ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2803

Poster's Proceedings
http://iwww.WSCG.eu

A Persistent Naming System Based on Graph
Transformation Rules

Ma“;heix za"id C;ﬁ‘,\’/: f“;“s Skapin Xavier ~ Dieudonné-Glad Nadine

LIAS, ENSMA ab.

’ XLIM Lab. HeRMA Lab.
France, 86360, France, 86360, France, 86360, France, 86000, Poitiers
Futuroscope Futuroscope F Y

david hoi anais.cardot@ uturoscope nadine.dieudonne.glad@
avid.marcheix@ L skapin@xlim.fr univ-poitiers.fr

ensma.fr univ-poitiers.fr

ABSTRACT

3D modeling for Archaeology requires to easily model scenes by letting users evaluate a parametric specification
of archaeology-oriented gestures, then modify and reevaluate the specification to produce various restitution hy-
potheses. But the current modeling tools that support reevaluation mechanisms are not dedicated to Archaeology.
The Jerboa library, based on graph transformations rules, is well suited for creating operations fitting the needs of
archaeologists. But it does not any support reevaluation mechanism and especially the persistent naming system,
that is used to identify the entities of the initial model and match them with entities of the reevaluated model. In
this paper, we extend Jerboa with a new application-independent persistent naming model, which is more general
and homogeneous than other solutions found in the literature and is the first one to handle parametric specification

edition.

Keywords

Parametric Specification; Persistent Naming; Graph Transformation Rules; Generalized Maps.

1 INTRODUCTION

Digital Humanities, and 3D modeling tools in particu-
lar, have profoundly modified the discipline of archae-
ology in several ways. They enrich the patrimonial de-
scription and significantly improve its understanding by
the public. Modeling ancient buildings in 3D usually
borrows from: (1) Computer Vision, requiring buildings
in good condition for 3D replication and/or completion
[GBS14]; (2) Geometry Modeling based on fragmen-
tary data, which requires the definition of several resti-
tution hypotheses, and the availability of a tool to test
these hypotheses quickly and simply. Our work is set
in this latter context.

Procedural generation grammars is a commonly used
process for creating several variants of the same build-
ing [HMVO09], [QB15], but requires some rich informa-
tion corpus information to produce grammars. More-
over, the same tool cannot be used for very differ-
ent case studies with many specific features. There-
fore, archaeologists usually use more "conventional"

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

https://doi.org/10.24132/CSRN.2018.2803.7

3D tools such as CityEngine™or Blender™. Unfor-
tunately, those tools do not comply with inherently in-
complete archaeological data [Wit13], [Ver10]. In par-
ticular, they cannot easily model a display of several
reconstruction hypotheses, each of them matching the
observed data. The central problem of testing recon-
struction hypotheses on a 3D view basis leads to lim-
ited interpretations of the Past, all the more for proto-
history, for which remains are scarce.

To overcome these limitations, we use the Graph Trans-
formation Rules formalism [EEPTO06] through a Java
library called Jerboa [JER], and designed to assist the
development of application-specific modelers. Rule-
based languages form a standard approach for geo-
metric modeling, from plant growth with the semi-
nal L-Systems [PH89], to numerous applications such
as buildings [HMV09]. Unlike most approaches, Jer-
boa is independent from any application domain and
avoids any hand-coding of operations, except rule writ-
ing. It allows rapid development of new operations to
automatically check the consistency of different objects
properties. All applications developed with Jerboa li-
brary share the same topological model called General-
ized maps (or "G-Maps") [Lie91], describing a particu-
lar class of labeled graphs.

