

0.5 M NaOH

100°C, 1 hr
H2O

Oven 

80°C, 30 min

PFA solution

RT, 24 (48, 120) hrs

1M H2SO4

RT, 2 min

Oven

80°C, 48 hrs
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Scheme 2. Expected chemical reactions during the formation of the PVA/SiO2 membranes. 

 

 

 
 

Scheme 3. Expected chemical reactions during the formation of the PVA/SiO2/GA membranes. 

 

b) PVA/SSA/TEOS  membranes 

PVA/SSA membranes were fabricated by solution casting method. At first, a 5 wt% 

solution of PVA (1.25 g PVA + 25 ml H2O) in water was prepared by continuous stirring at 

90°C until the complete dissolution was achieved (2 – 3 hours). The PVA solution was mixed 
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with SSA for 24 h at room temperature. Further, TEOS mixture was prepared by mixing H2O, 

HCl and TEOS in the molar ratio of 4:0.1:1, which was stirred at room temperature for 2 h [2] 

and added to the PVA-SSA solution. The composition of each solution is specified in Table 7. 

The prepared solution was poured into the automatic film applicator (TQC, Germany) equipped 

with a plexiglass plate and was fabricated into membranes with uniform thickness and dried at 

40°C. 

 

Scheme 4. Expected chemical reactions during the formation of the PVA/SSA membranes. 

 

 

Scheme 5. Expected chemical reactions during the formation of the PVA/SSA membranes. 
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Table 7. - Composition of polymer solutions, PVA, SSA, TEOS 

Sample Solution mixture Composition 

5PVA 5% PVA 25ml H2O, 1.25g PVA 

5PVA_0.5SSA 5% PVA, 0.5%SSA 25ml H2O, 1.25g PVA, 0.125ml SSA 

5PVA_1SSA 5% PVA, 1%SSA 25ml H2O, 1.25g PVA, 0.25ml SSA 

5PVA_2SSA 5% PVA, 2%SSA 25ml H2O, 1.25g PVA, 0.5ml SSA 

5PVA_5SSA 5% PVA, 5%SSA 25ml H2O, 1.25g PVA, 1.25ml SSA 

5PVA_10SSA 5% PVA, 10%SSA 25ml H2O, 1.25g PVA, 2.5ml SSA 

5PVA_1TEOS 5% PVA, 1%TEOS 
25ml H2O, 1.25g PVA, 0.25ml TEOS 

(0.00625ml HCl, 0,0625ml H2O) 

5PVA_2TEOS 5% PVA, 2%TEOS 
25ml H2O, 1.25g PVA, 0.5ml TEOS 

(0.0125ml HCl, 0,125ml H2O) 

5PVA_5TEOS 5% PVA, 5%TEOS 
25ml H2O, 1.25g PVA, 1.25ml TEOS 

(0.032ml HCl, 0,32ml H2O) 

5PVA_10TEOS 5% PVA, 10%TEOS 
25ml H2O, 1.25g PVA, 2.5ml TEOS (0.064ml 

HCl, 0,64ml H2O) 

5PVA_0.5SSA_1TEOS 5% PVA, 0.5%SSA, 1%TEOS 
25ml H2O, 1.25g PVA, 0.125ml SSA, 0.25ml 

TEOS (0.0064ml HCl, 0,064ml H2O) 

5PVA_0.5SSA_2.5TEOS 5% PVA, 0.5%SSA, 2,5%TEOS 
25ml H2O, 1.25g PVA, 0.125ml SSA, 0.625ml 

TEOS (0.016ml HCl, 0,16ml H2O) 

5PVA_3SSA_5TEOS 5% PVA, 3%SSA, 5%TEOS 
25ml H2O, 1.25g PVA, 0.75ml SSA, 1.25ml 

TEOS (0.032ml HCl, 0,32ml H2O) 

5PVA_5SSA_5TEOS 5% PVA, 5%SSA, 5%TEOS 
25ml H2O, 1.25g PVA, 1.25ml SSA, 1.25ml 

TEOS (0.032ml HCl, 0,32ml H2O) 

5PVA_10SSA_5TEOS 5% PVA, 10%SSA, 5%TEOS 
25ml H2O, 1.25g PVA, 2.5ml SSA, 1.25ml 

TEOS (0.032ml HCl, 0,32ml H2O) 

 

 

3.3. Experimental technique 

Prepared and modified membranes were investigated by following methods: 

 

3.3.1. Water uptake measurements 

The water uptake studies were carried out:  

a) at temperatures from 30 to 90°C with a 20°C step. The membranes were placed in 

deionized water, heated to 30°C and kept at this temperature for 1h at ambient pressure. 

The wet membranes were then wiped with a filter paper and weighted. Temperature 

was then increased by 20°C and the whole process was repeated until the data were 

acquired at all desired temperatures. 

b) at 24, 48 and 120 h at room temperature. The membranes were placed in deionized 

water for specified time. The wet membranes were then wiped with a filter paper and 

weighted. 
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The water uptake (Wu) was calculated using the following equation: 

s d
u

d

W W
W

W


 ,       (8) 

where Ws and Wd are the weights of swollen and dry membranes, respectively. 

 

3.3.2. Thermogravimetric Analysis (TGA) 

Dynamic TG analyses were performed to assess the relative thermal stabilities of the 

polymer membranes. TGA Q500 thermogravimetric analyser (TA Instruments, USA) was used 

to evaluate the relative thermal stability of the pure N115 and N115-PFA membranes. Samples 

of about 5 mg were heated at a rate of 10°C/min in N2 atmosphere. The weight of the samples 

was measured as a function of temperature/time. 

 

3.3.3. Dynamic Mechanical Analysis (DMA) 

Dynamic mechanical measurements of polymeric membranes were performed using a TA 

Instruments DMA Q800 (USA) to determine the storage modulus, loss modulus and tan . 

Samples of sizes 17x5 mm and thickness 0.1 mm were used for the measurements. Experiments 

were performed at frequencies of 1, 10 and 20 Hz, from room temperature to 450°C (at a heating 

rate of 5C/min). The phase angle shift between stress and strain is represented by δ. 

                       
´́

tan( )
´

E

E
 ,                 (9) 

where E´ is storage modulus (elastic component) and E is loss modulus (viscous component) 

of the material. The glass transition temperature (Tg) of a material is obtained from the peak of 

tan δ vs. temperature data. The temperature dependence of the storage modulus (E´) was 

measured in the range from 30 to 200°C. At higher temperatures (˃150°C), where the material 

enters the rubbery phase, the storage modulus is referred to as rubbery modulus, ER. 

 

3.3.4. Rheology 

The rheological studies of the PVA solutions were measured on a rheometer ARES G2 

from TA Instruments. The polymer solutions were inserted between two paralel plate 

geometries (d = 25 mm). For each measurement, the shear rate from 0.1 to 100 s-1 , for a duration 

30 s was carried out at room temperature. Membranes were cut (d = 25 mm) and inserted 
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between two paralel plate geometries (d = 25 mm). For  these measurement angular frequency 

from 1 to 100 rad·s-1 , strain 5%, was used.  

 

3.3.5. Fourier Transform Infrared Spectroscopy (FTIR) 

FT-IR studies of membranes were performed using NICOLET 380-FTIR spectrometer in 

ATR mode with ZnSe crystal and the spectra were corrected on single-bounce ATR 

environment. Analysis was conducted in the spectral range of 400 – 4000 cm−1, with angle of 

incidence at 45° and sample refraction index of 1.5.  

 

3.3.6. Dynamic Vapor Sorption (DVS) 

The Dynamic Vapor Sorption (DVS-ET) unit provided by Surface Measurement System was 

utilized to measure the water vapour sorption properties of the individual sample. The sorption 

tests were conducted at 25°C. The sorption test procedure consisted of two cycles. The first part 

of the test procedure was represented by drying the sample at 0% relative humidity (RH) and at 

the desired temperature for 18 h by dry nitrogen with volumetric flow 150 ml/min. The second 

part of the test procedure was represented by humidifying the sample at RH = 95% with 

accuracy ± 0.7% and desired temperature for 48 h by wet nitrogen with volumetric flow 150 

ml/min. The desired RH was set by the DVS-ET unit by mixing of the dry and wet nitrogen. 

Figure 22 shows typical cycle of the test procedure. During the test procedure mass changes of 

the individual samples were measured with ultra-balance with sensitivity 0.1 μg. The obtained 

data were used for determination of the water vapour uptake of the individual sample. An 

influence of the sample modification on the individual sample is studied in the selected times 

of the second part of the test procedure, i.e. in times 0, 0.5, 1, 6, 12, 24 and 48 h.  

 

Figure 22. Cycles of the test procedure. 
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3.3.7. SAXS/WAXS 

The SAXS/WAXS experiments were performed on a SAXSess mc2 instrument (Anton 

Paar, Austria). The instrument uses a GeniX Microfocus X-ray point source with a Cu anode 

(50 kV and 1 mA), single-bounce focusing X-ray optics, and an advanced collimation block. 

This configuration enables to measure in point collimation geometry only. The experiments 

were performed in the standard transmission setup, and imaging plates together with the 

CyclonePlus® Reader (PerkinElmer, Inc.) were used for detection. The sample exposure time 

was 30 min and four pieces of the membranes were stacked for each measurement. The range 

of the scattering vector magnitude for the used experimental setup starts at about 0.2 nm-1 and 

goes up to 28 nm-1. It therefore covers both the SAXS and the WAXS range. The scattering 

vector magnitude q is defined as q = (4π/λ) sinθ, where λ is the X-ray wavelength (0.15418 nm 

for Cu Kα) and θ is the half-scattering angle (Bragg angle). The 1D radial intensity profiles 

were created from the measured 2D patterns by azimuthal averaging using the SAXSquant 

software (Anton Paar, Austria), which could be performed thanks to the azimuthal symmetry 

of these patterns (indicating the isotropic nature of the investigated samples). 

 

3.3.8. Electrical impedance 

The ionic conductivity was obtained by measuring the impedance of the membranes at 

room temperature. To ensure the proper contact, each membrane was inserted between two 

liquid mercury electrodes with a diameter of 4 mm (Figure 23). The spectra were obtained on 

a Solartron 1287A/1260 impedance spectra analyser in the frequency range of 10-1 to 106 Hz at 

amplitude value of the AC signal 10 mV. Ionic conductivity was calculated using the following 

equation: 

l

S R
 


,         (10) 

where σ is the ionic conductivity of the membrane [S/cm], S is the membrane area [cm2], l is 

the membrane thickness [cm], R and represents the impedance of the membrane [Ω] at zero loss 

angle. Equivalent circuit simulating measurements were compiled using ZPlot® software and a 

subsequent fit for each spectrum was performed using ZView® software. 
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Figure 23. Model of used equipment for the impedance measurement. 

