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ABSTRACT 

The contribution describes a new algorithm of thermographic evaluation of pulse thermography. The principle is 

in a time transformation of a thermographic sequence. The technique provides result in one image instead of series 

of images as standard algorithms do (FFT, TSR, derivation). This makes the evaluation faster and easier for the 

operator. The result can be sliced to ranges of depths, similar way as in tomography. Thereby, this technique is a 

part of the family of techniques often referred as thermal tomography. The algorithm is verified experimentally on 

a Flat Bottom Hole sample 3D-printed from ABS. The principle of slicing is described and showed on real 

experimental data. The advantages and disadvantages of this technique are discussed in this contribution. 
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INTRODUCTION 

Infrared nondestructive testing (IRNDT) is an inspection technique used in many different field of industry. It is 

not limited just for defect detection (recognizing if a part of tested object is defective or non-defective) but it is 

also used in many cases for defect depth, thermal and other properties estimation. Over the past decades many 

different types of IRNDT was developed and established as standard technique for defect detection in particular 

area (e.g. lock-in thermography for solar cells testing[1][2][3]). Nonetheless the most popular technique remains 

pulse thermography, due to fast inspection time and relatively simplistic analytical modelling. By pulse 

thermography the excitation source (e.g. flash lamp, halogen lamp, laser, electric current) excites the object by one 

pulse and temperature response on this pulse is than recorded by suitable IR detector (IR camera). Schematic 

principle of excitation and thermal response recording is in Fig. 1. 

 

Fig.  13: Composition of IRNDT system 

The acquisition process of pulse thermography is always the same. Parameters which can be changed are duration 

of the recording (number of frames of recorded thermographic sequence) and the speed of acquisition (framerate 

of IR camera). With some excitation sources (e.g. laser) the pulse length can be also adapted. In the most common 

combination, the excitation source for pulse thermography is a flash lamp. The pulse length in this case cannot be 

changed. It is very appealing for operators that just two parameters can be changed and thus the recording part is 

very simple. The raw thermographic sequence usually must be post-processed to get useful information. Many 
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different techniques of post-processing were developed and has been used on day to day basis. One of the most 

popular techniques are Fourier Transform [4] or Wavelet transform [5] based algorithms, techniques based on 

singular value decomposition [6] and thermographic signal reconstruction [7]. A complexity of the evaluation 

(post-processing) often limits a usability of the pulse thermography in industrial applications. The results of post-

processing are often in a form of a sequence composed from many images (typically more than 1000), which 

should be inspected manually by an operator. In practice it means that operator is searching for one image in the 

whole post-processed sequence to detect a defect. If defects are in different depth they appear in different image, 

which makes the evaluation procedure time demanding. In the worst case the image which shows clearly an 

indication of defect can be for example missed due to tiredness of the operator. From the mentioned above it is 

obvious that algorithm which could compress the most important information in just one resulting image would 

be very beneficial for evaluation in industrial application. Not just the recording part would be easy to do but also 

the evaluation part. 

The proposed technique allows all mentioned above. It is based on analyses of an artificial function obtained by 

multiplying a front-surface temperature evolution by the power function of time 𝑇(𝜏) × 𝜏𝑛 thereby we call it time 

power transformation or shortly P-function. The advantage of this technique is that the result is in form of one 

image. This is beneficial for reduction of time needed for evaluation by the operator (he or she doesn’t have to 

search indications in the sequence). Furthermore, P-function allows to display ranges of depth of material (e.g. 

from depth 1-1.5 mm), similar way as in tomography. P-function is thus a part of the family of techniques often 

referred as thermal tomography. In [8] there is a review of some of them. Many of them are not usable in real 

industrial application because they need perfect raw sequence (sequence without noise and high signal to noise 

ratio for each defect) which shall be processed.  

 

P-FUNCTION 

The technique is based on time transformation. The time transformation approach was introduced and further 

improved in [8][9][10][11]. Nonetheless, the approach was verified mostly on analytical data obtained from some 

simulation software and when tested on real data it did not perform that well. Thereby some changes were done 

by us to improve the performance for measured data. By P-function, a de-noised front-surface temperature 

evolution is multiplied by the power function of time 𝑇(𝜏) × 𝜏𝑛. The resulting curve contains easily detectable 

variations. Those points occur in certain time (τinx), which is dependent on defects depth. We can find characteristic 

point via searching for minimum. The time of occurrence of this point is than set as the result in resulting image 

(timegram). 

   There are two big differences in our approach compared to previous publications [9][10][11]. Firstly, the data 

are de-noised, because the noise may vary the minimum and thus the characteristic time. There are several options 

how to lower noise. Two possibilities seems suitable for this purpose – using filter or fit data with artificial 

function. The filtering approach may seem easier but it is complicated task especially when it should be universal 

(use for different materials with different amount of noise). Our tests shows that in many cases filter doesn’t 

remove enough noise or it significantly lowers the noise, nonetheless it creates some additional peaks. It should 

be noted that we tried moving average filtering, Savitzky-Golay filtering and locally weighted scatter plot 

smoothening available in Matlab. It is not excluded that another type of filter could provide good results.  

For data fitting and thus noise reduction we use function (1). 

 

 

𝑇(𝑡) = 𝐴 · ln(𝑡)5 +𝐵 · ln(𝑡) +    · ln(𝑡)3 + 𝐷 · ln(𝑡)3 + 𝐸 ·  ln(𝑡) + 𝐹 · ln(𝑡) + 𝐺 (1) 
 

 

Where A, B, C, D, E, F and G are coefficients to be fitted. The function is similar to function used for TSR [7] 

except instead of base 10 logarithm, the natural logarithm is used. 