But Jerboa does not support the rapid production of
restitution hypotheses, i.e. the mechanisms of reeval-

uation inherent to parametric systems used in CAD do-
main. Reevaluation allows to modify any part of an

ISBN 978-80-86943-42-8

ISSN 2464-4617(print)

ISSN 2464-4625(CD) CSRN 2803

object construction history and to replay this history to
produce a new result. A parametric system is a two-fold
data structure composed of a geometric model defin-
ing the explicit geometry of the designed object (called
parametric object), and a mechanism able to reevalu-
ate it when some parameters are changed (called para-
metric specification)[Kri95]. The geometric model is
usually a topological-based one. Most current paramet-
ric modeling systems are known as "history-based" be-
cause the parametric specification may be regarded as
a history of modeling functions (or constructive ges-
tures), which are attached via their parameters to topo-
logical entities defined in previous states of the model.
Such an approach requires to define how to ensure the
persistence of the referenced entities and to avoid sys-
tems failure during the reevaluation phase when var-
ious kinds of topological changes occur. This issue,
known as persistent naming, should enable both unam-
biguous identification of initial model entities and con-
sistent matching between initial and reevaluated model
entities.

Persistent naming is a much-debated problem in CAD
domain [Kri95] [Bab10][XJHY16], but has never been
investigated in conjunction with graph transformation
rules. Our approach enables: (1) to extend the per-
sistent naming scope to modeling systems based on
such graph transformation rules; (2) to extend Jerboa
by including the working mechanisms of parametric
systems. We address naming problems through a very
precise characterization of the basic elements form-
ing the model and propose a naming mechanism both
general (independent of the model dimension) and ho-
mogeneous (independent of the entity dimension), for
which only the entities actually used in the parametric
specification are followed. Unlike others methods, this
follow-up is performed only during reevaluation (and
not also during initial evaluation), in order to optimize
both time and memory consuming. Moreover, beyond
static reevaluation with only parameter modifications,
we explore how to carry out parametric specification
edition (i.e. adding or deleting constructive gestures).

In Section 2, we present the G-maps model, the graph
transformation rules and our contribution to persistent
naming. In Section 3, we detail the different parts of our
works, from the persistent naming system to the com-
plete edition of a parametric specification using bulletin
boards and history records. We conclude in Section 4
and propose some perspectives.

2 MAIN CONCEPTS

2.1 Generalized maps

As stated above, Jerboa is based on G-Maps, which in-
tuitively represent the decomposition of n-dimensional
objects according to the successive dimensions of their

Computer Science Research Notes

49

Poster's Proceedings
http://iwww.WSCG.eu

boundaries, the different parts being linked by relation-
ships noted ¢;. For example, the 2D object in Fig-
ure 1(a) is split into faces linked by o, (blue line, Fig-
ure 1(b)); face sides are split into edges linked by
(red lines, Figure 1(c)); and ends of edges are linked
by o (black lines, Figure 1(d)). A G-Map is therefore
a graph whose nodes are called darts (represented as
green disks in Figure 1(e)) and arcs represent various
«;. Entities are described as specific set of darts linked
by dimension-specific ¢;: vertices (dim 0), edges (dim
1) and faces (dim 2) are respectively defined as set of
darts linked by [y, o], [a, 0] and [0y, 1]

i
1 1 ‘
L | !
(a) (b) (© (d

Figure 1: Modeling 2D objects using G-Maps.

We call orbit type the set {a;, ..., 0} describing any
entity, denoted as (i...n): orbit type "Vertex" (resp.
"Edge", "Face") shown in Figure 1 is thus denoted as
(12) (resp. (02), (01)). We call orbir the association of
a dart with an orbit type to designate a specific entity.
For example, on Figure 1(e), darts {a,b,c,d,e,f} repre-
sent a face, {f,e,g,1} a vertex, and {h,i}, the restricted
corner of a face. Entities used in our parametric specifi-
cations are expressed as orbits. They can be fully char-
acterized by their type and a selection of their darts.

2.2 Graph transformation rules

Jerboa is based on topological rules of graph transfor-
mation [BALB14]. Each modeling operation is for-
mally defined as a rule applied to a G-Map. Jerboa en-
sures by design that the topological consistency of the
G-Map is maintained after each rule application.

