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ABSTRACT 

We propose a method for fast approximation of the Voronoi diagram for a set of pairwise disjoint arcs on a plane. 
The arcs are represented by parameterized curves. A set of input curves is discretized into partition set, for which 
the Voronoi diagram is constructed. After merging corresponding Voronoi cells and removing redundant edges, 
the Voronoi graph is approximated by Bezier curves. We also propose the elaboration and optimization of the 
approximation. The total complexity of the algorithm is O N log N  in the worst-case. 

Keywords 
Approximation, Voronoi diagram, Voronoi cell, Bezier curve, discretization, partition set, parametric curve. 

 
 

1. INTRODUCTION 
Relevance. Today there is a wide variety of algorithms 
for solving problems of computational geometry. But 
typically, the scope of these algorithms is very narrow. 
For example, well-known algorithms for constructing 
the Voronoi diagram (e.g., "divide and conquer" 
[Prep85b], Fortunes algorithm [Fort87a]) can be 
effectively applied only to a set of points and line 
segments. However, when we solve practical 
problems, we usually deal with more complex 
geometrical shapes than just points or line segments. 
Normally these complex objects can be represented by 
parametric curves of arbitrary shape [Aic10a]. 
However, the construction of the exact Voronoi 
diagram for the set of parametric curves is not a trivial 
task. Even in the simplest example of the Voronoi 
diagram for two arbitrary disjoint curves (which is just 
a bisecting curve between them) we have to consider 
a large number of particular cases. The construction of 
the Voronoi diagram for three or more objects 
represented by parametric curves is even more 
sophisticated and would require a huge amount of 
computational time. Therefore, for practical 
applications it is reasonable to reduce the problem of 
exact Voronoi diagram construction to a problem of 
its approximation construction, which can be 
performed in a reasonable computational time. 

However, the problem of constructing approximations 
of Voronoi diagram is not trivial and still requires 
further study. 
Analysis of recent research and publications. In a 
large amount of works devoted to approximation of 
Voronoi diagram, authors consider the spatial 
discretization of 2D plane into cells using a discrete 
grid with a fixed step [Sud06c], [Hof99c]. In this case, 
the plane is sampled and then the result (discrete 
image) is used for further transformations. After 
performing all necessary transformations, the Voronoi 
diagram is obtained. A significant drawback of these 
methods is that the accuracy of the constructed 
Voronoi diagram depends on the size of the grid, and 
reducing its size leads to a significant increase in the 
number of cells (quadratic dependence). Thus, in order 
to achieve acceptable results in terms of precision, we 
would require a lot of computational power. 
Therefore, these methods can be extremely time-
consuming in some cases. 
Another approach is an approximation by means of 
constructing the Voronoi diagram for the simplest 
geometric objects, such as points or line segments. In 
particular, in [Ho09c] authors demonstrate an 
approach to approximate the Voronoi diagram for 
arbitrary geometric objects using Bezier curves and 
taking into account the Voronoi diagram for points. 
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However, this approximation is made only for the part 
the Voronoi diagram (they solve the problem of 
finding the minimum path). The approximation by 
means of the Voronoi diagram for points has 
significant prospects as well as it makes possible to 
operate with less amount of simple objects. The points 
on the curves can be selected based on the 
discretization step, which can be fixed or can depend 
on the characteristics of the curve. It allows to speed 
up the construction of approximation, and at the same 
time, to maintain the desired accuracy in critical 
regions. Since the method is based on the construction 
of the Voronoi diagram for simple geometric objects 
(points or line segments), the critical regions of such 
approximation can be easily refined by supporting 
dynamic Voronoi diagram for points and inserting 
new points (or line segments), where it is necessary. 
Also there are some attempts to compute exact 
Voronoi diagram [Ary02c], [Ary02b], [Har01c]. In 
paper [Seo08c] authors describe an algorithm for 
computing the precise Voronoi Diagram of planar 
freeform curves, which represented with a parametric 
form. The authors try to build the precise bisector 
between two curves and precise junction points. But 
this effort leads to the necessity of solving the system 
of three nonlinear equations, which is not trivial task 
itself, since it requires time-consuming numerical 
methods. Another similar approach is described in 
[Ram99a]. It has an asymptotic time of 𝑂(𝑛)), where 
𝑛 is a number of curves. This method has the same 
drawback as previous: computation of junction points 
(authors use Newton-Raphson method). 
Novelty and ideas. The purpose of this paper is to 
develop an algorithm for fast and accurate 
approximation of Voronoi diagram, which has 
𝑂 𝑁 log𝑁  complexity in the worst case. Our 
approach is based on a point sampling for input curves 
and further construction of Voronoi diagram for 
sampled points. Then we use a developed procedure 
for merging the Voronoi cells and approximate edges 
of Voronoi diagram by curves. 
 

