
Empirical study on label smoothing in neural networks

Mauro Mezzini
Roma Tre University

Via Castro Pretorio, 20
00182, Rome, Italy

mauro.mezzini@uniroma3.it

ABSTRACT
Neural networks are now day routinely employed in the classification of sets of objects, which consists in predicting
the class label of an object. The softmax function is a popular choice of the output function in neural networks.
It is a probability distribution of the class labels and the label with maximum probability represents the prediction
of the neural network, given the object being classified. The softmax function is also used to compute the loss
function, which evaluates the error made by the network in the classification task. In this paper we consider a
simple modification to the loss function, called label smoothing. We experimented this modification by training a
neural network using 12 data sets, all containing a total of about 1.5×106 images. We show that this modification
allow a neural network to achieve a better accuracy in the classification task.
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1 INTRODUCTION

One of the most important and studied problem in artifi-
cial intelligence and computer vision is the object clas-
sification problem [1]. In this problem we have a set of
objects, which can be images, speech, sounds and so on
and we may suppose that the numerical representation
of an object is a n-dimensional vector x ∈ Rn. There
exists a function f : Rn → {1,2, . . . ,K}, that associate
to each object x a class f (x), where K ∈ N, is the num-
ber of different classes (e.g. x is an image and f (x) is
the subject of the image). The solution to the classifica-
tion problem consists in determining a function equiv-
alent to f . Neural networks (NN) recently achieved a
very high accuracy in the classification tasks of images
[2, 3, 4, 5, 6, 7]. The classification problem can also be
related to other tasks such as object detection [8], image
segmentation [9].

The output of the NN, is a highly complex non-linear
function z(x) ∈ RK , which, in turn, is dependent on the
parameters of the NN. This function is used to obtain a
probability distribution of the class j given the object x,
called the softmax function. If z j(x) is the j-th compo-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

nent of z(x), j = 1, . . . ,K then the softmax function is
given by

p( j|x) = ez j(x)

∑
K
i=1 ezi(x)

(1)

The goal is then to obtain a softmax function such that
f (x) = argmax j p( j|x). In order to do this a NN is
trained using a training set D. Each element of D is
a couple (xi, f (xi)), xi ∈ Rn, i = 1,2, . . . ,N and N is the
size of the training set. In order to determine the accu-
racy of the network, a loss function is employed, that as-
signs to each object x a quantitative measure of the error
the NN made in classifying x. Often, the loss function
takes the negative logarithm of the softmax function as
follows

L(x) =− log p( f (x)|x) (2)

and, in order to improve the NN, the gradients (with
respect to the parameters of the NN, hidden in the def-
inition of z) of the mean of the loss function over all
training set

L =−1/N
N

∑
i=1

log p( f (xi)|xi) (3)

are back propagated along all the layers of the NN. The
negative logarithm of the softmax function can be in-
terpreted as the cross-entropy between the probability
distribution given in 1 and the true probability q( j|x) of
the class j given the object x.

H(q, p) =−
K

∑
i=1

q(i|x) log p(i|x) (4)
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In most of the literature regarding the cross-entropy loss
function in NN, the probability distribution q is taken as
follows

q( j|x) =
{

1 if f (x) = j
0 otherwise (5)

and having chose q as in (5), and substituting it in (4),
one obtains (2) which is commonly referred to as the
categorical cross-entropy. More in general the loss
function can be interpreted as the Kullback-Leibler di-
vergence [10] between the true probability q and p, de-
noted D(q||p), that is

D(q||p) =
K

∑
i=1

q(i|x) log
q(i|x)
p(i|x)

(6)

Note that the function given in (6) will be equivalent to
(4) when we choose q as in (5).
The reason that the probability q is taken as in (5) is
motivated by the obvious fact that the training set D is
prepared before the actual training and who prepares
the training set knows "for sure" (a priori) that the
object x has a class f (x). However, even who prepares
the training set is subject of error and there is a degree
of uncertainty for some images. For example, the
CIFAR-10 [11] training set is composed by 50000
images of resolution 32 × 32 × 3 and there are 10
different classes. Some images appears as a confuse
blob of green and brown color. A person that looks
at one of these images barely recognizes it as a frog
and the classification of the image is based more on
excluding that the image could not be an airplane, a car
and no one of the other classes, rather than based on a
certainty that the image is a frog.