 

3.3.9. Raman spectroscopy 

The Raman measurements were carried out on a DXR Raman microscope (Thermo 

Scientific, USA). Three excitation lasers (532, 633, and 780 nm) and four apertures (slit and 

pinhole, 25 and 50 lm) were tested. The best results were obtained using the 532 nm laser with 

the 50-lm pinhole aperture. This configuration was thus used for all measurements. The laser 

power was set to 10 mW and 1000 scans with a 1-s exposure time were recorded for each 

spectrum. To check sample homogeneity and eliminate any possible artifacts, at least four 

spectra at different points were collected for each sample. Since the bands relevant to this study 

are in the range from approximately 800–1700 cm-1, we used the high-resolution grating for all 

experiments. This grating provides the spectral resolution of 2 cm-1 in the range from 70 to 1870 

cm-1. The band at 855 cm-1 was not influenced by adding TEOS or GA [3] and was therefore 

used for the intensity normalization of the Raman spectra, when required for evaluation 

purposes. 

 

3.3.10. Atomic force microscopy 

The morphological measurements were conducted on the atomic force microscope Ntegra 

(NT–MDT, Russia) in the semi-contact mode. Several semi-contact probes were tested and the 

probe HA–NC (also NT–MDT) with a force constant of 3.5 N/m was chosen as the most 

suitable for the morphological mapping of prepared PVA membranes. The typical scanning 

frequency was 0.6 Hz and the free oscillating amplitude (FOA) was 1.8 V. The set point 

amplitude (SPA) was individually chosen for each sample to the value of SPA = 0.5·FOA. The 

NT–MDT software allows the scanning of four images during one AFM scan. We scanned two 

topological images (trace and retrace), one phase image and one magnitude image. The 

magnitude image was recorded for each measurement and helped in nonambiguous image 
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interpretations. A comparison of the trace and retrace images allows in excluding artifacts 

which could be created by wrong SPA. 

 

3.3.11. Differential scanning calorimetry 

A DSC Q200 differential scanning calorimeter (TA Instruments, USA) was used to 

measure the phase transition behaviour of the membranes. Samples of about 5 mg were weighed 

into a DSC aluminium pan. Dynamic heating scans were carried out from 50 to 300°C at a 

heating rate of 10°C/min in N2 atmosphere.  
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4. Results and discussion 
 

4.1. Modification of Nafion® 115 by polyfurfuryl alcohol. 

In the present work, we synthesized N115-PFA composites using the same procedure as 

mentioned in [1], however the impregnation time of membranes in PFA solution was gradually 

increased from 24 h to 120 h, to investigate the influence of PFA loading on the performance 

of the membranes. The resultant membranes were characterized by ATR-FTIR, SAXS/WAXS, 

TGA, DMA, Wu, DVS and electrical impedance. Additionally, we also examined the effect of 

repeating the impregnation process on the properties of the composite membranes. 

 

4.1.1. FT-IR ATR 

Figure 24 shows the FT-IR ATR spectra of the N115 and NF243 membranes. It was 

reported that the spectral bands at 1056, 982 and 967 cm−1 are ascribed to the characteristic 

functional groups of Nafion [2]. The intensities of these bands decreased with increasing 

perturbation of the sulfonate group influence of assimilation of PFA into Nafion matrix. The 

bands at 1711, 1510 and 890 cm-1 are attributed to furan rings [3, 4]. Aliphatic segments give 

rise to the bands at 2920, 2848 and 1421 cm−1, whereas the signal at 3449 cm−1 is assigned to 

the stretching of the -OH end groups in the PFA [5, 6]. These results clearly confirm that the 

PFA was successfully incorporated into Nafion membrane. 

 

Figure 24. FT-IR ATR spectra of N115 and NF243. 

 

4.1.2. SAXS/WAXS 

Figure 25 shows SAXS/WAXS profiles of the pure N115 and the composites. The profile 

of pure N115 shows two pronounced peaks in the SAXS range and two broad diffraction 
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maxima in the WAXS range. The peak at around 5 A-1 represents the “matrix peak” and is 

related to Teflon-like (fluorocarbon) hydrophobic domains [7]. The corresponding d-spacing 

(spacing of crystalline domains) lies around 11–12 nm. The peak at approximately 0.2A-1 is 

called “ionomer peak” and it corresponds to a characteristic dimension within the ionic 

(hydrophilic) domains formed from the Nafion side chains terminated by sulfonic groups [7]. 

The corresponding d-spacing is approximately 3 nm-1. The broad diffraction peaks in the 

WAXS range (with the maxima at 5.2A-1 and 2.3A-1) can be attributed to the internal structure 

of the Teflon-like domains [8]. 

 

Figure 25. SAXS/WAXs profile of N115, NF24, NF48 and NF120 membranes. 

 

It can be seen that the position of the ionomer peak does not virtually change after the 

modification. The change of its intensity can be caused by a change in the scattering contrast 

(related to the difference of the electron density) due to the incorporation of the PFA into the 

polymer. The structure of NF48 and NF120 samples is similar to N115 graph, whereas in case 

of NF24, NF242 and NF243 a shoulder at low q arises indicating the formation of 

nanostructure or a distribution of nanostructures with a size of approximately 10 nm. Their 

quantity increases from NF24 to NF243. The shoulder is superimposed on the matrix peak, 

which can be well seen in the profile of NF24. For NF242 and NF243 no matrix peak is 

observed any more, which does not necessarily mean that it is not present. The peak can be 

“covered” by the increasing intensity of the above mentioned shoulder. 
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4.1.3. Thermal analysis 

In the present investigation, TGA was utilized in two ways: (a) to investigate the thermal 

properties of the membranes, which is important for the constant stability maintenance of 

membranes when operated under harsh conditions, (b) to confirm the presence of FA loading 

in the membranes. In general, the stability is strongly affected by the concentration of FA 

loading and may tend to alter the properties of membranes depending on the amount of loading.  

Hence, it’s quite important to have in-depth thermal study of these membranes. TGA 

thermograms of N115 and N115-PFA membranes are shown in Figure 26.  

 

Figure  26. TGA thermograms of N115, NF24, NF48 and NF120. 

 

 Thermal degradation of the membranes takes place in three stages, as shown by the derived 

weight of curve peaks (Figure 27). The initial weight loss of about 5% between 50°C and 300°C 

is almost the same for pure N115 and the composites  (NF24, NF48 and NF120), which can be 

associated with loss of residual water in the membrane. The slight difference of about 2% 

between 175°C and 300°C, may be due to a slight decomposition of PFA (FA: boiling point = 

170°C) (Figure 26a).  

 The second stage of the degradation is different for N115 (Figure 27a) and composites 

(Figure 27b). The weight loss of about 10% was seen in the case of N115, which can be 

attributed to the decomposition of sulfonic groups with a small influence of the breakdown of 

side chains. However, a higher amount of loss (about 13%) was witnessed for NF24, 

demonstrating the existence of greater amount of inbound water molecules in the membranes, 

which does not evaporate in the first stage. The loading of PFA has substantially enhanced the 

hydrophilic nature of the Nafion membrane. The second stage weight loss between 300 and 
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400°C is considered as very crucial, not only because it is a temperature range where the 

disorder is initiated but also because the membrane loses ion exchange functions that are most 

important membrane properties [9-13].  

 

Figure  27. TGA thermograms of a) N115 and b) NF24. 

 

 

In the third degradation stage, N115 extends between 425°C and 550°C, with a sharp drop 

around 460°C. It can be clearly seen that complete degradation of N115 happened <600°C, 

which can be credited to the complete loss of sulfonic acid groups, side chains, and also 

degradation of the backbone structure of Nafion to low-molecular weight aliphatic products. 

For N115-PFA composites, the degradation happens in the same range as for N115, however, 

the degradation is not completed within 600°C, displaying a better thermal stability compared 

to N115. Figure 28 shows the residual weight for modified membranes for the temperature at 

600°C. In these membranes the degradation is accompanied by the pyrolysis of PFA polymer 

structure [14]. 
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Figure 28. TGA thermogram of N115 and N115-PFA membranes. 

 

The effect of repeating the FA loading process is clearly seen at the end of third phase. The 

residual weight for NF24 is 1.4%, for NF242 is 3.3% and for NF243 is 6.4% for 600°C 

(Figure 28). From the results, it is clearly evident that all composite membranes have shown 

higher thermal stability compared to N115. The stability increases with loading of PFA. The 

effect of repeating the PFA loading process has positive effect on the thermal properties and it 

is clearly witnessed for NF243, with a char yield of 6.4%. The above results give a clear 

indication of the possibility of using these membranes for low temperature PEMFC. 

 

4.1.4. Dynamic mechanical properties 

DMA analysis was performed to investigate the thermomechanical properties of the 

membranes. Figure 29 shows the DMA graph of membranes dynamically heated from 30 to 

200C. At low temperatures (~ 30C), all the membranes have shown higher E´, which lies 

between 300 to 400 MPa. However, with the increase in temperature E´ starts to drop gradually 

above 80C and collapses completely around 150C. 
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Figure 29. DMA E curves of N115, NF24, NF48 and NF120. 

 

Table 8 provides the complete DMA data corresponding to E´, Tg and break-point, at 

different frequencies. It is noticeable from Figure 29, at temperature above 70°C, N115 starts 

to collapse prior to the composite membranes, exhibiting a lower thermo-mechanical stability. 

It can be well correlated with thermal stability data in TGA section, where N115 had undergone 

complete degradation by 560C, whereas,  N115-PFA composites remained thermal stable till 

700C, demonstrating a better thermal stability compared to N115. Figure 30 shows the 

cracking in membranes for NF24 and NF48 at high temperatures. 

 

Table 8. DMA obtained data for N115 and modified N115-PFA 

membranes. 

Sample Frequency 

(Hz) 

E´ 

(Mpa) 

Tg* (tan ) 

(°C) 

Break-point 

(°C) 
N115 1 311 108 234 flexible 

N115 10 340 122 241 flexible 

N115 20 369 122 231 flexible 

NF24 1 296 119 413 brittle 

NF24 10 332 132 413 brittle 

NF24 20 332 136 413 brittle 

NF24x2 1 309 119 418 brittle 

NF24x2 10 353 127 275 flexible 

NF24x2 20 393 133 236 flexible 

NF24x3 1 357 124 340 brittle 

NF24x3 10 411 136 275 brittle 

NF24x3 20 433 139 276 brittle 

NF48 1 434 120 413 flexible 

NF48 10 407 129 278 flexible 

NF48 20 352 138 263 brittle 

NF120 1 363 121 416 flexible 

NF120 10 372 131 272 flexible 

NF120 20 369 131 241 flexible 
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Figure 30. Dynamic Mechanical cracking in membranes: a) NF48 extension and b) NF24 cracking (1 Hz). 