2. A METHOD FOR FAST 
APPROXIMATE VORONOI DIAGRAM 
CONSTRUCTION 
Before describing the method and the solution of a 
problem we recall the basic concepts [Aur13b] used in 
this paper. 

2.1 Basic concepts and statement problem 
Definition 1. Suppose we are given a set of generator 
points 𝑃 = 𝑝/, 𝑝), … , 𝑝2 ⊂ ℝ5, where (2 ≤ 𝑛 < ∞). 
We call set 𝑃 the generator set of the Voronoi diagram. 
Let’s denote by 𝐼2 a set of generators indices and 

Euclidean distance between two objects 𝑥 and 𝑦 as 
𝜌 𝑥, 𝑦 .  We call the region given by: 

𝑉𝑃 𝑝? = 𝑥 𝜌 𝑥, 𝑝? ≤ 𝜌 𝑥, 𝑝@ , (1) 
where (𝑗 ≠ 𝑖), 𝑖, 𝑗 ∈ 𝐼2, 𝑥 ∈ ℝ), the Voronoi cell 
(Voronoi polygon) associated with 𝑝?. Then the 
Voronoi Diagram generated by 𝑃 (or the Voronoi 
diagram of 𝑃) is defined as follows: 

𝑉𝐷 𝑃 = 𝑉𝑃 𝑝/ , 𝑉𝑃 𝑝) , … , 𝑉𝑃 𝑝2  (2) 
For any two generators 𝑝? and 𝑝@ we define a region 
of dominance of 𝑝? over 𝑝@: 
𝐻 𝑝?, 𝑝@ = 𝑥 𝜌 𝑥, 𝑝? ≤ 𝜌 𝑥, 𝑝@ , 𝑥 ∈ ℝG , (3) 

where 𝑖, 𝑗 ∈ 𝐼2. Thus, the Voronoi cell can be defined 
by the following statement: 

𝑉𝑃 𝑝? = 𝐻 𝑝?, 𝑝@
@∈HI\ ?

 (4) 

The boundary or bisector between two regions of 
dominance 𝐻 𝑝?, 𝑝@  and 𝐻 𝑝@, 𝑝?  is denoted by 
𝑏 𝑝?, 𝑝@  and defined as follows: 

𝑏 𝑝?, 𝑝@ = 𝐻 𝑝?, 𝑝@ ∩ 𝐻 𝑝@, 𝑝? , (5) 
or alternatively: 
𝑏 𝑝?, 𝑝@ = 𝑥 𝜌 𝑥, 𝑝? = 𝜌 𝑥, 𝑝@ , 𝑥 ∈ ℝG  (6) 

For a given generator set 𝑃 and a set of indexes 𝐼2, the 
boundary 𝑏 𝑝?, 𝑝@  can be denoted in a short form as 
𝑏?,@. 
Definition 2. Let 𝐶 𝑡 = 𝑥O 𝑡 , 𝑦O 𝑡  be a 
continuous parametric curve on a plane, 𝑡 ∈ 0,1 , and 
parameter ∆𝑡 determines the step of approximation.  
We call set of points 𝑃O = 𝑐 𝑖∆𝑡 	𝑖 = 0, 𝑛  the 
partition set of the curve	𝐶, where 𝑛 = /

∆U
. 

