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Abstract—This paper deals with rotor and stator resis-
tance estimation of induction motor (IM) drive based on
augmented Extended Kalman Filter (EKF). The proper
knowledge of rotor flux magnitude and flux position is
a necessary condition for high performance induction
motor control (Rotor Flux Field Oriented Control -
RFOC etc.). The rotor flux estimator for RFOC is
typically based on mathematical model of induction
motor in dq coordinates, which are sensitive to rotor
resistance value. The rotor and stator resistances are
temperature dependent and could increase up to twice
the nominal values. This paper deals with rotor flux
estimator for induction motor without any temperature
sensors. Whereas the EKF based methods commonly used
the rotating reference frame based IM models, presented
method is based on the stationary reference frame model
of the IM. The augmented state space vector of EKF
model of IM is used for rotor flux and rotor and stator
resistances estimation. The paper consist of simulation as
well as experimental results.

I. INTRODUCTION

A fast torque control with constant switching pulse
width modulation (PWM) frequency is the main advan-
tage of the rotor flux field oriented control. The basic
control structure based on PI controllers with decou-
pling algorithm between dq axes is well known and
established as common control algorithm of industrial
drives (fig. 1.-located in the bottom part of the paper).
This research has been motivated by the industrial
demand for high-dynamics RFOC without harmful
temperature dependency of the rotor flux calculation.
Various papers have been presented for rotor time
constant or rotor resistance adaptation. These methods
could be divided into three groups.

The first group of methods are based on the model
reference adaptive systems MRAS e.g. [1], [2], [3]. The
main idea of these methods is to use the voltage model
of the IM, which is not sensitive to rotor resistance
value as a reference model. The difference between
current model and reference voltage model of IM is
used for current model adaptation. These adaptation
methods could be slow and sensitive [4]. The stator
resistance variation, voltage drops and deadtime effects
of power converter etc. could have the strong impact on
precision of rotor resistance estimation. On the other
hand MRAS methods are computational effective and
thus could be implemented in low cost processors.

The second group of methods are nonlinear estima-
tors based for example on neural networks [5], [6],

[7], fuzzy systems [8], [9], sliding mode observers [10]
etc. These methods are mostly difficult to implement.
Furthermore, nonlinear observer based methods have
generally high computational requirements. Moreover,
the robustness of these methods to stator resistance
variation and nolinear phenomena of power converter
are oftenly not sutisfied.

The third group of methods is based on EKFs.
EKF is linearized version of popular Kalman filter
[11]. The Kalman filter is optimal state estimator
for linear systems with gaussian disturbances. EKFs
methods can estimate the actual values of the rotor
flux, stator currents, motor speed, motor parameters
etc. and thus could be more universal than previous
mentioned methods. The computational requirements
of EKFs are mainly influenced by the size of the EKFs
state space vector. Whereas the EKF based methods
commonly uses the rotating reference frame based
IM models [12], presented method is based on the
stationary reference frame model of the IM. The EKF
model is augmented by rotor and stator resistance
estimation. In the paper is described that the stator
resistance estimation has large impact on the precision
of the rotor resistance estimation.

The advantage of selected stationary reference
model of the IM is presented in section II. The station-
ary reference frame model used for EKF derivation is
described in section III. The section IV is focused on
the EKF algorithm used for rotor resistance estimation.
The section V describes the IM control structure used
for simulation and for laboratory prototype of the IM
drive. The section VI is dedicated to simulation and
experimental results and the last section is conclusion.

II. INDUCTION MOTOR MODEL SELECTION FOR
ROTOR RESISTANCE ESTIMATION

The mathematical models of IM could be generally
divided into two types. The first one is stationary
reference frame (o) model and the second one is
model in the rotating reference frame (dq). The model
in dq reference frame could be affected by non-correct
dq angle causes difference between real and estimated
position of flux. The Kalman filter based approaches
for rotor resistance estimation used the error between
predicted currents of model and measured currents to
adapt states or estimated parameters of model. The dq
currents are gained from the measured currents by Park

ISBN 978-80-261-0386-8, (©)University of West Bohemia, 2015



transform based on the knowledge of the rotor flux
position and thus they are dependent on correct trans-
form. The rotor resistance mismatch between real IM
and its model causes differences in real and estimated
position and amplitude of the rotor flux. Furthermore
the Kalman filters work best with the Gausian (normal)
types of the noise distribution and park transform
changes the probabilistic distribution of the noise in
dq currents. Mainly for these reasons it is better to use
stationary reference frame models for rotor resistance
estimation.