Rules are made up of two parts separated by a left-to-
right arrow. The left (resp. right) part, which describes
the pattern to be filtered (resp. the rewritten pattern),
represents the model before (resp. after) application.
Patterns are defined by the orbit types of the rule nodes.
For example, the Vertex Insertion rule is illustrated in
Figure 2. The left node ng carries the orbit type (02),
and thus filters the edge associated with this node.

Q
i

Figure 2: Vertex Insertion rule.

2.3 Persistent naming

Our method of persistent naming is grounded on both
G-Maps and rewriting rules. Persistent naming allows

ISBN 978-80-86943-42-8

ISSN 2464-4617(print)

ISSN 2464-4625(CD) CSRN 2803

to characterize the topological entities in a sufficiently
robust way during the initial construction. Parameters
of parametric specification operations are often topo-
logical references, so this mechanism is essential to
produce a valid reevaluation.

Various naming methods have been proposed to try and
solve this problem in a full and homogeneous way.
Most methods ([Kri95][WNO5] [XJHY 16]) use faces as
references to name all other entities, since in 3D, each
entity can be characterized by an intersection of faces
and some additional geometric information. However,
these naming algorithms are not generalizable in di-
mension n. Moreover, the naming mechanism of any
entity depends on its dimension, so the naming is not
truly homogeneous. In addition, even though the design
of persistent naming is well depicted in the literature,
the way it can be used for reevaluation is not always
precisely defined. Furthermore and despite memory
overload, it is usually necessary to trace the evolution
of many entities during the initial construction, in order
to perform the match between entities when reevaluat-
ing, even though many of them will not be used.

Finally, based on the review of existing literature, no
method explains how to deal with parametric specifica-
tion editing, i.e. adding or deleting gestures between
the initial evaluation and the reevaluation. We describe
in the next section the various mechanisms that address
these limitations.

3 REEVALUATION MECHANISMS
3.1 Parametric specification and edition

To reevaluate a sequence of constructive gestures, we
record them in the form of a parametric specification
beforehand. Each gesture corresponds to the call of a
graph transformation rule as defined in Section 2.2. Let
us consider the sequence of gestures performed in the
initial specification shown in Figure 3. The specifica-
tion cannot be limited to the simple recording of rule
calls (physical id. of darts being inherently unstable
from one reevaluation to another, they cannot be used
directly). Darts should therefore be labeled persistently.
The use of rules makes it possible, both in the initial
evaluation and the reevaluation, to assign each dart a
Persistent Id, denoted as PI,, PI, and so on.

Step 1 Step 2 Step 3 Step 4

1

1

N

Figure 3: Initial specification.

Rules are defined for any filtered orbits, but only spe-
cific orbits are used by gestures as parameter entities.
To identify each entity, we define their Persistent Names

Computer Science Research Notes

Poster's Proceedings
http://iwww.WSCG.eu

(PN), composed of a set of Persistent Ids to keep track
of all gestures that have impacted that entity (see sec-
tion 3.2.2). More precisely, PN = {PI}.{0), where
{PI} is a set of Persistent Ids of the representative darts
of the orbit, and (0) is the orbit type of the entity.

The parametric specification shown in Figure 3 is: Step
1 : 1-PentagonCreation; Step 2 : 2-Edgelnsertion(PN1,
PN2); Step 3 : 3-Triangulation(PN3); Step 4 : 4-
Coloring(PN4, Yellow), where PN1, ..., PN4 are re-
spectively the Persistent Names containing the Persis-
tent Ids detailed in Table 1.

[PN | PI [O.type[| PN | PI [O.type]
PN1 | {PI,} (1) PN3 | {PI.} | (O1)
PN2 | {PL,} | (1) PN4 | {PI.} | (01)
Table 1: Persistent Ids and orbit types related to gesture
parameters of the initial specification.