Figure 31 (Table 8) shows the DMA plot between tan  vs temperature for N115 and 

composite membranes. From the graph, only one -transition peak was noticed, which 

corresponds to the glass transition temperature (Tg). The Tg for all composites shifts to higher 

temperatures. The highest Tg was observed for NF243, with repeated loading of furfuryl 

alcohol. At 20 Hz, a difference of about 100°C was witnessed between N115 and other 

membranes. From the literature, it is known that above 115°C the network of hydrophilic 

clusters, made up from the sulfonic groups, becomes extremely mobile, before the clustered 

structure finally collapses [15]. This can be either due to loss of water under dry and hot 

conditions, or due to additional uptake of solvents if exposed to saturated solvent/water vapor.  

 

 

Figure 31. DMA Tan δ curves for N115 and N115-PFA composites. 
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As shown in Figure 32 at 20 Hz, the number of repetitions has greater influence to E´ than 

the exposure time. The highest value for E´ (433 MPa) was observed for NF243 membrane, 

at 20 Hz (Table 8).   

 

 

Figure 32. DMA E curves for NF24, NF242 and NF243. 

 

It can be concluded that N115-PFA composites exhibit better mechanical properties than 

N115. E´ and Tg increased with PFA loading and with number of repetitions, respectively. The 

best thermo-mechanical properties were seen for NF243. These results correlated well with 

thermal stability data in TGA section (4.1.3). 

 

4.1.5. Water uptake (Wu) 

Previously, many research groups have reported that the water uptake in Nafion increases 

as a function of both temperature and water activity [16, 17]. Following a similar trend, our 

membranes displayed a gradual increase in Wu and witnessed the maximum uptake at 95% 

relative humidity (RH).  Figure 33 shows the Wu measurements of the N115 and composite 

membranes at different RH.  
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Figure 33. Water Uptake vs RH for composites (NF24, NF48 and NF120) and N115 membranes. 

The highest level of uptake was witnessed for NF24 .i.e., ~ 20% at 95% RH, which is 

slightly higher than N115. Further, it can be found that the Wu of composites decreased with 

the increase in the loading time of PFA. Composite NF48 and NF120 showed somewhat lower 

Wu (14%) when compared to NF24. The decrease in Wu indicated that the sulfonated groups of 

N115 were combined with PFA, and the hydration of ion cluster was decreased due to the 

hydrophobic property of PFA [18, 19]. 

In general, water uptake is closely related to the basic properties of the membrane and plays 

a major role in its performance. The higher/lower absorption of water has a greater impact on 

the ionic conductivity of the membrane. The water presented in the membrane influences the 

ionomer microstructure, cluster, channel size and alters the mechanical properties [20]. The 

ionic conductivity of pure N115 membrane increases about linearly with absorbed water in the 

membrane [21]. The results obtained for Wu can be attributed to the hydrophilic nature of the 

PFA within the pores of N115, which increased surface area of nanoparticles, as proved by 

SAXS (Figure 25). Further, these outcomes of composite membranes correspond to calculated 

ionic conductivity from the Equation 10. The Wu decreases with the increase of loading time of 

PFA. Besides, the ionic conductivity also followed a similar trend and displayed a decreased 

pattern with increased PFA loading time. This phenomenon can be attributed to the greater 

number of PFA groups attached to the Nafion, which reduces vacant space for water. The higher 

water uptake of NF24 resulted in greater proton conductivity, which would apparently result in 

better fuel cell performance under different conditions. 
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4.1.6. Dynamic vapor sorption 

All the composites exhibited increased water vapor uptake (Wvu) when compared to virgin 

N115. As shown in Figure 34, NF24 exhibited the highest Wvu (> 30%) at 25C, whereas, other 

membranes displayed a lower uptake below 30%. Moreover, with the increase in absorption 

time from 0.5 to 48 h, the Wvu in NF24 also increased gradually from 15% to 32%, illustrating 

a better uptake properties when compared to N115. From DVS measurements, it can be 

concluded that NF24 has higher water uptake than N115 and all other membranes. Wvu increases 

with time of water action and decreases with increasing the loading time of PFA. This result 

can be correlated with Wu data in previous sections, where NF24 exhibited the best water uptake 

properties from all composite membranes. Wvu of composite membranes increased with time of 

water action and decreased with time of PFA loading. 

 

 

Figure 34. DVS water sorption properties of N115 and N115-PFA composites at 25°C. 

 

4.1.7. Electrical properties 

The ionic conductivities of membranes are shown in Figure 35. In case of composites the 

conductivity significantly decreased with PFA loading. Nevertheless, composite NF24 exhibits 

higher ionic conductivity compared with pure N115. It can be noticed that the conductivity was 

increased when a small amount of PFA was incorporated. This is probably due to the 

hydrophobic PFA molecules supplemented Nafion hydrophilic regions with lower density, and 

giving rise to densely packed polymer chains with less soluble domains that are effective in the 
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charge transfer. However, at high loading, large cluster-like domains tend to pack the Nafion 

loosely, which results in lower ionic conductivity. By using the appropriate amount of PFA, we 

can still produce N115-PFA composites with reasonably higher ionic conductivity, which is 

essential for fuel cell application. 

 

 

Figure 35. Ionic conductivity of N115, NF24, NF48 and NF120. 

 

Figure 36 shows the impedance spectra of N115 and composites. The angle of slope of the 

linear portion of the spectrum gradually decreases towards the real axis Z' with the time of PFA 

loading. The highest value of ionic resistance was seen for NF24. Ionic resistance of composites 

decreases with time of PFA loading. These results are correlated with R1 data from Table 9. 

 

 

Figure 36. Impedance spectra of N115, NF24, NF48 and NF120. 
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Table 9. Fit for N115 and composite membranes 

membrane Element Value Error % 

N115 R1 (Ω) 9,935 N/A 

  C1 (F) 2,8313 e-7 1,5215 

  R2 (Ω) 608,1 0,99286 

NF24 R1 (Ω) 7,4954 N/A 

  C1 (F) 2,7114 e-5 0,62901 

  R2 (Ω) 162420 7,1346 

NF242 R1 (Ω) 8,11 N/A 

  C1 (F) 3,725 e-5 0,47074 

  R2 (Ω) 115930 5,1415 

NF24x3 R1 (Ω) 8,721 N/A 

  C1 (F) 3,8335 e-5 0,5639 

  R2 (Ω) 71126 4,0101 

NF48 R1 (Ω) 10,935 N/A 

  C1 (F) 2,196 e-5 1,5658 

  R2 (Ω) 59439 6,2811 

NF120 R1 (Ω) 56,369 N/A 

  C1 (F) 1,8938 e-5 4,2866 

  R2 (Ω) 15171 6,6153 

 

The interpretation and quantification of impedance spectra requires a deep understanding 

of the involved processes and the selection of a suitable equivalent electric circuit. In practice, 

it is just as important as the adequate reflection of the real system and the simplicity of the 

circuit [22]. For this reason, it is necessary to understand the physical processes in the cell and 

identify the major components that contribute to the overall system impedance in order to create 

accurate equivalent circuit. 

Figure 37 shows a representative equivalent circuit showing proton conducting polymeric 

membrane sandwiched between two mercury electrodes (Figure 23). Element R1 represents an 

ionic membrane resistance. Parallel combination of capacity C1 and resistor R2 corresponds to 

the behaviour of the double layer membrane-mercury electrode. The element C1 is the capacity 

at the charge transfer between the membrane and the mercury electrode, element R2 represents 

the electrical resistance at the charge transfer between the membrane and the mercury electrode. 

 

Figure 37. Equivalent circuit for the impedance measurement. 

 

Table 9 shows the values obtained using the corresponding fit for the N115 and composites. 

For membranes NF24, NF242 and NF243 ionic resistance R1 is lower than for N115 and 

significantly increases with loading of PFA. All the composite membranes show orders of 



71 
 

magnitude higher ion-exchange capacity C1 than N115. This is due to the hydrophobic property 

of PFA [23]. The ideal capacitance behaviour would result the vertical linear line in the Z' vs. 

Z'' diagram. However, it is generally known that the capacity for solid electrodes deviate from 

ideal behaviour in the form of the frequency dependence of the phase angle. This capacitance 

dispersion is a consequence of anomalies on the electrode surface [22].  

In Figure 38, we can see comparison of the real measurements for NF24 and graph obtained 

using the corresponding fit. 

 

Figure 38. Fit results for NF24, a) impedance, b) loss angle. 

Composite NF24 showed the best electrical properties, highest ionic conductivity and 

lowest ionic resistance from all measured modified membranes. Ion-exchange capacity is orders 

of magnitude higher than for N115. Therefore, NF24 may be considered as the best composite 

membrane for PEM fuel cell, though it may need further modification for use at temperatures 

above 80C. 
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4.2. PVA/SiO2 and PVA/SiO2/GA membranes 

Membranes with different contents of silica and GA were characterized by Raman 

spectroscopy, small- and wide angle X-ray scattering (SAXS/WAXS), atomic force microscopy 

(AFM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic 

mechanical analysis (DMA), and water uptake experiments. The effect of silica and GA 

incorporation on the properties and morphology of the nanocomposite membranes was 

systematically investigated. 

 

4.2.1. Raman spectroscopy 

The Raman spectra of the pure PVA, PVA/SiO2, and PVA/SiO2/GA membranes were 

measured and the assignment of the major Raman bands is summarized in Table 10. In the pure 

PVA membrane spectrum (Figure 39), strong characteristic bands were observed at 856, 919, 

1147, and 1442 cm-1. The bands at 856 and 919 cm-1 are due to the C–C stretching of the PVA 

polymer backbone. The band at 919 cm-1 corresponds to the amorphous phase (non-crystalline 

conformation of the PVA carbon backbone), while the band at 856 cm-1 is independent of the 

crystallinity [24] and was therefore used for intensity normalization, as mentioned in the 

experimental section. The bands at 1365 and 1442 cm-1 result from the C–H and O–H bending 

vibrations and the bands at 1147 and 1124 cm-1 correspond to the C–C and C–O stretching in 

the crystalline and the amorphous phase of the PVA matrix, respectively.  

 

Table 10. Assignment of Raman bands for PVA, PVA/SiO2, and PVA/SiO2/GA 

membranes 
Frequency (cm-1) Assignment 

856 C–C stretching [25, 27, 28] 

919 C–C stretching [24, 25, 27, 28]; increase in the intensity can be related to the 

decrease of the crystallinity, i.e., represents non-crystalline conformation of the 

PVA carbon backbone 

980 Si–OH stretch [26, 26] 

1071 C–O stretching, O–H bending [24, 25] 

1093 C–O stretching, O–H bending [24, 25, 27] 

1124 very weak in this spectrum; C–O and C–C stretching [25]; C–O–C stretching in 

the cross-linked network [24]; indicative of the amorphous phase [24, 25] 

1147 C–O and C–C stretching [24, 25, 27]; indicative of the crystalline phase [24, 25, 

28] 

1365 C–H and O–H bending [24, 25, 28] 

1442 C–H and O–H bending [24, 25, 27, 28] 
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Figure 39. Raman spectrum of pure PVA. 