One of the main problem in training a neural network is
the over-fitting. The over-fitting of a neural network, is
the problem that prevent the network to generalize and
obtain accurate prediction on samples not contained in
the training set.
Moreover and worse, one finds that, sometimes, the
training process spends a lot of time to reduce the loss
(3) without even achieve better fitting on the training
set. With a close inspection in fact one can observe
that a considerable amount of the time is spent, by the
training process, on to make better an already good
and accurate prediction. Ad example, suppose there
are K = 10 different classes and take the softmax func-
tion computed by a network for an object α as follows:
p( f (α)|α) = 0.19 and p(i|α) = 0.09 for i 6= f (α).
With this value the network accurately predicts the class
f (α) and the value of the loss function ((3)) for the
sample α is − log p( f (α)|α) = 1.6607. However if
we assign to the softmax function a different value, for
example p( f (α)|α) = 0.91 we obtain a loss equal to
0.0943 which is considered better to the training pro-
cess with respect to the previous value. But this new

value does not improve neither the accuracy of the net-
work on the training set nor the accuracy of the network
on the test set.
So based on this observation we propose a simple mod-
ification to the cross-entropy called label smoothing.
The rest of the paper is organized as follows. In Section
2 we present and briefly discuss the related works. In
Section 3 we present the modification to the loss func-
tion. In Section 4 we present the results of the experi-
ments. In Section 5 we conclude the paper.

2 RELATED WORKS
In literature numerous strategies are used to prevent the
over-fitting. Data augmentation is one of the best prac-
tices employed [12, 13, 14]. In this case, each sample
of the training set is modified. For example an image
is manipulated by shifting it, rotating it or by chang-
ing the level of its brightness. The manipulated images
are added and used in the training set. Dropout tech-
nique [15] also has been proved effective in reducing
the over-fitting. In this case a random sample of neu-
rons of a layer of the network are dropped out and the
forward and backward propagation is made only on the
thinned network. Batch normalization [16] is found to
be a form of regularization of the network.
In [17] it has been proposed to disturb the loss layer
by randomly changing the label of each sample accord-
ing to a multinulli distribution. In this way the label of
a sample can be different from the true label. The re-
sults of the experiments made on five different data sets
show that the method effectively prevent the network in
over-fitting. However the authors used in their exper-
iment a LeNet-like [18] or AlexNet [2] models which
have a shallow architecture (only 5 layers deep) and
they are somewhat "older" models. In our experiments
we make use of the recent ResNet model [3, 19] and a
much deeper architecture on 12 different data sets.
In [20] label smoothing methods are proposed that
modified the loss function by using its own prediction
distribution.
The concept of label smoothing regularizations (LSR)
has been investigated in [21]. They established the
ground-truth probability distribution as

q( j|x) = (1− ε)δ j, f (x)+ εu( j)

where δ j, f (x) = 1 if j = f (x) and δ j, f (x) = 0 otherwise,
and u( j) is a fixed distribution. By setting ε = 0.1 and
u( j) = 1/K they reported a gain of 0.2% in the accuracy
of the Inception model on the ImageNet dataset [22].
In [23] it is proposed a regularization technique which
consist in the following. If the network is over-fitting
this means that the entropy of the softmax, given by

H(p) =−
K

∑
i=1

p(i|x) log p(i|x))
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is low. Therefore the idea is to penalize the loss func-
tion by adding a negative entropy to the loss function as
follows

L′(x) =− log p( f (x)|x)−βH(p);

where the parameter β control the strength of the pe-
nalization.

All the above mentioned works experimented the pro-
posed methods either on one or two benchmark data
sets or are carried on using somewhat "older" NN mod-
els. the contribution of this paper is to extend the ex-
perimentation on wide range of data sets and using the
latest state-of-the-art models.