To illustrate the behaviour of our persistent naming
mechanism, we modify the initial specification by
adding a Vertex Insertion operation (denoted as A-
Step 1) between Step 2 and Step 3 (Figure 4). The
reevaluation proceeds as follows.

Step 1 Step 2 A-Step 1 Step 4

S S .
NN

Figure 4: Specification reevaluation.

Step 3

(1) 1-PentagonCreation is reevaluated the same way
as in the initial evaluation (the related rule is applied).
(2) 2-Edgelnsertion(PN1, PN2). PN1 and PN2 will
be used to find darts automatically, in order to call the
corresponding rule. (3) Add-1-VertexInsertion(a.(02))
adds a vertex on edge a.(02) directly designated
by the user during the reevaluation process. (4)
3-Triangulation(PN3) is not modified. Using PN3, we
find a dart representing the face and apply the related
rule. (5) 4-Coloring(PN4, Blue) is also reevaluated,
finding the darts corresponding to PN4 but with a dif-
ferent color parameter. Due to Add-1-VertexInsertion,
the initial face has been split, so the new coloring is
applied to both sub-faces.

As shown above, determining the types of edition un-
dergone by gestures is mandatory to apply the reevalu-
ation. But to achieve the matching of entities, it is also
required to determine how the Persistent Names of ref-
erenced orbits have evolved.

3.2 Orbit evolution

We consider the evolution of orbits for both initial eval-
uation and reevaluation. First, we define the differ-
ent types of orbital evolutions that may happen (Sec-
tion 3.2.1). Then, to match evaluation and reevaluation

ISBN 978-80-86943-42-8

ISSN 2464-4617(print)

ISSN 2464-4625(CD) CSRN 2803

entities, we detail the structures of related Ids and Per-
sistent Names (Section 3.2.2). Finally, we propose a
structure allowing to follow the entities during the eval-
uation and a tree structure allowing to report the match-
ing during the reevaluation (Sections 3.2.3 to 3.2.5).

3.2.1 Evolution types

We define the following types of orbit evolution, some
of which are shown in Figures 3 and 4. (a) Creation:
creates a new orbit. (b) Deletion: removes an orbit, so
no constructive gesture can use it anymore. (c) Fusion:
merges several orbits. (d) Modification: modifies the
orbit without any splitting or merging. (e) NoEffect:
does not affect the orbit. (f) Split: splits the orbit.

3.2.2 Persistent naming

The Persistent Id (PI) of a dart is set at the time of dart
creation, and then modified each time the dart is rewrit-
ten by rules. Each PI consists of the various operation
numbers and rule nodes that have created or rewritten
the related dart. For example, dart ¢ of the initial set
(Figure 3) is created by instantiating node n; of the rule
defining 2-Edgelnsertion (Figure 5): "2 —ny" is thus
a part of Pl.. But ny itself is the rewriting of node
no located on the left side of the rule, which is asso-
ciated with dart a in the initial set. Since a has been
created by instantiating node n; of the rule defining 1-
PentagonCreation, PI. is defined as {1 —n7;2 —n, }.

aj g oy
__
3 gy g
_

Figure 5: Transformation rules. Top: Edge insertion.
Bottom: Triangulation.

The PN (see Section 3.1) is used as a parameter of
the operations. Thus, 3-Triangulation, which tessellates
the face adjacent to dart ¢, has face Persistent Name
PN3 = {{1 —n7;2—ny}}.(01) as topological parame-
ter. 4-Coloring is also applied to the face adjacent to
c. However, PN3 is different from PN4 because the
face (and therefore c) has been affected by triangula-
tion: PN4 = {{1 —n7;2 —np;3 —np}}.(01).

3.2.3 Rule bulletin boards

Following orbit evolution over several steps of the spec-
ification requires to follow evolution depending on each
gesture. We use structures called bulletin boards for
that purpose. Bulletin boards are essential to any mon-
itoring system, but have been very little detailed in the
literature.