 

The spectra of the pure PVA, 5PVA_2TEOS, and 5PVA_4TEOS membranes are compared 

in Figure 40. It is clearly visible that the incorporation of silica reduced the crystallinity of the 

membranes. The ‘‘crystalline’’ band at 1147 cm-1 decreased and the ‘‘amorphous’’ band at 

1118 cm-1 increased with the increasing silica loading. The intensity ratio of the bands at 916 

and 856 cm-1 increased with the increasing SiO2 content, also indicating a decrease of the 

crystallinity. A new feature in the spectrum is the weak scattering band at 980 cm-1 

corresponding to Si–OH vibrations [25, 26]. A significant shoulder appears around 1337 cm-1 

for 5PVA_2TEOS and then forms a second maximum for 5PVA_4TEOS. The same trend was 

observed by Martinelli et al. [24] for PVA membranes with various contents of GA and silica. 

The band at 1094 cm-1 completely disappeared upon the addition of TEOS. Since this band is 

related to O–H vibrations, this could be evidence that the OH groups in PVA reacted with 

TEOS. The small band that would represent unreacted OH groups is probably overlapped by 

the neighbouring strong and broad band at 1118 cm-1.  

The spectra of samples 5PVA_1TEOS_1GA, 5PVA_1TEOS_2GA, and 

5PVA_1TEOS_4GA are compared with that of pure PVA in Figure 41. The intensity of the 

band at 1147 cm-1 decreased with the increasing GA content and, simultaneously, a slight 

increase in the 1118 cm-1 band intensity was observed, clearly indicating a decrease of the 

membrane crystallinity. However, the decrease of the crystallinity was gradual in the case of 

PVA/SiO2/GA membranes, in contrast with the PVA/SiO2 samples.  

The addition of GA resulted in the emergence of several new bands, especially at the 

highest GA content (sample 5PVA_1TEOS_4GA). These bands were at 1710, 1676, 1638, 

1256, 1201, and 804 cm-1, respectively, and can be attributed to various vibrations in pure GA 

[24].  Martinelli et al. [24] measured the Raman spectra of PVA crosslinked by various amounts 

of GA and suggested that only a limited amount of GA was incorporated into the PVA network. 

We would therefore suggest that the observed bands originate from GA molecules that did not 
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fully incorporate into the cross-linked network. This is supported by the fact that the intensity 

of these bands increased with the increasing GA content, in agreement with [24]. Furthermore, 

several of these bands (1710, 1256, 1201, and 804 cm-1) were not observed at the lowest GA 

content (5PVA_1TEOS_1GA), supporting the assumption that a small amount of GA 

incorporates into the membrane. The band at 1369 cm-1 broadens to lower wavenumbers, 

although this effect is less notable for PVA/SiO2/GA than for the corresponding PVA/SiO2 

membranes, probably indicating a lower incorporation of silica into the membrane structure 

when GA is present. This assumption was confirmed by SAXS. 

 

Figure 40. Comparison of Raman spectra of PVA and PVA/SiO2. 

 

 

Figure 41. Comparison of Raman spectra of PVA and PVA/SiO2/GA membranes. 

 

4.2.2. Small- and wide-angle X-ray scattering 

Figures 42-44 show the SAXS profiles of the PVA/SiO2, PVA/SiO2/GA, and PVA/GA 

samples, respectively. The profile of pure PVA is shown in all cases for comparison. The 
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profiles are expressed as dependencies of the scattering intensity on the scattering vector 

magnitude q on a log–log scale. The corresponding WAXS profiles are shown in Figures 45-

47 and expressed as dependencies of the scattering/diffraction intensity on the 2θ angle.  

The WAXS profile of the pure PVA membrane shows several crystalline peaks that could 

be well assigned to crystallographic planes of the monoclinic PVA system [29, 30]. The 

crystalline peaks are superimposed on a broad amorphous halo corresponding to the amorphous 

phase. Thus, the WAXS profile verified the semi-crystalline nature of the pure PVA membrane.  

The nanometer-scale structure can be estimated from the SAXS profile. The peak in the 

SAXS profile of the pure PVA membrane at q of approximately 0.6 nm-1 is an evidence for the 

nanophase separation of the material, i.e., mixed crystalline and amorphous regions with 

dimensions in the range of nanometers, in accordance with the literature [31]. The 

corresponding approximate d-spacing calculated from the position of the peak maximum is: 

max2 / 2 / 0.7 9d q nm    . The pronounced peak shows that the structure is well ordered 

with a relatively narrow distribution of both the size of the crystallites and their spacing. If we 

assume small crystallites randomly distributed in an amorphous polymer matrix [31], their size 

and average distance can be estimated from the SAXS profile. For this purpose, we utilized the 

Irena software package for small-angle scattering analysis [32]. If the crystallites are assumed 

to be spherical, the SAXS profile fitting provides an average diameter of about 6 nm with an 

average d-spacing of about 8 nm.  

 

Figure 42. SAXS profiles of  PVA/SiO2 membranes. 
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Figure 43. SAXS profiles of PVA/SiO2/GA membranes. 

 

 

Figure 44. SAXS profiles of PVA/GA membranes. 

 

With the increasing silica (TEOS) loading, the crystalline peaks decrease in intensity or 

vanish (Figure 45), indicating a decrease in the crystallinity of the membranes. For 

5PVA_3TEOS and 5PVA_4TEOS, all peaks corresponding to crystalline PVA virtually 

vanished. This observation correlates very well with the results of Raman spectroscopy. The 

SAXS profiles of the PVA/SiO2 samples provide further information. First, the fact that the 

peak of PVA did not vanish indicates that there still exists phase separation on the nanometer 

scale with similar dimensions as in the pure PVA structure. However, we can hardly talk about 
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semi-crystalline structure because, as discussed above, the crystallinity of the PVA/SiO2 

membranes decreased or virtually vanished with the increasing silica loading. With the 

increasing SiO2 loading, the peak of PVA becomes broader and shifts to lower values of q, 

which indicates that the structure is less ordered than that of the pure PVA membrane, 

presumably with a wider distribution of the particle sizes. The shift of the peak position to lower 

values of q does not necessarily mean that the average d-spacing grows, but it can also be caused 

just by the less sharp structure factor profile due to the less ordered structure. The new broad 

shoulder at higher scattering vectors, which is not present in pure PVA, indicates the presence 

of fine nanoparticles/nanostructures (with dimensions down to about 1 nm), which must be 

silica or silica-containing particles/structures distributed in the polymer matrix. The above 

observations are clear evidence that silica is extensively incorporated into the PVA structure. 

Furthermore, a successful formation of organic–inorganic composites of PVA and silica was 

already reported and studied by SAXS and FTIR in [33], where the same reaction of PVA with 

TEOS was used for the composite preparation.  

Figure 46 shows the WAXS profiles of the PVA/SiO2/GA samples. It can be seen that 

when TEOS and GA are added, the intensity of the crystalline peaks decreases, as in the 

previous case. However, the influence of increasing the GA concentration on the crystallinity 

is not that strong as in the case of TEOS, in a good agreement with the results of Raman 

spectroscopy. Figure 43 shows the SAXS profiles of the PVA/SiO2/GA membranes. In this 

case, the situation is completely different compared to the PVA/SiO2 membranes. The peak 

corresponding to the PVA crystallites does not shift, which means that their size is preserved. 

No significant shoulder at higher scattering vector q is present, which means that silica does not 

incorporate into the polymer in the form of fine nanoparticles. The steep rise of the scattering 

intensity towards low q originates from the presence of bigger particles (at least 25 nm). Such 

particles did not form in the PVA/SiO2 membranes. Thus, in the case of PVA/SiO2/GA 

membranes, silica prefers to form bigger particles, presumably together with GA. This 

correlates very well with the TGA results, which showed that the PVA/SiO2/GA membranes 

are less stable than the PVA/SiO2 membranes and that their thermal stability did not even 

increase in comparison with the pure PVA membranes. These findings correspond very well 

with the AFM results, which showed the presence of such big particles in the PVA/SiO2/GA 

samples, whereas the morphology of PVA/SiO2 was similar to that of pure PVA.  

Figures 44 and 47 show the SAXS and WAXS profiles of the PVA/GA samples, which 

were additionally prepared for selected supplementary analyses. It can be observed from the 

SAXS profiles that the addition of GA leads to a gradual decrease of the peak corresponding to 
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the nanocrystallites. In the case of 5PVA_3GA and 5PVA_4GA, the peak totally vanished. The 

WAXS profiles of the PVA/GA samples (Figure 47) confirm the decrease in crystallinity with 

the increasing GA content. It can therefore be concluded that a sufficiently high concentration 

of GA prevents the formation of the fine semi-crystalline structure. This indicates that GA 

effectively reacts with the hydroxyl groups of PVA and cross-links the PVA chains when the 

GA concentration is sufficiently high. The GA side chains and cross-links then prevent the 

formation of the nanocrystallites, which form in pure PVA. This is a different situation 

compared with the PVA/SiO2/GA samples, where the SAXS peak did not vanish even at the 

highest GA concentration (only its intensity was reduced). Simultaneously, the crystallinity 

determined by WAXS did not decrease that intensely as in the case of the corresponding 

PVA/GA samples. These observations further support the conclusion that GA preferably reacts 

with TEOS (silica) and not with PVA. Therefore, it can be concluded that GA is not a suitable 

cross-linking agent of PVA in the presence of TEOS and that the cross-linking is significantly 

more effective when TEOS is not present.  

The steep rise of the SAXS profiles (Figure 44) towards low q values indicates the 

formation of bigger domains (at least 25 nm) in the PVA/GA membranes (same as in the case 

of the PVA/SiO2/GA samples). These domains are formed either by unreacted free GA or some 

ordered structures on larger scale due to the effective GA crosslinking. 

 

 

Figure 45. WAXS profiles of PVA/SiO2 membranes. 
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Figure 46. WAXS profiles of PVA/SiO2/GA membranes. 

 

 

Figure 47. WAXS profiles of PVA/GA membranes. 

 

4.2.3. Atomic force microscopy 

The morphology of the pure PVA membrane and the composite 5PVA_4TEOS and 

5PVA_1TEOS_3GA membranes was studied by AFM and is presented in Figures 48, 49 and 

50. The surface of pure PVA on the microscale is finely homogeneous, as seen in Figure 48a. 

The closely packed semicrystalline PVA structure is shown in Figure 48b on a finer scale, 

although the fine nanometer structure is beyond the resolution capabilities of the instrument 

due to the size of the AFM tip which is at least 10 nm.  
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Figure 48. AFM topological images of 5PVA membrane on a) micron and b) submicron scale. 