Problem statement.   
Let 𝒞 = 𝐶/ 𝑡 , 𝐶) 𝑡 , … . , 𝐶2 𝑡  be a set of 
continuous parametric curves, which are pairwise 
disjoint.  Given the partition sets 𝑃OX, 𝑃OY, … , 𝑃OI of 
curves 𝒞 and their union 𝒫 = 𝑃OX ∪ 𝑃OY ∪ …∪ 𝑃OI, 
build an approximation of Voronoi diagram 𝑉𝐷 𝒞  
for set of curves 𝒞.  
 

2.2 The solution for arbitrary objects 
At the first we build Voronoi diagram for union of 
partition points 𝒫: 

				𝑉𝐷 𝑃 = 𝑉𝑃 𝑝 𝑝 ∈ 𝑃  (7) 
Let 𝑙: 𝑃 → ℕ` be the function, that for a given point 
returns index of curve, which this point belongs to: 

𝑙 𝑝 = 𝑖
Gab

𝑝 ∈ 𝑃Oc. Then the approximation of 
Voronoi cell associated with curve 𝐶? is obtained by 
the union the Voronoi cells for each point in the 
corresponding partition set: 

𝑉𝑃 𝐶𝑖 ≅ 𝑉 𝑝
𝑙 𝑝 =𝑖

 (8) 

Thus, the resulting approximation of the Voronoi 
diagram for the set 𝒞 is: 

	𝑉𝐷 𝒞 ≅ 𝑉𝑃 𝐶𝑖 𝑖 = 1, 𝑛  (10) 
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Figure 1. Voronoi diagram (green) for a set of 

sampled points (black) comprising the partition 
set of input nonintersecting Bezier curves (blue) 

 
Initially, we choose a certain set of curve points for 
constructing a Voronoi diagram, while maintaining 
the connection of each point with the corresponding 
curve. Next, we merge together the Voronoi cells, 
whose centers belong to the same curve, and remove 
the adjacent edges.  
Figures 1 and 2 show an example of constructing a 
Voronoi diagram for 20 nonintersecting Bezier curves.  
 

2.3 Approximating Voronoi edges with 
curves 
 

After constructing the Voronoi diagram for points and 
merging corresponding cells (removing respective 
edges), we obtain an approximation by polygonal 
chains (each chain connects two junction points). At 
the next step we approximate obtained chains with 
curves. 
At first to make the approximation by curves we 
should choose the canonical equation of a curve. The 
type of approximating curve (canonical equation) for 
Voronoi edge depends on the type and parameters of 
curves, which it separates. We consider the general 
case and make approximation by quadratic and cubic 
Bezier curves. Other types of curves may be similarly 
considered. 
One of the most appropriate methods of 
approximation by curves is least square 
approximation. We fix the first and last points (start 
and end point) of Bezier curve and then use the least 
squares method to find best curve fit.  
Thus, for quadratic Bezier curves we find the 
coordinates of point		P/: 

B t = t)Ph + 2 1 − t tP/ + 1 − t )P) (11) 
 

 
Figure 2. An example of approximate Voronoi 
diagram (red) for a set of 20 nonintersecting 

Bezier curves (blue) 
 
In this case the least square method is reduced to the 
solution of a linear equation with one variable for each 
coordinate, which can be easily solved: 
φ P/ = Pl∗ − B tl

)
→n

lo/ min ⟹ 5t
5uX

= 0    (12) 
In order to approximate polyline with a cubic Bezier 

curve we should find x, y coordinates of two points P/ 
and	P): 
B t = txPh + 3 1 − t t)P/ + 3 1 − t )tP) + txPx (13) 

This problem reduces to the solution of the system 
of linear algebraic equations for each coordinate. Each 
system of equations consists of two equations: 

φ P/, P) → min ⟹

dφ
dP/

= 0,

dφ
dP)

= 0.
 (14) 

where  

φ P/, P) = Pl∗ − B tl
)

n

lo/

 (15) 

Thus, the total number of equations in the system of 
linear equations depends on the order Bezier curve. 
Implementation details. For each type of 
approximation curve we get an analytical solution 
(expressions for each of unknown point), which is 
easy to implement in code. 
 