Our approach is rule-specific: a bulletin board is gen-

erated when the user creates a rule to account for the
different types of evolution (Section 3.2.1). Figure 6

Computer Science Research Notes

Poster's Proceedings
http://iwww.WSCG.eu

shows the bulletin board for Vertex Insertion operation.
There is one box per orbit type. Inside each box, we de-
scribe the evolution types for the rewritten nodes. Let
(x) be an orbit type: we gather the nodes of the right
side of the rule, whose rewriting instantiates darts be-
longing to the same (x), then we search for the left-side
nodes which have rewritten these darts, and for which
orbit type. A tree is then created for each set: the root
contains the nodes selected on the right side, and the
leaves contain left-side nodes and the related orbit. The
joining arc is labeled with the type of evolution carried
out.

Q (0) (1) (2)
no-() no-{) |[n0-0 || n0-() 10-(0)|] n0(2) n0(2)
n: n‘l o,n1 7: nll n: ﬁl
(01) (12) (02) || (012)
71,0‘(70) n0(2) n0<02> 710{2) TL()J(OQ)

ng,n1

Figure 6: Vertex Insertion bulletin board.

As an example, consider the orbit type (12) in the bul-
letin board displayed in Figure 6. Figure 7 focuses on
vertices (orbit type (12)): two vertices are composed
of darts instantiated by node ng in the right side of the
rule whereas the central vertex is made of darts instan-
tiated by node n;. The two vertices are composed of
all darts instantiated from ng.(2) on the left side of the
rule. The type of evolution of these vertices is no ef-
fect, because we simply have the same darts in the ver-
tex before and after the rule is applied. A tree is thus
created with root labeled "np.(2)" and leaf labeled "ng",
linked by the "No Eff." arc. The central vertex is com-
posed of all darts instantiated from ng.(02) on the left
side of the rule. This vertex did not exist before the
rule is applied. A second tree is thus created, with root
labeled "ng.(02)" and leaf labeled "n;", linked by the
"Creation" arc.

Figure 7: Topological view of edge vertices.

3.2.4 History Record

Bulletin boards are completed by history records to pro-
cess the whole specification. History records analyze
the successive bulletin boards of the rules that have im-
pacted any dart. One carries out as many history records
as there are PI. Let PN = {PI,,PI,,...}.(x) be a Per-
sistent Name. Let P, = {1 —n;;...;k — nj} be the Per-
sistent Id of dart . To create the history record of PIj,

51 ISBN 978-80-86943-42-8

ISSN 2464-4617(print)

ISSN 2464-4625(CD) CSRN 2803

we scan its contents in reverse order (from the most re-
cent to the oldest). Therefore, we first consider (x) and
k —n; (the last rewriting of dart b by the node n; of the
related rule set at step k). In the bulletin board of this
rule, we retrieve the box corresponding to (x) and we
select the (unique) tree whose child contains n;. This
process is then repeated by going back up each opera-
tion constituting Pl,, knowing that it retrieves, for the
operation (k — 1), the box of the bulletin board corre-
sponding to the orbit indicated at the root of the tree
used for operation k.

To illustrate this point, let us create the history record
for 4-Coloring applied to PN4 (see Figures 3 and 4),
that has {PI.} as Persistent Id (see Table 1). The re-
sult is shown in Figure 8, with green or red arrows la-
beling the 6-step process. Before applying 4-Coloring,
PI. = {1 —n7;2 —n2;3 —no} and PN4 = {PI.}.(01),
meaning that 4-Coloring is to be applied to orbit (01)
(see the bottom of Figure8(a)). Assume the last ele-
ment of PI. (i.e. 3 — ng, that is 3-Triangulation applied
to ng) has been initially recovered. Step 1: we look at
orbit type (01) in the Triangulation bulletin board, that
is the last rule having impacted ¢ before coloring. At
this stage, c is rewritten by node ng. Step 2: Figure 6
shows that, for orbit type (01), ng results from a split of
np.(0). The related excerpt of the Triangulation bulletin
board is shown in Figure 8(a).