 

 

At the microscale, the 5PVA_4TEOS membrane showed a homogeneous morphology 

(Figure 49a), which is very similar to that of the pure PVA membrane (Figure 48a). At the finer 

scale, the morphology of the composite membrane (Figure 49b) showed to be smoother than 

that of the pure PVA membrane (Figure 48b). This can also be clearly observed by comparing 

the z-axis of the AFM images in Figures 48 and 49. The given conclusions are in a very good 

agreement with the SAXS analysis, which showed the presence of fine nanometric particles in 

the PVA/SiO2 composite membranes and no formation of bigger particles.  

 

 

Figure 49. AFM topological images of 5PVA_4TEOS membrane on a) micron and b) submicron scale. 

 

On the other hand, the surface of the PVA/SiO2/3GA sample showed large domains with a 

relatively broad size distribution (from tens to hundreds of nanometers), see Figure 50. This 

confirms the presence of large particles, which were also observed by SAXS for all 

PVA/SiO2/GA samples. These particles are formed by GA and silica that did not get 

incorporated into the polymer. 
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Figure 50. AFM topological images of 5PVA_1TEOS_3GA membrane on a) micron and b) submicron scale. 

 

4.2.4. Water uptake 

Figure 51 shows the effect of temperature on the water uptake properties of the PVA/SiO2 

membranes. Recently, Xie et al. [34] reported a significant decrease in the water uptake of 

PVA/MA/TEOS hybrid membranes from 154 to 43% when the temperature was raised from 

21 to 100°C. However, our PVA/SiO2 membranes have shown a gradual increase in Wu with 

the increasing temperature, as shown in Figure 51. The Wu values ranged from 16–20% at 30°C 

to 60–117% at 90°C. For example, 5PVA_3TEOS showed an increase of the water uptake from 

18 to 117% when the membrane was heated from 30 to 90°C. The PVA/SiO2 membranes show 

a good balance between the hydrophilicity and the thermal stability, as will be demonstrated in 

the TGA section. On the other hand, the PVA/SiO2/GA membranes were completely dissolved 

when the temperature was raised above 50°C (Figure 54). This corresponds well with the fact 

that the molecular structure of the PVA/SiO2/GA membranes is not effectively reinforced and 

that their thermal and mechanical stability is relatively poor. It was shown that the binding of 

PVA with TEOS and GA was not effective enough to form a stable structure, which caused an 

increase in hydrophilicity, but reduced the thermal stability. The excess hydrophilic nature of 

the PVA/SiO2/GA membranes resulted in the dissolution of the membranes at higher 

temperatures. 

Figure 52 shows the effect of time on the water uptake properties of the PVA/SiO2 

membranes. With increasing concentration of TEOS decrease the Wu of PVA/SiO2 membranes 

while increase the membrane resistance to water (Figure 56). 
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Figure 51. Water uptake properties of the PVA/SiO2 membranes. 

 

 

Figure 52. Water uptake of PVA/SiO2 membranes. 

 

Figure 53. PVA/GA membrane.     Figure 54. PVA/GA dissolved membrane. 
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Figure 55. PVA/SiO2 membranes.            Figure 56. PVA/SiO2 membranes after water uptake test. 

 

4.2.5. Thermal analysis 

The thermal degradation of pure PVA membranes showed two distinct steps in the TGA 

curve (Figure 57). The first step occurred between 200 and 330°C (with a sharp decrease around 

260°C) with a major weight loss of 69%. The second step followed between 330 and 520°C 

with a weight loss of ~15 %. Previous studies have shown that the decomposition of PVA begins 

with chain ‘‘stripping’’, i.e., the elimination of water accompanied by the formation of polyene 

structures, as shown in Figure 18. At higher temperatures (350°C), these polyene structures are 

further converted to low-molecular weight aliphatic products [35–37].  

 

Figure 57. TGA and DTG curves of pure PVA membrane. 
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The presence of silica in the PVA matrix improved the thermal stability of the PVA/SiO2 

membranes (Figure 58). Furthermore, the distinct two-step degradation pattern of pure PVA 

did not occur in this case. Instead, a slow and gradual degradation pattern was observed for the 

PVA/SiO2 membranes, which was due to their less ordered, predominantly amorphous 

structure. Although it is difficult to define a clear initial decomposition temperature from the 

TGA curves due to the continuous weight loss, it was still possible to distinguish two weight 

loss stages. The first stage occurred in the temperature range from 50 to about 450°C with the 

maximum weight loss of ~70% observed for 5PVA_1TEOS and the minimum weight loss of 

~35% for 5PVA_4TEOS. For the 2TEOS, 3TEOS, and 4TEOS samples, the first stage 

continuously passed into the second stage corresponding to the chain degradation. The char 

yield values of the PVA/SiO2 membranes increased with the increasing silica loading, with the 

maximum char yield of 46% observed for the 5PVA_4TEOS membrane.  

 

Figure 58. TGA thermograms of PVA/SiO2 membranes. 

 

The earlier onset of the weight loss of samples 5PVA_2TEOS, 3TEOS, and 4TEOS in 

comparison with pure PVA suggests that the chain stripping process starts at a lower 

temperature, which means that at the beginning, water can cleave off more easily from the 

polymer chains in these samples than in the case of pure PVA. This was ascribed to the lower 

crystallinity going hand in hand with a disturbed regularity of hydrogen bonding in contrast 

with the regular hydrogen bonding between the PVA chains in the crystallites of pure PVA. 

The lower crystallinity is caused by the incorporation of small silica nanoparticles which are 

homogenously distributed throughout the PVA matrix, as discussed above in the SAXS/WAXS 

and AFM sections. However, further thermal degradation is slowed down due to the strong 
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chemical bonding between the silica nanoparticles with a high surface area and PVA via its OH 

groups (Scheme 2). Some reports also suggested the migration of silica nanoparticles to the 

surface to form SiO2/PVA char, which acts as a heating barrier and protects the PVA matrix 

inside [38, 39]. On the basis of the TGA analyses, it can thus be concluded that the nanoscale 

deposition of thermally stable silica has effectively enhanced the overall thermal stability of the 

PVA/SiO2 membranes.  

The difference in the degradation processes of the PVA and PVA/SiO2 membranes was 

clearly seen in derivative thermogravimetric (DTG) curves (Figure 59). There are two obvious 

degradation peaks of pure PVA, one sharp peak at 268°C and a broad peak above 350°C. The 

significant change in the shape of the degradation peaks of the PVA/SiO2 membranes was 

evident. The main degradation peak of PVA (at 268°C) was not observed for the PVA/SiO2 

membranes, whereas two minor peaks with lower intensities were observed at ~150 and 

~450°C. In the PVA/SiO2 membranes, the elimination reaction spans over a wide temperature 

range and starts sooner, as discussed above. The first peak obviously corresponds to the fast 

onset of the elimination reactions in the PVA/SiO2 membranes. However, the second peak, 

corresponding to the second degradation stage, shifted to higher temperatures with respect to 

pure PVA, exhibiting enhancement in the thermal stability. During this stage, the elimination 

reactions are accompanied by several chain-scission reactions, cyclization, and side reactions. 

Peng and Kong [38] identified the degradation products as low-molecular weight polyenes, 

acetaldehyde, benzenoid derivatives, furan, acetone, and acetic acid. It can be observed that the 

second peak is superimposed on a background originating from the first degradation stage. The 

overlap of the two stages can be better observed from the integral dependencies (TGA).  

 

Figure 59. DTG curves of pure PVA/SiO2 membranes. 
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The degradation behaviour of the PVA/SiO2/GA membranes was similar to that of the pure 

PVA membranes (Figures 60, 61). In other words, the incorporation of GA only had a small 

influence on the membrane thermal stability. The membranes exhibited a weight loss of about 

70% in the first stage (50–350°C), with a further loss of 25% in the second stage as shown in 

Figure 60. In this case, GA and TEOS did not bind effectively with the PVA network, which 

lead to the formation of bigger particles (confirmed by SAXS and AFM) instead of the small 

nanoparticles formed in the PVA/SiO2 samples. Therefore, the thermal stability did not increase 

upon silica addition, contrary to the PVA/SiO2 membranes.  

The only significant change in the TGA curves of PVA/SiO2/GA compared to pure PVA 

was the broader first stage of the weight loss corresponding to the elimination reactions. This 

correlates very well with the decrease in crystallinity of the PVA/SiO2/GA membranes in 

comparison with pure PVA, which was proved by WAXS and Raman spectroscopy (see Figures 

41 and 46). However, the first weight loss stage of PVA/SiO2/GA is not that broad as in the 

case of PVA/SiO2, which reflects the fact that the crystallinity of the PVA/SiO2 membranes is 

lower than that of the corresponding PVA/SiO2/GA membranes (compare the WAXS spectra 

in Figures 45-47 and the Raman spectra in Figures 40, 41). Thus, the width of the temperature 

range of the first decomposition stage reflects very well the crystallinity of the samples: the 

most crystalline PVA showed the fastest decomposition, followed by the less ordered 

PVA/SiO2/GA samples with a slower decomposition, and finally by the most amorphous 

PVA/SiO2 samples.  

 

Figure 60. TGA thermograms of a PVA/SiO2/GA membranes. 
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Figure 61. DTG curves of pure PVA/SiO2/GA membranes. 

 

DSC profiles of PVA and PVA/SiO2 are shown in Figure 62. PVA exhibited a clear melting 

transition (Tm) at 223°C, whereas Tm of the PVA/SiO2 membranes ranged from 176 to 204°C, 

i.e., were lower than that of the pure PVA membrane. The melting peaks of the PVA/SiO2 

membranes decreased in intensity and shifted to lower temperatures with increasing silica 

loading. This decline is clearly seen for 5PVA_1TEOS, but as the silica loading increases, the 

endothermic melting peak becomes broader and totally vanishes for the 5PVA_3TEOS and 

5PVA_4TEOS membranes. Both the decrease of Tm and the broadening of the melting peak 

can be attributed to the reduced crystallinity due to the incorporated SiO2 nanoparticles. Bin et 

al. reported this kind of behaviour for PVA–VGCF and PVA–MWNT composites [40].  

The DSC profiles of the PVA/SiO2/GA membranes (Fig. 63) showed a similar melting 

transition as the pure PVA membrane with only a small decrease in Tm. This is in agreement 

with the smaller decrease in crystallinity compared to the PVA/SiO2 samples. The increase in 

GA concentration had a relatively small effect on the endothermic transition of the 

PVA/SiO2/GA membranes. This correlates well with the already discussed fact that the 

influence of GA concentration on the crystallinity of the PVA/SiO2/GA membranes is not that 

strong as in the case of the PVA/SiO2 membranes. 
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Figure 62. DSC scans of PVA/SiO2 membranes. 

 

 

Figure 63. DSC scans of PVA/SiO2/GA membranes. 

 

4.2.6. Dynamic mechanical analysis 

DMA analysis was performed to investigate the thermomechanical properties of the 

nanocomposite membranes. The temperature dependence of the storage modulus (E´) was 

measured in the range from 30 to 250°C. At higher temperatures (< 200°C), where the material 

enters the rubbery phase, the storage modulus is referred to as rubbery modulus, ER.  