3 THE LABEL SMOOTHING
The softmax function assign to each object x and to
each possible class c a value 0 ≤ p(c|x) ≤ 1. In pre-
dicting the class of the object x, using the NN, we sim-
ply take ĉ = argmaxc p(c|x); we do not care which is
the value of p(ĉ|x), we care only that ĉ is the class such
that p(ĉ|x)> p(c|x) for all c 6= ĉ; furthermore, in mea-
suring the accuracy of the prediction we do not care
how high is the p(ĉ|x). For example, suppose there are
10 different classes, that is K = 10, and suppose that
p(ĉ|x) = 0.2 and p(c|x) = 0.8/(K − 1) for c 6= ĉ. If
ĉ = f (x) then we consider the network very accurate
in predicting the class of x, even tough 0.2 is very far
from 1.0. This is sometimes similar in what a human
do in recognize an image. Sometimes we have not the
certainty that the class of an image is a deer but we can
exclude that it is a dog and it is a horse, so we classify
it as a deer.

So, in order to apply this idea we use, as a loss function,
the cross-entropy between the softmax function (1) and
a probability distribution other than (5). If 0 ≤ γ ≤ 1
then we may choose q as

q( j|x) =
{

γ if f (x) = j
(1− γ)/(K−1) otherwise (7)

with the constraint that γ > 1/K. The above methods
can be implemented in existing software almost effort-
less. We made extensive experiments using state of the
art NN for classification on several data sets. We report
the results of the experiments in the following section.
We found that, in many settings, there is a value of γ

that improve the accuracy of the net with respect to the
categorical cross-entropy.

4 THE EXPERIMENTS
We used the ten datasets of the Visual Domain De-
cathlon challenge presented in [24], the MNIST dataset
of handwritten digit recognition [18] and the CIFAR-10
dataset. The detailed description of all these datasets is

provided in [25], see also [11, 26, 27, 28, 29, 30, 31,
32]. We used Tensorflow framework [33] with Keras
high-end library [34] on two Tesla P100-SXM2 GPUs.
We trained each dataset with the model ResNet v2 [19]
or with the model ResNet v1 [3]. In order to opti-
mize the limited resource of GPU time and memory
we choose to implement the ResNet v2 model with 83
layers and the ResNet v1 model with 20 layers. We
used the last model only for the dataset ImageNet and
MNIST. The optimizer method utilized for training the
network is Adam [35], with initial learning rate of 0.001
which is reduced to of a factor 10−1 after 80, 120 and
160 epochs and of a factor of 0.5× 10−3 after 180
epochs, for a total of 200 epochs. Each data set, with the
exception of ImageNet data set, has been normalized by
subtracting the mean over all the training sample.

Due to limited time 1, the training of ImageNet data
set has been stopped after 100 epochs. Furthermore
the model ResNeXt having 83 levels it has been trained
only for γ = 1 ad with γ = 0.9. Other experiments on
ImageNet were done by training a 20 layer ResNet v1
for the value of γ ∈ {1.0,0.9,0.8,0.5}. In addition the
minibach size for the imagenet training has been put at
64 training sample. To each image of the data set has
been applied a simple data augmentation manipulation
consisting in randomly shift the image, horizontally and
vertically, up to 10% of the original width and height
respectively, followed by a random horizontal flip.

Since the goal of the study is to asses the differences
of accuracy of the network for different values of the
parameter γ , we did not intend to compare our results
to the best state-of-the-art models.

For each data set we tested the value of γ from 1 to a
value greater than 1/K +0.1 where K is the number of
different classes of the data set.

In Table 1 and 2 we report the results of the experi-
ments made on the ten data sets of the Visual Domain
Decathlon challenge, the MNIST and CIFAR-10 data
sets. The value of γ ranged from 1.0 to 1/K +0.1 with
step value of 0.1. For the value of γ and for each data
set, is reported the best accuracy attained on the valida-
tion set. We can see that there are sometimes dramatic
improvement in the accuracy in some of the data set of
the experiment as reported in Table 3 in which it is com-
pared the value of the accuracy with γ = 1.0 and the best
accuracy obtained among all different values of γ . We
can observe that one limitation of our approach is that
the value of γ , for which the best accuracy is attained,
is not the same on the various data sets making difficult
to adapt this method to other cases.