PI.

Triangulation Edgelnsertion PentagonCreation|

Oy | 3 L->(0))
P O () S I R VY | Empty

= S | S 2 Y 2
o E] I g I g
N \ N o — 6 ¥
1MopM1,M2, NRUOTUPH RS

4—CE)ioring (@ 1> 17
(a) (b) ©

Figure 8: History record of PN4.

Step 3: using this orbit type (0) as an index in the bul-
letin board of the previous gesture recorded (i.e. 2-
Edgelnsertion), we search among the trees related to
this entry, the one which contains n,, for the corre-
sponding identifier in PI. is 2 —n2 (Step 4). We find
a tree with root n0.() (Figure 8(b)). We repeat the pro-
cess once again: at Step 5, we go through the bulletin
board associated with the previous recorded gesture (1-
PentagonCreation). Using the orbit type () as an entry,
we search for the related tree which contains ny, since
the corresponding identifier 1 —n7 (Step 6). The root of
this tree has Empty as root (see Figure 8(c)), meaning
that there is no previous gesture.

The history record of every Persistent Name is carried
out in a similar way. As an example, Figures 9 show the
history record related to PN3.

Computer Science Research Notes

Poster's Proceedings
http://iwww.WSCG.eu

PI.
Edgelnsertion PentagonCreation

QU= 30

T” {no,n1}.()f ’T Empty
P [N Q
3 g 1 3
S = 3 g
- & H a- =
9*[N0,nyiN2in3 oy 7]

Triangulation({01)

Figure 9: History records of PN3.

3.2.5 Entity matching

Performing reevaluation requires to match entities be-
tween both evaluation and reevaluation specifications.
For each history record, a matching tree is built, with a
Persistent Id as root and orbits as leaves. A matching
tree allows to determine which darts of the reevaluation
will be used for each orbit designated in the initial set.

For each constructive operation called during reevalu-
ation, we focus on the type of edition which has im-
pacted it. We refer to gestures shown in Figure 4 to
describe various scenarios. Considering any gesture al-
ready present in the initial evaluation (e.g. gestures 1, 2,
3, 4), matching trees are updated in order to reevaluate
this gesture. In case of adding a gesture (e.g., Add-1-
VertexInsertion), the bulletin board of the related rule is
used to update the matching trees according to the or-
bits impacted by this addition. In case of deletion, the
impacted tree branches are not updated.

We now detail step by step this reevaluation for PN3
and PN4, as PN1 and PN2, which are used as parame-
ters of edge insertion gestures, do not involve any par-
ticular issue during reevaluation: they use Persistent
Ids which have been present since the beginning of the
specification and have been impacted by only one ges-
ture.

1-PentagonCreation reevaluation

Since this gesture has no parameter, it is reevaluated in
the same way as the initial evaluation. Since the match-
ing trees of PN 1 to PN4 are all impacted by this gesture,
they are updated. Figure 10 shows the model after ap-
plying the rule, and the impact on the matching trees of
PN3 and PN4. History records shown in Figures 8 and
9 are scanned, one gesture after another, to match darts
and orbits in the reevaluated model. Consider PN3 for
instance: the history record of PI. indicates that to pro-
cess 1-PentagonCreation, one must find the newly cre-
ated orbit type (), associated with the instance of node
n7. A branch of the matching tree is thus created, re-
lated to the orbit found in the reevaluated model (a’ is
the dart instanciated by n7). Similarly, one matching
tree is generated for PN4 using the history record in
Figure 8(c).

2-Edgelnsertion reevaluation
Since this operation takes both PN1 and PN?2 as param-
eters, we use the orbits found in their matching trees.

ISBN 978-80-86943-42-8

ISSN 2464-4617(print)

ISSN 2464-4625(CD) CSRN 2803

PN3|PN4
P
!/

Figure 10: Matching trees and model after the reevalu-
ation of 1-PentagonCreation.