ITI. STATIONARY REFERENCE FRAME MODEL OF
M

For EKF estimator derivation were used equations
(1 - 5) of the IM in stationary reference frame. The
model is by following equations and parameters:
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This parametrization was used to reduce the computa-
tional requirements of model calculation with extracted
state variables and time-variant (temperature depen-
dent) rotor and stator resistances. The EKF model of
the drive doesnt contain the last (5) motion equation,
because its not required for rotor resistance estimation
with speed measurement.

IV. EXTENDED KALMAN FILTER FOR ROTOR
RESISTANCE ESTIMATION

The presented EKF model has rotor and stator
resistance adaptation and estimated rotor resistance
can follow resistance drift caused by temperature. The
model is described by matrices in Table II (located in
the bottom part of the paper). The main advantage is
the low sensitivity of the rotor flux estimation to rotor
and stator resistances as well as inverters dead-times

effects and voltage drops. The main drawback is larger
computational requirement. The EKF is the nonlinear
version of the popular Kalman filter. The nonlinear
model is linearized by using Jacobian matrix (Table
IIT) and algorithm contains two basic steps: prediction
and update (correction).

Prediction step

L(kt11k) = AD(w,Rr.Rs)T (k) + Bouw)  (6)

P(k+1|k) = JP(k)JT +Q (7)

Update step
Ky = (Py1vyCh) / (Co Py Ch + R) - (8)

Pty = Pty = Ky CoPlrgriey - 9)

T(rt1) = Ttk T Key (Ww) — Co&egry) (10)

Where P (6x6) is covariance matrix, J (6x6) is the
Jacobian matrix, Q (6x6 diagonal) is covariance matrix
of the process noise, R (2x2 diagonal) is the covariance
matrix of the measurement noise (for af currents
in our case) and K (2x6) is the Kalman gain. The
vector x (6x1) contains predicted currents, rotor fluxes
and rotor and stator resistances (see Table II). Vector
y (2x1) contains measured currents in «f reference
frame. Multiplying by Cp (6x2 identity) matrix is
the selection process of matrices elements. Despite the
fact, that matrices Ap and J are relatively large (but
also quite sparse), the algorithm can be implemented
in low cost 150 Mhz floating-point DSP processor
like TMS320F28335 with 100us sampling time for the
whole control loop with 40% of processor utilization.

V. RFOC SYSTEM DESCRIPTION

The whole control system structure is shown in fig.
1. For amplitude and angle flux computation in the
RFOC the Ig, w current model is the most commonly
used algorithm (equations 11 - 14). This model is
insensitive to stator resistance and voltage drops of
IGBTs. The main drawback is visible in egs. 6, and
7, which are sensitive to rotor resistance. The error in
rotor resistance results to error of flux amplitude (eq.
11.) and flux actual speed (eq. 12.). This model is used
for comparison with presented method based on EKF.
The second popular algorithm for flux computation
based on the stationary reference frame voltage model
of IM is rotor resistance insensitive. On the other
hand, the voltage model is sensitive to stator resistance,
converter voltage drops and furthermore computation
of fluxes could leads to dc offset problem.
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tsq(k)RrLM
= 12
WR(k) VnooLn (12)
Ws(k) = PpW(k) + WR(k) (13)
Vy(k) = Vp(k—1) T Wa(r)dT (14)

The rotor flux positionvy, ) is used for currents
transform to dq axes and backward transform of output
voltages to stationary reference frame. The actual rotor
flux value Wpr() is compared with the reference flux
and resulted error affects the flux PI controller output.
The output of the flux controller is required d axis
stator current, which is also controlled by PI type of
controller to its required value. The similarly, speed
error is minimized by the PI speed controller and
resulted required q axis part of current is controlled by
PI controller. All controllers are extended with anti-
windup part to prevent drift of integration. Decoupling
algorithm is used to decouple d and q axes. Resulted d
a q voltages are transformed by inverse Park transform
to stationary reference frame and the duty cycles of
transistors are calculated by the space vector PWM
algorithm.