In the case of PVA/SiO2 membranes, E´ increased with the increasing silica loading as 

shown in Figure 64. The membranes displayed a higher E0 in the initial stages from 30 to 70°C, 
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followed by a flat mid-region between 70 and 120°C. A subsequent increase in E´ was observed 

at higher temperatures (200°C) for the 5PVA_2TEOS, 3TEOS, and 4TEOS samples. The inset 

graph in Figure 64 shows a zoom of the plot for higher temperatures, i.e., the dependencies of 

rubbery modulus, ER versus temperature for the PVA/SiO2 membranes. Depending on the silica 

loading, ER values ranged from 17 to 1015 MPa at 250°C. 5PVA_4TEOS exhibited the highest 

ER value of 1015 MPa and 5PVA_1TEOS displayed the lowest ER of 17 MPa. The ER value of 

pure PVA was 6 MPa at 250°C. We can thus conclude that the silica loading clearly improved 

the mechanical strength of the membranes.  

On the other hand, the presence of GA has shown an adverse effect on the PVA/SiO2/GA 

membrane strength (Figure 65). The inset graph in Figure 65 shows a detail of the plot for 

higher temperatures. These membranes followed a reverse trend, i.e., the 5PVA_1TEOS_1GA 

membrane exhibited the highest ER of 28 MPa at 250°C and the other membranes showed a 

decrease of ER with the increasing GA concentration down to 15 MPa in the case of 

5PVA_1TEOS_4GA. This can be explained based on our previous conclusions. In the 

PVA/SiO2 membranes, the silica incorporates into the membrane structure in the form of small 

nanoparticles and binds with the PVA polymer, whereas in the presence of GA, larger separated 

particles of GA and silica were observed. The presence of these larger nanoparticles resulted in 

the inferior thermo-mechanical stability of these membranes. 

 

Figure 64. DMA curves of PVA/SiO2 membranes. 
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Figure 65. DMA curves of PVA/SiO2/GA membranes. 

 

4.3. PVA/SSA/SiO2 membranes 

Membranes with different contents of silica and SSA were characterized by FT-IR, 

rheometer ARES G2, thermogravimetric analysis (TGA), dynamic mechanical analysis 

(DMA), ion conductivity and water uptake experiments. The effect of silica and SSA 

incorporation on the properties and morphology of the nanocomposite membranes was 

systematically investigated. 

 

4.3.1. FT-IR 

Figure 66 shows the FT-IR spectra of the 5PVA and 5PVA_0.5SSA_5TEOS membranes. 

It was reported that the absorption band of ester (–COO–) appeared at 1730–1735 cm−1. This 

results indicate the spectral changes are an evidence of a crosslinking by the esterification 

between –OH in PVA and –COOH in SSA. The absorption band at 2369 cm-1 indicate the 

presence of sulfonic acid group, which is formed by the introduction of SSA [41]. The band at 

approximately 1040 cm-1 is assigned to stretching vibrations of Si–O–Si. The absorption band, 

at 900 cm-1 can be attributed to the stretching vibration of Si–OH or Si–O– groups. A broad 

absorption band, situated between 3,000 and 3,600 cm-1, are assigned to O–H stretching and 

O–H bending vibrations, respectively [42].  
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Figure 66. FT-IR spectra of composite PVA membranes. 

 

4.3.2. Rheology 

The viscosity of the polymer solution plays a key role, which not only helps to fabricate 

membranes of specific thickness, but also prevents the formation of pinholes and membrane 

delamination. Therefore, the understanding of the rheological properties of casting solutions is 

important for preparing appropriate membranes for fuel cells. In this study we have prepared 

conducting membranes based on PVA, TEOS and SSA at various stoichiometric ratios and 

investigated the rheological properties. 

The viscosity of the pure PVA solution changed after the incorporation of SSA (Figure 67). 

At low SSA content, the viscosity was initially increased due to the interaction between the acid 

groups of SSA and PVA. However, the viscosity was reduced slightly when the SSA loading 

percentage exceeded 0.5 wt%. The slight reduction in our observed viscosity can be explained 

by the limited dispersion behaviour of SSA in the PVA matrix. Agglomeration of particles 

resulted in the reduced surface area between the SSA and PVA, and caused the decrease in 

viscosity. The similar situation described Chien et al. [43]. 
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Figure 67. Rheological spectra of pure PVA solution and different SSA loadings of PVA/SSA solutions. 

 

4.3.3. TGA 

Figure 68 shows thermogarm of composite PVA_TEOS membranes. Thermal stability 

increase with increasing content of SiO2, which means higher crosslinking extents for the 

composite membrane 1TEOS, 2TEOS, 5TEOS and for 10TEOS, respectively. 

Figure 69 shows thermogram of composite PVA_SSA membranes. At temperature around 

300°C, the highest thermal stability was seen for 5PVA_0.5SSA membrane. This results 

correspond with rheological properties of PVA_SSA solutions (Figure 67) and show the 

maximum dispersion of SSA in the PVA matrix for SSA loading 0.5 wt%.  

Thermal properties of mixed composite PVA_SSA_TEOS membranes are shows in Figure 

70. The increase in thermal properties was seen for membranes with 0.5 wt% of SSA and with 

1 or 2.5 wt% of TEOS.  

The comparison of all tipes of composites can be see in Figure 71. Combination of SSA 

and SiO2 crosslinking components into PVA matrix shows good thermal properties of prepared 

membranes.  
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Figure 68. TG thermograms of composite PVA_TEOS membranes. 

 

Figure 69. TG thermograms of composite PVA_SSA membranes. 

 

Figure 70. TG thermograms of composite PVA_SSA_TEOS membranes. 

 

Figure 71. TG thermograms of composite PVA_SSA_TEOS membranes. 

 

 

 



94 
 

4.3.4. DMA 

 

DMA analysis shows dependence of the storage modulus (E´) on temperature. For 

membranes crosslinking with SiO2, ER increased with the increasing silica loading as shown in 

Figure 72. The membranes displayed a higher ER in the initial stages from 30 to 70°C, followed 

by a flat mid-region between 70 and 100°C. 

In the case of PVA_SSA membranes, E´ decreased with the increasing SSA loading as 

shown in Figure 73, except membrane 5PVA_0.5SSA, which due to the maximum crosslinking, 

shows higher value of E´. The decrease of ER with increasing temperature is similar as for 

PVA_TEOS membranes. 

Mixed PVA_SSA_TEOS membranes show very low value of E´ compared to pure PVA 

and PVA_TEOS membranes (Figure 74). 

 

 

Figure 72. DMA of composite PVA_TEOS membranes. 

 

Figure 73. DMA of composite PVA_SSA membranes. 
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Figure 74. DMA of composite PVA_TEOS membranes. 

 

4.3.5. Water uptake 

The Wu was calculated using the equation 1. Figure 75 shows the decreasing ability of 

PVA composite membranes to absorb water depending on increasing SiO2 content in the 

membrane matrix. Thanks to SiO2 crosslinking, the membrane loses its ability to absorb water, 

and also increases the resistance of membranes to the aquatic environment. The pure PVA 

membrane is dissolved in water within minutes, while the composite PVA_SiO2 membranes 

are water insoluble. 

 

 

Figure 75. Water uptake of composite PVA_TEOS membranes. 
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Figure 76. Water uptake of composite PVA_SSA membranes. 

 

 

Figure 77. Water uptake of composite PVA_SSA_TEOS membranes. 

 

4.3.6. Ion conductivity 

The ionic conductivities of membranes have been determined. In case of dry composites 

the conductivity significantly increased with SSA loading (Fifure 78). Nevertheless, dry 

composites exhibit very low ionic conductivity compared with Nafion 212 membranes (Table 

11).  

After wetting of the membranes (immersion in water for 10 seconds) the ion conductivity 

has increased significantly (Figure 79).  
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Table 11. Ion conductivity of PVA composite membranes. 

Membranes 
Ion conductivity (mS·cm-1) 

Dry Wet 

5PVA 0,0060 0,4000 

5PVA_0.5SSA 0,0030 1,9600 

5PVA_1SSA 0,0645 10,0141 

5PVA_2SSA 0,1040 96,8667 

5PVA_5SSA 2,1838 90,4289 

5PVA_10SSA 1,6187 38,4652 

5PVA_1TEOS 0,0369 0,1090 

5PVA_2TEOS 0,0762 0,2690 

5PVA_5TEOS 0,0333 0,0178 

5PVA_10TEOS 0,1320 0,1530 

5PVA_0.5SSA_1TEOS 0,0120 1,8734 

5PVA_0.5SSA_2.5TEOS 0,0110 0,0327 

5PVA_3SSA_5TEOS 0,6207 6,2067 

5PVA_5SSA_5TEOS 3,2939 32,9390 

5PVA_10SSA_5TEOS 10,9046 26,8886 

Nafion 212 3,4300 4,7100 

 

 

Figure 78. Ion conductivity of composite dry PVA_SSA membranes. 

 

 

Figure 79. Ion conductivity of composite wet PVA_SSA membranes. 
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For PVA_TEOS membranes the increase of ion conductivity after wetting is insignificant 

(Figure 80).  

 

Figure 80. Ion conductivity of composite PVA_TEOS membranes. 

 

Because PVA_SSA membranes aren´t stable in water, the combination of SSA and TEOS 

seems to be ideal for preparation of composite PVA membranes. Swelling PVA_SSA_TEOS 

membranes exhibit comparable (or higher) ion conductivity with Nafion 212 (Figure 81), 

(Table 11). 

 

Figure 81. Ion conductivity of composite PVA_SSA_TEOS membranes and Nafion 212. 

 

0,00

0,05

0,10

0,15

0,20

0,25

0,30
Io

n
 C

o
n

d
u

ct
iv

it
y 

(m
S·

cm
-1

)

0

5

10

15

20

25

30

35

Io
n

 C
o

n
d

u
ct

iv
it

y 
(m

S·
cm

-1
)



99 
 

4.4. Summary 

We successfully prepared Nafion-PFA composite membranes using in situ acid-catalyzed 

polymerization method. The influence of the PFA content on the water uptake, water vapour 

uptake, ionic conductivity, thermal and mechanical stability was investigated. The 

impregnation of PFA changed the physicochemical properties of composites, owing to the 

interaction with the Nafion. Consequently, the membranes with high PFA loading exhibited 

better thermal and mechanical properties. Whereas, membranes with a small amount PFA 

loading have shown better electrical and water uptake properties. Particularly, NF24 exhibited 

the best performance in terms of water vapour uptake, conductivity and thermo-mechanical 

stability from all modified membranes and pure Nafion 115, respectively. 