Matching trees of PN3 and PN4 are updated as in the
previous step (as shown in Figures 8 and 9, their respec-
tive history record contains the operation prefix "2—").
Figure 11 shows the model after applying the rule, and
the impact on matching trees.

o~

. (=)
= Creat.. < Creat._ <~

S sy

~5 Creat. <> _Split \8/
3 ~

PN3 | |[PN4

Figure 11: After 2-Edgelnsertion.

Add-1-VertexInsertion addition

This new insertion gesture (relatively to the initial eval-
uation) requires to trace its impact on orbits currently
traced with matching trees.

To determine which parts of the bulletin board related
to this rule are relevant, we examine the current leaves
of matching trees of PN3 and PN4 (Figure 11): '.(01)
and b'.(0), resp. The leaves are impacted by this ges-
ture, so we use the trees of the bulletin board of the rule
which have (01) and (0) as roots to trace this impact.
These trees are displayed in Figure 6. Orbit type (01)
undergoes a modification impacting 70 and n1. The in-
stantiation of any of those nodes can be chosen (here we
keep b/, i.e. the respective instances of n0). Regarding
(0), there is a split impacting n0 and nl. Once again,
we choose the instantiation of any node, but since it is
an added split, we must trace one dart for each result-
ing half-edge (we keep both b’ and ¢/, i.e. the instance
of n0 for each half-edge). Matching trees are updated
accordingly, as shown in Figure 12.

: ¢ Creat. < Split /5‘\ Modif, /5\

o~ e = N
—~ 59\'\‘ @ ¢

E s Creat. < Creat. & /‘w

a, A = > —~

TS

=

Figure 12: After Add-1-VertexInsertion.

3-Triangulation reevaluation

This gesture is reevaluated on PN3. Since PN3 is no
longer used afterwards, its matching tree can now be re-
moved. Only PN4 is impacted by 3-Triangulation (see

Computer Science Research Notes

Poster's Proceedings
http://iwww.WSCG.eu

Figure 8(a)). The result of this reevaluation is displayed
in Figure 13.

o Creat. < Creat. & Y <
T T U= - ~
: —

=} ~

=}

PN4

Figure 13: After 3-Triangulation.

4-Coloring reevaluation

Since the color parameter has been modified during
reevaluation, 4-Coloring sets the color of the face des-
ignated by PN4 to blue. Its matching tree indicates that
the orbit used in the initial evaluation now corresponds
to both »'.(01) and ¢’.{01) (see Figure 13). Each face
is therefore colored. Since PN4 is no longer used after-
wards, its matching tree is removed.

Figure 14: After 4-Coloring.

The final result is shown in Figure 14.

4 CONCLUSION

We propose a new persistent naming system and an en-
tity matching algorithm combining the strong points of
graph transformation rules and G-Maps to create and
reevaluate new models using parametric specification.
Those tools lay the foundation to develop 3D modeling
operations dedicated to specific domains such as Ar-
chaeology.

Our approach specifically addresses the issue of nam-
ing in the context of parametric specification edition
(adding and deleting gestures). The naming mecha-
nisms make it possible to name all types of entities in
an homogeneous and general way, whatever the dimen-
sion of the model. We define unambiguously Persis-
tent Identifiers of darts and Persistent Names of enti-
ties, using the information returned by transformation
rules. We follow the evolution of a limited number of
entities during both evaluation and reevaluation, in or-
der to achieve matching. Only entities that are actually
referenced in the parametric specification are traced,
and only during the reevaluation phase. This allows us
to hope for space and time savings, but a comparative
study will have to be carried out in future works.

To follow entity evolution after applying a gesture, we
use the bulletin board associated with the rule defining
this gesture. At this time, rule bulletin boards have to

ISBN 978-80-86943-42-8

ISSN 2464-4617(print)

ISSN 2464-4625(CD) CSRN 2803

be designed by the (human) rule designer; it would be
interesting to generate them automatically. We also in-
tend to study the effect of changing the order of oper-
ations in the parametric specification, since this feature
has never been proposed in the literature.