VI. SIMULATION AND EXPERIMENTAL RESULTS

Presented flux estimators (based on EKF and Ig, w
current model) were simulated for two cases. The first
case is simulated for PWM inverter model without
consideration of dead-time effects and voltage drops.
The results are shown in fig. 2. The rotor fluxes in
af reference frame and rotor and stator resistances
are estimated with minimal errors. The fig. 3 presents
the same scenario with inverter dead-times and voltage
drops. There is visible marginal error on the estimated
stator resistance. The effects of the semiconductors
dynamic resistances and dead-times effects etc. are
added to the estimated stator resistance. Thanks to this
EKF property the rotor resistance and rotor fluxes are
still estimated without any significant errors. The fig. 4
presents reduced EKF model without stator resistance
estimation with inverter dead-times effects and voltage
drops. In this case the errors in the rotor fluxes and
resistance are quite large. In the experimental setup
(parameters in Table 1.) was for RFOC used Ig, w
current model (eq. 6 - 9) with correct parameters and
cooled motor (rotor and stator resistances are near to
its nominal values). The EKF worked in the open
loop and the current model with correct parameters
could be used as a reference. In the experiment the
EKF was initialized to mismatched parameter value
of the rotor or the stator resistance. Fig. 5 shows the
transient of o fluxes to mismatch rotor resistance
of EKF. The fig. 6 and 7 shows EKF behavior to
rotor resistance initialization mismatch in dq reference
frame. The stator resistance initialization error case is
shown in fig. 8 and 9 (in dq reference frame). The
differences between rotor fluxes are very small for all
experiments and estimated rotor resistance equal to the
real (nominal) value. Stator resistance is not estimated

correctly due to voltage drops of inverter IGBTs and
dead-time (2us ) effects. These influences are added
to the EKF stator resistance.

TABLE I
NOMINAL PARAMETERS OF IM DRIVE

’ Parameter \ Description \ Value
Prated Rated power 4 [kW]
Pp Number of pole pairs 2
RS nomina Nominal stator resistance 1.32 [£2]
RR nominal Nominal rotor resistance 1.51 [£2]
Lum Nominal main inductance | 0.165 [mH]
Ls Nominal stator inductance | 0.172 [mH]
Lr Nominal rotor inductance | 0.172 [mH]

VII. CONCLUSIONS

In this paper, the EKF for stator and rotor re-
sistance estimation for the IM drives was presented.
The accurate value of the rotor resistance is required
for correct rotor flux estimation. Whereas the EKF
based methods commonly used the rotating reference
frame based IM models, presented method is based
on the stationary reference frame model. The paper
results show, that the stator resistance estimation is
also necessary condition for high quality rotor flux
calculation even the proper stator resistance is known.
The impacts of voltage drops of inverter semiconductor
devices and dead-times effects on the rotor flux and
resistance estimation could be reduced by extending
state space vector of EKF model by stator resistance
estimation. The paper presents simulation as well as
experimentation results. The EKF estimator was im-
plemented in TMS320F28335 DSP processor.
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Fig. 1. Rotor flux oriented control with flux estimator based on EKF experimental and simulation setup
TABLE II
THE DISCRETE STATE SPACE MATRICES OF IM EKF ESTIMATOR (PARAMETRIZATION IN SECTION III)
1- (aRs(t) + bRR(t)) dT 0 CRR(k)dT ew(k)dT 0 0
0 1-— (aRs(t) + bRR(t)) dT —€W(k)dT CRR(k)dT 0 0
An = gRR(k)dT 0 1-— hRR(t)dT —kUJ(k)dT 0 0
b= 0 gRR(ydT kwydl 1 —hRpueydl 0 0
0 0 0 0 1 0
0 0 0 0 0 1
15)
v [fdar 0 0 0 0 0 [1 00000
Bp=1" fdT 0 0 0 0 =141 00 0 0 (16)
2y = lisak) isak): PRatk)s Urs (k) RReky Rs)s Yy = lisatr» ispm)]
TABLE III
THE JACOBIAN MATRIX OF IM EKF ESTIMATOR AND Q, R SETTINGS (PARAMETRIZATION IN SECTION III)
1-— (aRS(t) + bRR(t)) dr 0 CRR(k)dT ew(k)dT 51 Js1
0 1-— (aRS(t) + bRR(t)) dT —BW(k)dT CRR(k)dT Jso  Jg2
J = gRR(k)dT 0 1-— hRR(t)dT —kW(k)dT J53 0
- 0 gRR(k)dT kw(k)dT 1-— hRR(t)dT J54 0
0 0 0 0 1 0
0 0 0 0 0 1
a7