The second big difference is that for determination of characteristic time we use searching for minimum instead 

of searching for inflexion points. The reason to do so is that several inflexion points can occur on the resulting 

curve. It is not easy task to determine which inflexion point should be chosen, if the process should be automatic. 
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EXPERIMENTAL PART 

The experiments were performed on sample, which was printed by 3D printer from ABS. The sample has 

dimensions 95x70x9 mm and contains 6 defects with diameter 5 mm. The sample is a standard Flat Bottom Hole 

sample. The remaining wall thickness is for defects 1-6: 0.2, 0.6, 1, 1.4, 1.8 and 2.2 mm.  The sectional view of 

defect 1-3 is for clarity in Fig 2.  

 

 

Fig.  14: Visualization of the sample (Defect 1-3) 

The data were recorded by IR camera FLIR SC7650. The framerate of camera was set to 30 Hz and 1500 frames 

were recorded.  

The most challenging problem for the time transformation is to choose suitable parameter (the n from time 

transformation). Our solution is to calculate the result for several n. We vary n from 0.01 till 0.4 with the step 0.03. 

After the best n is chosen, we do it by calculating CNR (more about CNR can be found in [12]) for defects on 

which we are focused but it can be done just by eye, we proceed to fine tuning. E.g. if we get the best result at 

0.04, we do the calculation again from 0.02 till 0.06 with step 0.01 and we chose the best result. We basically 

chose n experimentally. The best approach for choosing n may vary based on the power of a PC and an optimization 

of a software used for the calculation. In general, the calculation of power function is fast, it should be noted that 

the most time demanding part is the de-noising procedure. The advantage is that when the suitable n is chosen for 

the material and the defect, it is always the same. This is well suited for serial testing. For 3D printed sample the 

best parameter was 0.03. 

The temperature response from defect 3 is shown in Fig. 3. As it can be seen on fitted data, the fit is very precise 

and furthermore there isn’t any noise in the curve.  
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Fig.  15: Temperature response on a pulse and its fitting 

 

The P-function curve from defect 3 is in Fig. 4. The parameter of time transformation was set to 0.03. The 

characteristic point and thus characteristic time can be easily find via minimum search.  

 

Fig.  16: P-function curve, defect 3, parameter 0.03 
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Fig.  17: Comparison of timegrams with and without de-noising 

 

Timegrams without fitting and with fitting are shown in Fig. 5 (with parameter 0.03). The timegram without any 

fitting shows less indications than the timegram with fitting. The result also appears noisier. This noise can be seen 

on the non-defective part of the sample, where non-defective pixels are not the same (difference between right side 

and left side, visible grains in the timegram). The noise in timegram is caused by the noise of raw data. When the 

noisy temperature response is time transformed, the characteristics points can shift and thus cause even more noise 

in resulting image. The timegram without fit shows just 4 of the defects. The P-function is without de-noising 

usable just on high quality sequences without noise. It actually means this option is not usable in practical 

application. Timegram where fitting preceded provides indications of all defects. The non-defective pixels are 

indistinguishable to each other. No apparent noise is detectable in the timegram. The only disadvantage is that 

computation time is longer due to the de-noising. 

 

Fig.  18: Slicing to different defect depth 

 

The slicing to interval of depths is demonstrated in Fig. 6 on three examples (three different levels of depth). The 

slicing is performed via setting specific range of τ1 and τ2 which corresponds to depth z1 and z2. The lower time 

means lower depth. That’s why in range 0.5-1 s we can distinguish just the defect 2, which has second lowest 

remaining wall thickness. With increasing time, we can see defects which have higher remaining wall thickness. 

When some defect occurs it is then visible in all ranges. This is actually expected result, because all of the defect 

are flat bottom hole and thus in each slices they should be the same. This demonstrates that the slicing actually 

works. Defect 1 is not visible before defect 2 due to overheating in area of defect 1 compared to different defects. 

With different parameter we could reach result where the assumption longer characteristic time means deeper 

defect is fulfilled nonetheless just defect 1 would be visible. Actually different behavior of defect1 is not an issue 
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for detecting of an indication, because the indication of defect 1 is visible in Fig. 5 but it is problematic for defect 

depth estimation because the characteristic time is shifted beyond characteristic time of non-defective area. 

 

CONCLUSION  

In this contribution thermal tomography based on time transformation was described. The P-function algorithm is 

easy to implement and provides interesting results. The biggest advantage is possibility of slicing (setting the 

range) result to different depth from which you can see which defects are closer to the surface. Other techniques 

allow similar possibility via browsing the whole resulting sequence (e.g. blind frequency approach in pulse phase 

thermography), where the disadvantage is the need to go through sequence compared to use one image with P-

function. The advantage of just one resulting image is especially suitable for some type of machine learning, where 

it is easier to analyze just one image and even for operator, who doesn’t need to go through resulting sequence, 

which saves time and improves reliability.  

The applicability of P-function was verified on measured thermographic sequence. The biggest problem for 

applicability is noise, which we suppress via fitting. The parameter of P-function significantly influences the 

results. We weren’t focused on finding some relationship to get parameter via equation, which is to be one of next 

part of our research in this field. We believe that for practical purposes experimental searching for parameter is 

sufficient due to the fact, when parameter is once found, it doesn’t change for the same material and thus is searched 

for just the first time. This advantage is lost when P-function should be used just for one-time measurement of 

some object. In that case we don’t see any difference between going through resulting sequence of e.g. phasegrams 

(pulse phase thermography) or timegrams with different parameters (in that case sequence of timegrams is created 

due to different parameters). 

P-function has some interesting features and could be applicable in wide variety of application. 
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