We successfully prepared PVA-based nanocomposite membranes with various silica and 

GA loading (PVA_SiO2 and PVA_SiO2_GA) via the solution casting method. Membranes with 

and without GA displayed considerably different characteristic features. SAXS/WAXS, AFM 

and Raman spectroscopy confirmed the incorporation of fine silica nanoparticles (~1 nm) into 

the PVA_SiO2 membranes. These membranes showed a significant improvement in the water 

uptake, thermal stability, and mechanical strength compared to the pure PVA and 

PVA_SiO2_GA membranes. The 5PVA_3TEOS membrane with high silica loading exhibited 

the best thermo-mechanical stability with ER of 1015 MPa (at 250°C, DMA). In the case of 

PVA_SiO2_GA membranes, GA preferably reacted with TEOS forming submicron particles 

(~25 nm) contrary to PVA_SiO2 membranes, which reduced the thermal stability of these 

membranes. The comparison of structural and thermo-mechanical characteristics of the 

PVA_SiO2 and PVA_SiO2_GA membranes indicates that the homogeneous incorporation of 

small silica nanoparticles (~1 nm) played a crucial role in improving the properties of the 

PVA_SiO2 membranes. These membranes are both hydrophilic and thermally stable, which are 

important criteria for the application of PVA-based membranes. Furthermore, they are 

produced without any cross-linking agent such as GA, which makes the process simpler and 

cost-effective. 

Studies of PVA_SSA membranes show increase of ion conductivity of composites due to 

incorporation of SSA particles to PVA matrix. Conductivity of wet membranes can be 

compared with commercially used Nafion membrane. Nafion is the world's most widely used 

membrane for fuel cells. The best thermo-mechanical properties exhibits 5PVA_0.5SSA 

membrane. However, the stability of PVA_SSA membranes in water isn’t high. The 

combination of SSA and SiO2 crosslinking agents shows as suitable solution for preparation of 
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new composite membranes for fuel cells. The results of this study can be useful for further 

research of PVA based composite  membranes.  
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5. Conclusion 
 

The main objectives of the dissertation were the questionnaire survey of selected students 

of the University of West Bohemia in Pilsen focusing on knowledge of renewable energy 

sources, especially fuel cells, preparation of laboratory tasks for subject Physical practice that 

is taught at the Department of Mathematics, Physics and Technical Education, at the Faculty of 

Pedagogy and preparation of new composite proton exchange membranes suitable for use 

especially in fuel cells. 

For the accurate design of learning objects it is necessary to estimate the level of knowledge 

of students for whom the given learning object is intended. Whereas the college students come 

from different types of schools, the level of acquired knowledge may be significantly different. 

It is difficult for the teacher to find a suitable compromise, when the learning object is not too 

detailed or too superficial. For these and other reasons, a questionnaire survey was conducted 

to monitor the level of acquiring the basic concepts of renewable energies, such as fuel cells. 

The results of the questionnaire survey show that the overall level of acquisition of 

knowledge and phenomena associated with fuel cells is for university students quite 

satisfactory. Higher success has been achieved by students in technical study programs. For a 

more accurate interpretation of the measured data, it would be advisable to repeat the 

questionnaire survey on a larger group of students. 

Preparing of laboratory exercises which would be focused on renewable energy issues, can 

help students to get to know the issue better. One of the objectives of this work was the 

preparation of the laboratory exercise, which was focused on measuring of the rheological 

properties of solutions for the preparation of polymeric PVA membranes for fuel cells. Students 

performed measurements on the Ares G2 rheometer, which is located at the Department of 

Engineering of Special Materials at NTC in Pilsen. There are several other laboratory exercises 

and bachelor's or master's theses focused on fuel cell issues are carried out in the ISM. 

The aim of this work was also the preparation of new composite membranes for fuel cells. 

The developed membranes in some properties exceed the Nafion membranes, which represent 

a standard for properties of PEM. The obtained knowledge about the properties and 

characterization of polymer membranes can be helpful in creating others laboratory exercises 

for physical practice or in choosing topics of bachelor´s and master´s theses for students of 

natural sciences. 

Considering of the increasing up-to-date topic of renewable resources, it is necessary to 

include information about this issue in teaching, not only through laboratory exercises. 
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Appendix 1 – Questionnaire in Czech 

Věk:       Ročník:    

Fakulta:      Obor: 

______________________________________________________________________________________________ 

1. Jako palivo pro vznětový motor se používá: 

a) uhlí 

b) benzín 

c) nafta 

d) metanol 

 

 

2. Palivový článek: 

a) převádí elektrickou energii na chemickou 

b) využívá tuhá paliva 

c) převádí chemickou energii na elektrickou 

d) je druh perpetuum mobile 

 

 

3. PEMFC je označení pro: 

a) palivové články s alkalickým elektrolytem 

b) palivové články s kyselinou fosforečnou 

c) palivové články s polymerní membránou 

d) palivové články s tuhými oxidy 

 

 

4. Uveďte palivo, které se využívá v palivových článcích: 

 

__________________________________________ 

 

 

5. Polyvinylalkohol má strukturní vzorec: 

a)  b)   c)  d)  

 

6. Nafion je membrána vyráběná na základě: 

e) polyvinylalkoholu 

f) polysulfonu 

g) kyseliny chlorovodíkové 

h) polytetrafluorethylenu 
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7. Palivový článek není tvořen: 

e) anodou 

f) katodou 

g) membránou či elektrolytem 

h) zapalovací svíčkou 

 

8. Palivový článek není tvořen: 

i) anodou 

j) katodou 

k) membránou či elektrolytem 

l) zapalovací svíčkou 

 

 

9. Funkcí membrány ve vodíkovém palivovém článku je: 

e) propouštět protony 

f) propouštět elektrony 

g) propouštět plyn 

h) nepropouštět protony 

 

 

10. Teflon je zkratka pro: 

e) polyvinylalkohol 

f) polytetrafluorethylen 

g) polyethylentereftalát 

h) polyethylenglykol 

 

 

11. Reologie je věda, která se zabývá: 

e) magnetickými jevy 

f) elektrickými jevy 

g) chemickou reaktivitou látek 

h) zkoumáním a modelováním deformačních vlastností látek 

 

 

12. Termogravimetrie:  

e) zkoumá deformaci materiálu v závislosti na mechanickém namáhání 

f) zkoumá změnu hmotnosti v závislosti na tepelném namáhání 

g) zkoumá nasákavost materiálu 

h) zabývá se měřením teploty 
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Appendix 2 – Questionnaire in English 

Age:       Year of study:    

Faculty:      Field of study: 

___________________________________________________________________________________ 

1. As fuel for the diesel engine is used: 

e) coal 

f) gasoline 

g) diesel 

h) methanol 

 

 

2. Fuel cell: 

e) converts electrical energy to chemical 

f) use solid fuels 

g) converts chemical energy to electrical 

h) is a kind of perpetuum mobile 

 

 

3. PEMFC is stands for: 

e) fuel cells with alkaline electrolyte 

f) fuel cells with phosphoric acid 

g) fuel cells with polymeric membrane 

h) fuel cells with solid oxide 

 

 

4. Provide the fuel that is used in fuel cells: 

 

__________________________________________ 

 

 

5. Polyvinylalcohol has the structural formula: 

a)   b)   c)  d)  

 

6. Nafion is membrane produced on the basis of: 

i) polyvinylalcohol 

j) polysulfone 

k) hydrochloric acid 

l) polytetrafluorethylene 
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7. Polymerization is a chemical reaction in which: 

e) from polymers are formed monomers 

f) from small molecules formed high molecular substances 

g) from alcohol is formed acid 

h) is formed ester and water 

 

 

8. The fuel cell is not formed by: 

m) anode 

n) cathode 

o) membrane or electrolyte 

p) spark plug 

 

 

9. Functions of the membrane in a hydrogen fuel cell is: 

i) transmit protons 

j) transmit electrons 

k) transmit gas 

l) not transmit protons 

 

 

10. Teflon is stands for: 

i) polyvinylalcohol 

j) polytetrafluorethylene 

k) polyethylenterephthalate 

l) polyethylenglycol 

 

 

11. Rheology is the science that deals: 

i) magnetic phenomena 

j) electrical phenomena 

k) the chemical reactivity of substances 

l) investigation and modelling of deformation properties of substances 

 

 

12. Thermogravimetry:  

i) examine the deformation of the material in dependence on the mechanical stress 

j) examine the weight change according to the thermal changes 

k) examine the water absorption of material 

l) deal with measuring of temperature 
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Appendix 3 – Manual in Czech 

Měření reologických vlastností roztoků pro přípravu modifikovaných 

poly(vinyl alkohol) (PVA) kompozitních membrán pomocí rotačního 

reometru ARES-G2. 

 

Teoretický úvod 

Hydrofilní PVA membrány jsou používány v mnoha aplikacích, v poslední době byly 

široce využívány také jako polymerní elektrolytické membrány (PEM) pro palivové články. Na 

vytvoření kvalitní membrány se podílí mnoho parametrů, jako jsou vlastnosti roztoku pro 

přípravu membrány litím, podmínky přípravy (teplota, relativní vlhkost, čas), reakční složky 

atd. Viskozita polymerního roztoku hraje klíčovou roli nejen při přípravě membrány specifické 

tloušťky, ale rovněž zabraňuje tvorbě bublin a praskání membrány. Porozumění reologickým 

vlastnostem polymerních roztoků je důležité pro přípravu membrán vhodných pro využití v 

palivových článcích [1]. 

 

Reologie zkoumá, jak se za působení mechanických vlivů mění a přetvářejí pevné látky 

nebo také, jak tečou a proudí kapaliny a plyny. Reologie je velice rozsáhlý obor, který zasahuje 

do celé řady jiných vědních disciplín (stavebnictví, strojírenství, hutnictví, sklářství, 

potravinářství, chemie, geologie, medicína, doprava, kosmetika, atd.) 

 

Kapaliny jsou látky, které se účinkem i malé vnější síly trvale deformují – tečou. 

Rychlost toku kapaliny je tím větší, čím větší je vnější síla a čím menší jsou vnitřní síly, které 

působí proti toku. Vnitřní síly (vnitřní tření) vznikají v kapalině jako důsledek tepelného pohybu 

a mezimolekulárních přitažlivých sil. Při malých rychlostech proudění (laminární proudění) se 

tok kapalin uskutečňuje jako smyková deformace, která charakterizuje změnu materiálu při 

smykovém (tečném) napětí. Při laminárním proudění reálné tekutiny vzniká v důsledku 

mezimolekulárních sil ve stykové ploše dvou vrstev pohybujících se různou rychlostí v tečné 

napětí τ, jímž se snaží rychlejší vrstva urychlovat vrstvu pomalejší a ta naopak zpomalovat 

vrstvu rychlejší. Podle Newtona je toto tečné napětí přímo úměrné gradientu rychlosti 

 
d𝑣

d𝑦
  

 

tj. přírůstku rychlosti dv mezi dvěma přiléhajícími vrstvami dělenému vzdáleností vrstev dy.  
Platí: 
 

𝜏 = 𝜂
d𝑣

d𝑦
 , 

 

kde konstanta úměrnosti η se nazývá dynamická viskozita. 