3. COMPLEXITY ANALYSIS 
The analysis of the complexity of the proposed 
method is provided in the following statements. 
Theorem 1. If an input set consists of 𝑚 objects on a 
plane represented by nonintersecting parametric 
curves and the total number of points used to discretize 
these 𝑚 objects is 𝑁. Then, approximation of Voronoi  
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Figure 3. Execution time of the proposed method 
for Voronoi diagram approximation (x-axis is a 

number of input objects, y-axis shows an 
execution time in seconds) 

 
diagram for the set of m arbitrary-shaped objects 
represented by parametric curves, can be computed in 
time O 𝑁 log𝑁 . 
Proof.  In papers [Prep85b, Fort87a, Sha75c] authors 
provide the detailed description and complexity 
analysis of an algorithm for a Voronoi diagram 
construction for a set of 𝑁 points in O 𝑁 log𝑁 . If 
Voronoi diagram is represented by doubly connected 
linked list, then the following lemmas hold:  
Lemma 1. Merging two neighboring Voronoi cells 
represented by doubly-connected linked lists can be 
performed in O 1  time. 
Proof. In order to merge two neighboring Voronoi 
cells we should merge corresponding doubly-
connected linked lists. This operation is simple 
pointers reassignment and it can be performed in O 1  
time. 
Lemma 2. Approximation of the Voronoi diagram for 
arbitrary-shaped parametric curves on a plane can be 
performed using the pre-computed Voronoi diagram 
for points in O 𝑁  time. 
Proof. An approximation of Voronoi diagram is 
performed by merging the neighboring Voronoi cells, 
whose generators correspond to the same curve. The 
maximal number of Voronoi cells is N and one pair of 
neighboring cells can be merged O 1 . Thus, we can 
get an  approximation of Voronoi diagram with edges 
represented by polylines in time O 𝑁  (by merging all 
necessary pairs of cells). 

Taking into account Lemmas 1, 2 and the following 
statement: quadratic or cubic Bezier curves fit 
polynomial chains in time O 𝑀 , where 𝑀 - number 
of points in chain; we can formulate following lemma: 

 
Figure 4. Execution time comparison: green curve 
is proposed method for an approximate Voronoi 
diagram construction for N curves; blue curve 
shows execution time of “divide and conquer” 
[Prep85b] algorithm for N points on a plane. 

Lemma 3. An approximation of Voronoi diagram for 
arbitrary-shaped objects on a plane using Bezier 
curves can be computed in O 𝑁 log𝑁  time. 
Therefore, the approximation of the Voronoi diagram 
for a set of 𝑚 arbitrary-shaped objects on a plane, 
which are represented by non-intersecting parametric 
curves can be performed in time O 𝑁 log𝑁 , that 
concludes the proof. 
 

4. IMPLEMENTATION DETAILS 
In the implementation part we constructed the 
partition for a set of curves (based on the uniform point 
sampling) and then build the Voronoi diagram for the 
obtained partition using the “divide and conquer” 
algorithm described in [Sha75c]. In order to store the 
correspondence between curve indexes and points in 
partitioning, we used a hash map. For every index of a 
point it stores the index of the corresponding curve and 
also index of  previous and  next  sampled  point  on a 