J51 = WRar)dT — bisa)dT, Js2 = Wrpm)dT — bisg)dT, Js53 = gisar)dT — MWRa)dT,
54 = gisprydT — hWpeydT, Jo1 = @isakydT, Joo = aigg(rydT

ReR*™2 = diag([0.005,0.005]), QeR*® = diag([1-107%,1-107%,1-1071°,1-107%°,1.1077,1-1077))
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Fig. 2. EKF simulation results for inverter without voltage drops
and dead-times- RR?REAL’ RS?REAL/ RR_EKF’ RS?EKF are real/esti-
mated rotor and stator resistances, ¥ro_ReAL> YR3_REAL! Y Ra_EKF,
Yrp_Exr are real/estimated rotor fluxes. In 0.7s step change of
R]{REALtO 2XRR7NOMINALa-nd in 0.9s step change of RSfREALtO
2xRs_NOMINAL
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Fig. 3. EKF simulation results for inverter with voltage drops

and dead-times- Rr reaL, Rs Rear/ Rr_Exr, Rs gxr are real/esti-
mated rotor and stator resistances, ¥ro_ReAL> YR3_REAL! Y Ra_EKF,
Yrp_exr are real/estimated rotor fluxes. In 0.7s step change of
RR_REALtO 2XRR_NOMINALand in 0.9s step change of RS_REALtO
2xRs_NOMINAL
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Fig. 4. EKF simulation results for inverter with voltage drops and
dead-times and without Rg gkp adaptation - R reaL, Rs ReaL/
Rr_Exr, Rs gxp are real/estimated rotor and stator resistances,
YRa_REAL> YRB_REAL! YR _EXF, YR_EKF are real/estimated rotor
fluxes. In 0.7s step change of Rg_rearto 2XRr_nomimvar.and in 0.9s
step change of Rs ReALtO 2XRS?NOMINAL

LeCroy|

20 ms

Wre ekr Wrp_ exF

Wrg_CURRENT

\VR/ CURRENT

Fig. 5. Experimental setup. Computed a3 rotor fluxes components
of current /g, w model with correct resistances and EKF with step
change on RR_gkr - transient detail
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Fig. 6. Measured rotor flux magnitude from current Is, w model
with correct resistances and EKF with rotor resistance initialization
mismatch to 02 (RR NOMINAL=1~SlQ)
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Fig. 7. Measured rotor flux magnitude from current g, w model

with correct resistances and EKF with rotor resistance initialization
mismatch to 4Q (Rgr nominaL=1.51€2)
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Fig. 8. Measured rotor flux magnitude from current Is, w model
with correct resistances and EKF with stator resistance initialization
mismatch to 02 (RS NOMINAL=1~3ZQ)
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Fig. 9. Measured rotor flux magnitude from current s, w model
with correct resistances and EKF with stator resistance initialization
mismatch to 4Q (Rs nominaL=1.322)
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