Finally, the full integration of the archaeological di-
mension into our works will require to study spatio-
temporal reevaluation, i.e. a reevaluation that, with pa-
rameters such as dates, would or would not reevaluate
some gestures, in order to give an account of the state
of a building through the ages.

S REFERENCES

[Bab10] Baba-Ali, M. Systeme de nomination
hiérarchique pour les systémes paramétriques.
PhD thesis, 2010. http://nuxeo.edel.univ-
poitiers.fr/nuxeo/site/esupversions/16648b94-
bfdc-48c0-8ed9-a8d16d5c336¢.

[BALB14] Belhaouari, H., Arnould, A., Le Gall, P,
and Bellet, T. Jerboa: A Graph Transformation Li-
brary for Topology-Based Geometric Modeling,
in Int. Conf. on Graph Transformation (ICGT),
pp- 269-284, 2014.

[EEPTO6] Ehrig, H., Ehrig, K., Prange, U. and
Taentzer, G. Fundamentals of Algebraic Graph
Transformation, Monographs in Theoretical Com-
puter Science, An EATCS Series Springer, 2006.

[GBS14] Gomes L., Bellon O. P. R., Silva L. 3D re-
construction methods for digital preservation of
cultural heritage: A survey. Pattern Recognition
Letters 50 (Dec.), pp. 3—14, 2014.

[HMVO09] Haegler S., Miiller P., Van Gool L. Procedu-
ral modeling for digital cultural heritage. Journal
on Image and Video Processing - Special issue on
image and video processing for cultural heritage,
2009 (Feb).

[JER] http://xlim-sic.labo.univ-poitiers.fr/jerboa/

[Kri95] Kripac, J. A mechanism for persistently nam-
ing topological entities in history based paramet-
ric solid models. Proc. of the 3rd ACM sym-
posium on Solid Modeling and Applications
(SMA’95), pp. 21-30, 1995.

[Lie91] Lienhardt, P. Topological models for boundary
representation: a comparison with n-dimensional
generalized maps. Computer-Aided Design, 23:1,
1991.

[WNOS5] Wang, Y. and Nnaji, B.O. Geometry-based
semantic id for persistent and interoperable refer-
ence in feature-based parametric modeling. Com-
puter Aided Design, vol. 37, pp. 1080-1093,
2005.

[PH89] Prusinkiewicz, P. and Hanan, J. Lindenmayer
Systems, Fractals, and Plants, 1989.

Computer Science Research Notes

54

Poster's Proceedings
http://iwww.WSCG.eu

[PLH90] Prusinkiewicz, P., Lindenmayer, A. and
Hanan, J. The algorithmic beauty of plants, Vir-
tual laboratory, Springer-Verlag, 1990.

[QB15] Quattrini R. and Baleani E. Theoretical back-
ground and historical analysis for 3D reconstruc-
tion model. Villa Thiene at Cicogna. Journal of
Cultural Heritage 16, pp. 119-125, 2015.

[Ver10] Vergnieux R. L’usage scientifique des modéles
3D en archeologie. De la validation A la simu-
lation . Proc. of ARQUEOLOGICA 2.0 Sympo-
sium, in Issue 3 of the Int. Journal Virtual Archae-
ology Review (VAR), 2010.

[Witl13] Wittur J. Computer-Generated 3D-
Visualisations in archaeology. Between added
value and deception. British Archaeological Re-
ports (BAR) Int. Series, 2013.

[XJHY16] Xue-Yao G., Jia-Qi L, Hao G. and Yun-
Feng G. Name and maintain topological faces
in rotating and scanning features. Int. Journal of
Grid and Distributed Computing, 9:3, pp. 21-26,
2016.

ISBN 978-80-86943-42-8