Point 
Index 

Next point 
index 

Previous 
point index 

Curve 
Index 

1 2 -1 1 

2 3 1 1 

3 4 2 1 

… … … … 

N1 -1 N1-1 1 

N1+1 N1+2 -1 2 

N1+2 N1+3 N1+1 2 

… … … … 

N -1 N-1 M 

Table 1. Example of a hash table, which maps 
point indices to curve indices, it also stores indices 

of previous and next points on a curve; 
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Figure 5. Voronoi diagram for a set of sampled 

points comprising the partition set of input curves 
 
curve (for example, see Table 1, value -1 indicates no 
data). Another hash table maps index of a curve to an 
index of one of its endpoints from partition set. At the 
next step we merge Voronoi cells for neighboring 
points of a curve and get an approximate Voronoi cell 
of a curve (whose edges are polygonal chains). 
Voronoi diagram is represented by doubly-connected 
edge list (DCEL). The procedure of merging is the 
following: we start from some partition point of curve 
p; run BFS(p) and iterate through all neighboring 
points of the same curve. At each step we merge pair 
of Voronoi cells corresponding to the neighboring 
points and remove redundant edges of Voronoi cells. 
During the procedure of merging we also determine 
junction points of the resulting Voronoi diagram.  
 

5. EXPERIMENTAL RESULTS 
The practical implementation is made in C++ using 
OpenGL graphic library to visualize data and Qt 
framework for GUI. An input of data is provided either 
 

 
Figure 7. Voronoi diagram for a set of sampled 

points, which comprises a partition set 

 
Figure 6. An approximate Voronoi diagram (red) 

for a set of 16 ellipses (blue) 
 
by user manually or from SVG-files. The implemented 
code allows also to visualize the main stages of our 
algorithm (see Figures 1-2, 5-9). We also tested the 
performance of our method. All experiments in this 
paper were carried on Intel Core i7 2.3GHz processor 
computer with 4GB RAM.  
Figure 3 illustrates the results of the execution time 
testing. The execution time of the proposed algorithm 
was compared to the execution time of “divide and 
conquer” algorithm as described in [Prep85b]. This 
comparison (see Figure 4) shows how the complexity 
of input objects influences the computational 
efficiency of the method.  
Figure 4 also demonstrates the increase in 
computational time for curves in comparison to a set of 
points by the factor of approximately 20 (in case of the 
discretization step equal to ~0.1). The main reasons for 
such increase are computational overheads (curve 
discretization, approximation) and increase in total 
number of processed points. 
 

 
Figure 8. An approximate Voronoi diagram (red) 

for a set of 18 ellipses and 24 points (blue) 
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Figure 9. An example of approximate Voronoi 

diagram (red) for a set of 6 nonintersecting Bezier 
curves, 8 ellipses and 20 points (blue) 

 

6. CONCLUSION 
Thus, we propose an algorithm for approximation of 
the Voronoi diagram for a set of pairwise disjoint arcs 
on a plane. Arcs are represented by parametric curves. 
For curves we construct a partition set for which the 
Voronoi diagram is built. At the next step we perform 
a transformation of the obtained Voronoi diagram by 
merging neighboring Voronoi cells, which correspond 
to the same curve, and removing unnecessary edges. 
Thus, we obtain an approximation of Voronoi diagram 
with polynomial chains. We also propose to 
approximate these polygonal chains by Bezier curves 
and arcs. Cases of cubic and quadratic Bezier curves 
were analyzed. The type of approximating curve is 
chosen analytically. The total complexity of the 
proposed algorithm is O 𝑁 log𝑁 . 
However, we do not consider the case, when curves 
intersect or share the endpoint(s). As it has been 
shown in [Ram99a] applying the technique of 
sampling leads to inadequacy of approximations in the 
mentioned situations. Topological inconsistencies 
[Ram99a] are also considered (during the process of 
merging). A significant advantage of this approach is 
the ability to refine approximations for critical areas, 
defined by specific practical problems. This approach 
makes it possible to refine a critical local region of 
Voronoi diagram by supporting dynamic data 
structures like concatenable queues [Sha75c]. 
Current research is implemented in software, the result 
is illustrated on Figures 1-2 and 5-9. 
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