1 On two Tesla P100-SXM2, each epoch require more than
8000 seconds to terminate
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γ

Dataset 0.10 0.20 0.30 0.40 0.50
aircraft 24.82 36.43 39.08 40.82 41.03
cifar100 59.25 66.76 69.06 71.20 71.39
daimlerp. - - - - -

dtd 28.21 27.78 25.92 26.98 25.49
gtsrb 99.68 99.78 99.81 99.86 99.83

omniglot 82.87 83.50 84.22 84.75 85.21
svhn - 92.41 93.05 93.64 93.62

ucf101 64.79 72.78 74.37 75.91 74.88
vgg-flow. 51.03 52.80 50.93 49.66 48.09

ImageN.(a) - - - - -
ImageN.(b) - - - - 35.59

cifar10 - 86.98 88.77 90.33 90.76
mnist - 99.41 99.46 99.61 99.54

Table 1: For the value of γ ∈ {0.1,0.2,0.3,0.4,0.5}
and for each dataset is reported the best accuracy at-
tained on the validation set. The data sets daimlerped-
cls, K = 2 classes while svhn, cifar10, and mnist have
K = 10 classes. Therefore there are no data for the value
of γ ≤ 1/K on these data sets. The model (a) used for
ImageNet is ResNet v2 with 83 layers trained for 100
epochs, while the model (b) is ResNet v1 with 20 lay-
ers trained for 200 epoch. The model used for mnist is
ResNet v1 with 20 layers.

γ

Data set 0.60 0.70 0.80 0.90 1.00
aircraft 38.06 41.09 36.10 38.63 34.75
cifar100 71.80 71.88 71.73 71.34 70.83
daimlerp. 99.80 99.83 99.97 99.91 99.98

dtd 25.39 25.23 23.42 23.68 25.28
gtsrb 99.86 99.85 99.82 99.87 99.94

omniglot 85.21 84.61 83.28 82.01 77.95
svhn 93.79 93.95 94.07 94.22 93.82

ucf101 74.37 74.17 74.17 72.17 70.12
vgg-flow. 46.32 48.48 45.83 44.26 42.30

ImageN.(a) - - - 45.93 42.87
ImageN.(b) - - 43.00 43.95 44.76

cifar10 91.60 91.95 92.20 92.54 93.31
mnist 99.53 99.55 99.55 99.61 99.56

Table 2: For the value of γ ∈ {0.6,0.7,0.8,0.9,1.0} and
for each data set is reported the best accuracy attained
on the validation set. The model (a) used for ImageNet
is ResNet v2 with 83 layers trained for 100 epochs,
while the model (b) is ResNet v1 with 20 layers trained
for 200 epoch. The model used for mnist is ResNet v1
with 20 layers.

Data set Best Acc. γ = 1 diff %
aircraft 41.09 34.75 15.41
cifar100 71.88 70.83 1.46
daimlerp. 99.98 99.98 0.00

dtd 28.21 25.28 10.38
gtsrb 99.94 99.94 0.00

omniglot 85.21 77.95 8.52
svhn 94.22 93.82 0.42

ucf101 75.91 70.12 7.63
vgg-flow. 52.80 42.30 19.89

ImageN.(a) 45.93 42.87 7.12
ImageN.(b) 44.76 44.76 0.00

cifar10 93.31 93.31 0.00
mnist 99.61 99.56 0.05

Table 3: The best accuracy achieved compared to the
accurcay of the model trained with γ = 1.

5 CONCLUSIONS
We proposed a simple and easy to implement method
of regularization of the model, called label smoothing,
and we made extensive experiments on several data sets
using state-of-the art very deep models. We showed
that this method may be very effective in regularize the
model and mitigate over-fitting. Future researches may
investigate to mix the method proposed in this paper
with the ones proposed in [17, 23], and at the same time,
extending the experiments to different models.
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