 

Dynamická viskozita je látkovou charakteristikou, jejíž hodnota závisí na teplotě a tlaku. U 

plynů s teplotou roste, u kapalin naopak klesá [2-3]. 

 

 

Úkolem reologie je experimentální stanovení funkční závislosti mezi tečným napětím a 

gradientem rychlosti pro daný vzorek kapaliny, tzn. závislosti zdánlivé viskozity na tečném 

napětí nebo gradientu rychlosti. 
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K měření viskozity se běžně používají průtokové, pádové a rotační reometry. 

 

U rotačních reometrů je vzorek podrobován smyku mezi dvěma definovanými 

plochami. Jedna plocha (rotor) se otáčí konstantní úhlovou rychlostí. Vnitřním třením kapaliny 

se otáčivý moment přenáší na druhou desku (převodník), kde se může měřit například stočení 

vlákna, na kterém je druhá deska zavěšena, nebo se otáčivý moment měří elektronicky. 

 

Mezi nejběžnější typy rotačních reometrů patří typ složený ze dvou souosých válců, 

mezi kterými je měřená kapalina, typ složený z desky a kužele nebo dvou rovnoběžných desek 

(Obrázek 1). 

 

Vztah mezi smykovým napětím  a momentem síly M je pro uspořádání kužel – deska 

s poloměrem podstavy kužele R dán rovnicí 
 

𝜏 =
3𝑀

2𝜋𝑅3
  

 

a pro gradient rychlosti platí 

 

𝐷 =
𝜔

𝛼
, 

 

kde α je úhel zkosení v radiánech odpovídající štěrbině mezi deskou a kuželem (Obrázek 2). 

 

Tokovou rovnici nenewtonských kapalin lze tedy tímto reometrem určovat přímo z naměřených 

závislostí momentu síly na úhlové rychlosti:   

 

𝜂 =
𝜏

𝐷
=

3𝑀∙𝛼

2𝜋∙𝑅∙𝜔3 = 𝐾
𝑀

𝜔
. 

 

 

 

 

 

 
Obrázek 1.  Typy geometrií [4].        Obrázek 2.  Geometrie kužel-deska [5]. 
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Měřicí metody 

 

K měření využijeme rotační reometr ARES-G2 od TA Instruments. Toto zařízení se 

skládá s rotoru, který pohybuje se vzorkem a převodníku, který sleduje odezvu vzorku na jeho 

namáhání. Pro měření reologických vlastností polymerních PVA roztoků použijeme geometrie 

deska-kužel o průměru patic d = 25 mm a úhlu zkosení α = 2,3°. Pro každý vzorek provedeme 

měření jako závislost napětí na smykové rychlosti v rozmezí od 0,1 do 100 s-1 a na úhlové 

rychlosti v rozmezí od 1 do 100 rad·s-1. 

 

 

Úkoly měření 

 

1) K manipulaci se vzorky, kolonou a dalším vybavením vždy používejte nitrilové 

rukavice. 

2) Za dozoru vyučujícího připevněte patice (deska a kužel) do geometrií. Pro dotažení 

použijte imbusový klíč příslušné velikosti. 

3) Zkontrolujte, zda je vypnutý rotor a vložte spodní geometrii (deska) a dotáhněte pomocí 

šroubu. 

4) Zkontrolujte, zda je převodník nastaven na vysoký rozsah (high) a opatrně vložte horní 

geometrii (kužel) a dotáhněte pomocí šroubu. 

5) Na spodní geometrii umístěte příslušné množství vzorku. 

6) Nastavte vzdálenost mezi geometriemi tak, aby vzorek vyplňoval souvisle celý prostor 

mezi paticemi.  

7) Nastavte experiment dle instrukcí vyučujícího. 

8) Vyhodnoťte obdržená data pomocí softwaru Trios. 

 

 

Diskuse 

 

Cílem měření je určit rozdíl viskozity u jednotlivých kompozitních PVA roztoků. Rozdíl 

mezi jejich viskozitami může přinést dodatečnou informaci o jejich vnitřní struktuře. PVA 

roztoky se modifikují různými látkami, aby výsledná membrána získala lepší vlastnosti. 

Zejména se jedná o větší mechanickou a tepelnou odolnost a lepší elektrické vlastnosti 

membrány [6].   

 

 

Tvorba záznamu měření 

 

Záznam měření musí obsahovat grafické zpracování výsledků. 

 

Do záznamu o měření zpracujte následující otázky: 

 

1) Uveďte, co se děje s viskozitou vzorku vlivem zvyšující se koncentrace přidané látky 

do PVA roztoku. 

2) Pomocí zdroje [6] diskutujte, jak se mění vnitřní struktura roztoku vlivem koncentrace 

přidané látky. 

3) Proč se pro měření polymerních roztoků používají geometrie deska-kužel. Jaké jiné 

typy geometrií by byly pro tyto roztoky vhodné? 

4) Diskutujte a odhadněte možné chyby měření. 
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5) Popište rozdíl mezi newtonskými a nenewtonskými kapalinami a uveďte alespoň čtyři 

příklady nenewtonských kapalin. 
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Appendix 4 – Manual in English 

Measurement of the rheological properties of solutions for the preparation 

of modified poly (vinyl alcohol) (PVA) composite membranes using a rotary 

rheometer ARES-G2. 

 

Introduction 

Hydrophilic PVA membranes are used in many applications, but lately they have been 

widely utilized as polymer electrolyte membrane (PEM) for fuel cells. In order to design a good 

membrane many parameters are involved, such as the properties of casting solution, preparation 

conditions (temperature, relative humidity and time), reactants etc. The viscosity of the polymer 

solution plays a key role, which not only helps to fabricate membranes of specific thickness, 

but also prevents the formation of pinholes and membrane delamination. Therefore, the 

understanding of the rheological properties of casting solutions is important for preparing 

appropriate membranes for fuel cells [1]. 

 

Rheology examines how the influence of mechanical stress changes and transforms 

solids or also how liquids and gases flow. Rheology is a very broad field that extends into many 

other disciplines (civil engineering, mechanical engineering, metallurgy, glass, food, chemistry, 

geology, medicine, transportation, cosmetics etc.) 

 

Liquids are substances which effect even a small external force permanently deformed 

- flow. The flow rate of the liquid is greater, the greater is the external force and the smaller are 

the internal forces that counteracts the flow. Internal forces (internal friction) are formed in the 

liquid as a result of thermal movement and intermolecular attractive forces. At low velocities 

of flow (laminar flow), the flow of fluid takes place as shear deformation, which characterizes 

the change of the material under shear (tangential) tension. At laminar flow of a real fluid is 

formed due to the intermolecular forces in the contact area of two layers moving at different 

speeds v the shear stress τ. According to Newton, the shear stress is directly proportional to the 

velocity gradient 

 
d𝑣

d𝑦
  

 

i.e. increase of speed dv between two layers divided by the distance dy. 

The following applies: 

 

𝜏 = 𝜂
d𝑣

d𝑦
 , 

 

where the proportionality constant η is called the dynamic viscosity. 

 

Dynamic viscosity is characteristic of the material, it depends on temperature and pressure. For 

gases with a temperature is increasing, the case of liquids is decreasing [2-3]. 

 

The task of rheology is the experimental determination of the functional dependence 

between the shear stress and velocity gradient for the liquid sample, ie. dependence of viscosity 

on shear stress or velocity gradient. 

The viscosity measurements are commonly used flow, falling and rotational rheometers. 
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For rotary rheometers sample is subjected to shear between two defined planes. One 

plate (rotor) rotating at constant angular velocity. Due to the internal friction of the fluid the 

torque transmitted to the second plate (transducer), where is torque measured electronically. 

 

The most common types of rotary rheometers include the type composed of two coaxial 

cylinders between them is measured liquid, the type composed of a plate and cone or two 

parallel plates (Figure 1). 

 

The relationship between shear stress  and torque M is for ordering cone - plate with a 

base radius of the cone R given by equation 

 

𝜏 =
3𝑀

2𝜋𝑅3
  

 

and for the velocity gradient applies 

 

𝐷 =
𝜔

𝛼
, 

 

where α is the skew angle in radians corresponding to slot between the plate and the cone 

(Figure 2). 

Flow equation non-Newtonian fluids is determined by rheometer directly from the 

measured dependence torque to angular velocity:   

 

𝜂 =
𝜏

𝐷
=

3𝑀∙𝛼

2𝜋∙𝑅∙𝜔3 = 𝐾
𝑀

𝜔
. 

 

 

 

 

 
Figure 1.  Geometry types [4].        Figure 2.  Cone and plate geometries [5]. 

 

 

Measurement methods 

 

For the measurement we use rotational rheometer ARES-G2 from TA Instruments. This 

device consists of a rotor which moves with the sample and transducer, which monitors the 

response of the sample to the stress. For measuring the rheological properties of polymer PVA 

solutions we use cone-plate geometry with a diameter d = 25 mm and a skew angle α = 2.3 °. 

For each sample, we perform the stress versus shear rate measurement in the range of 0.1 to 

100 s-1 and the stress versus angular velocity in the range from 1 to 100 rad · s-1. 
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Tasks 

 

1)    For manipulation with samples, column and other equipment always use nitrile gloves. 

2) For any supervision attach the plates (plate and cone) to geometries. For tightening use 

hexagon key of the appropriate size. 

3)  Make sure the rotor is turned off and insert the bottom geometry (plate) and tighten 

with the screw. 

4) Make sure that the converter is set to a high range (high) and carefully insert the upper 

geometry (cone) and tighten with the screw. 

5) Place on the bottom geometry the appropriate amount of sample. 

6) Set the distance between the geometries so that the sample continuously fills the entire 

space between the plates. 

7) Set the experiment according to the instructions of the teacher. 

8) Evaluate received data using software Trios. 

 

Discussion 

 

The aim of measurement is to determine the difference in viscosity of different PVA 

composite solutions. The difference between their viscosities can provide additional 

information about their internal structure. PVA solutions are modified with various substances 

to obtain membrane with better properties. Especially the higher mechanical and thermal 

stability and better electrical properties of the membranes [6].  

 

Creating measurement record 

 

The protocol of measurement must contain a graphics processing results. 

 

To the protocol process the following questions: 

 

1) Identify what is happening with the viscosity of the sample due to increasing 

concentrations of substances added to the PVA solution. 

2) Use literature [6] discuss how to change the internal structure of the solution due to the 

concentration of the additives. 

3) Why is for the measurement of polymer solutions using cone and plane geometries. 

What other geometry types would be suitable for these solutions? 

4) Discuss and assess possible measurement errors. 

5) Describe the difference between Newtonian and non-Newtonian fluids and give at 

least four examples of non-Newtonian fluids. 
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