
Abstract –  This work describes a  way to  optimize  the
controller  fixed-point  representation in programmable
logic  devices  (eg.  FPGA) with genetic  algorithms.  The
optimization uses the error between floating-point and
fixed-point  representation  as  well  as  a  quantization
noise  error  model.  Thus,  both  terms  allow  weighting
between  the  to  be  expected  theoretical  and  actually
occurred simulation error. This task could be automated
easily due to the script features of the simulation system.

Fixed-Point; Simulation; Quantization; Optimization;
Genetic Algorithm; FPGA

I.  INTRODUCTION

The controller  design and simulation is typically
based  on  floating  point  representation  (infinite
precision).  The  implementation  of  the  control
algorithm in the “real world” target hardware usually
requires  a  fixed  point  representation  with  finite
precision. However, this representation is bounded due
to the limited resources in programmable devices. Or
the word length is fixed by the arithmetic logic unit
(ALU) in digital signal processors (DSP).

The  accuracy  within  DSP  implementations  is
determined by the maximum required integer number
range  of  the  signals.  An automated  conversion  into
fixed-point  arithmetic  is  therefore  easily  possible
[1, 2]. The word length for FPGA applications is not
fixed unlike DSP implementations. There cannot be a
compromise  between  the  maximum  number
representation  and  accuracy.  Thus,  a  trade-off  is
necessary between system noise and the word length,
which represents the FPGA load.

Digital filters applied with test signals in open-loop
operation have been studied in several publications for
example in [3–8]. Analysis methods based on affine
arithmetic and interval arithmetic were used in [9, 10]
to examine range and precision in DSP applications,
whereas  [11]  combines  both,  analysis  methods  and
simulations to reduce  overestimation of word length
and therefore reduce implementation costs.

Regulators  are  considered  for  fixed-point
optimization  in  this  paper.  They  usually  have  an
integral  part  and cannot be easily analyzed in open-
loop  configuration.  Furthermore,  the  complete  loop
including plant has an impact on the resulting system
performance. Thus, the regulator as a kind of digital
filter  cannot  be analyzed  as a  stand-alone unit.  The
analysis  must therefore be made in closed loop, but
this makes the signals statistically dependent.

The proposed optimization in this paper consists of
two parts to minimize these effects. These parts shall
be  determined  by  two independent  simulation  runs.
The first  step determines  the  error  between  floating
point  and  fixed-point  simulation  independent  of  the
occurring  signal  correlation.  Resulting  quantization
effects  might  have  rigorous  effects  for  the  whole
system  (e. g.  oscillations  or  equilibrium).  A  simple
noise  model  is  used  in  the  second  step  to  avoid
statistical dependence. The result of this model should
therefore address an additional weighted term in the
optimization.

An evolutionary algorithm,  which  is  inspired  by
natural  selection,  is  particularly  suitable  due  to  the
non-convex nature of this optimization problem.

II. SOME BASICS

A. Number Representation

The fixed-point representation consists of a 3-tuple
word length WL, fraction length E and the sign S

⟨S,WL, E⟩ , (1)

where S of the signed representation enters the word
length  and thus reduces  the available  number  range
(Figure 1).

The  number  range  for  signed  and  unsigned
representation results to

unsigned: 0…(2WL−1)2E

signed: −(2WL−1
)2E…(2WL−1

−1)2E
. (2)

The  word  length  of  the  integer  portion
WLi = WL+E can be calculated very easily from their
maximum value. For an unsigned number, this is
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Figure 1. Fixed Point Representation (Binary Point shown for E<0)
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WLi
us

=⌈log2(x+1)⌉ , x≥0 , (3)

whereas ⌊ ⌋ represents the floor and ⌈ ⌉ the ceil operator.
Similarly, the integer word length for a signed number
is obtained to

WLi
s
={⌈log2(| x |+1)+1 ⌉ ∀ x≥0

⌈log2 | x |+1⌉ ∀ x<0
, (4)

where  the  bit  for  the  sign  must  be  added  and  the
correction term for negative numbers is omitted. 

The reciprocal value can be used for numbers less
than one

WL+E−c=−⌊log2| 1x |⌋ , |x |≤1

unsigned : c=1 ; signed: c=2

(5)

to  make a  statement  about  the  relationship between
WL  and  E.  Only  the  word  length  decides  about
accuracy and the resulting number range.

B. Evolutionary System Optimization

Evolutionary  algorithms  (EA)  are  a  class  of
optimization  methods,  which  are  inspired  by  the
natural  evolution of  living  beings.  Solution sets  are
developed  artificially  across  generations  for  a
particular  problem based  on  natural  selection.  They
run through similar processes as in the real world:

 Recombination: Distribution  and
rearrangement of DNA

 Mutation: Random variation of the genome

 Selection: Selection of the population with the
best "fitness"

Advantage of this natural like optimization method
is  a  satisfactory  solution  to  very  complex  search
spaces.  Disadvantage  is  the  slow  convergence
behavior  and  resulting  calculation  time  because  the
presented optimization is based on system simulations.

III. ALGORITHM

The  conversion  of  a  floating-point  into  a  fixed-
point model is very complex and should be done in
three  steps.  Controller  parameters  have  no share  on
system  noise  and  are  only  responsible  for  the
performance  and  system  stability.  A  large  class  of
signals, but at least the interfaces to the analog world,
are predetermined and others can be further derived.
Integer signal widths are obtained from the maximal
value  range.  Optimization  is  necessary  only for  the
rest  of  signals.  Thus,  the  fixed-point  transformation
shall be divided into:

 parameter quantization;

 specify from predetermined signals the

o integer signal width, sign and

o fraction length, if possible;

 system optimization of the remaining signals.

A. Parameter Quantization

Regulators are generated by any of the direct form
filter  structures  in  the  simplest  case.  The  resulting
pole/zero  (P/Z)  locations  can  have  significant
parameter quantization errors as shown in Figure 2 by
the roots of a 2nd-order polynomial.

The  sensitivity  may  be  found  very  easily  from
polar coordinate transformation

P (z)=1+a1 z
−1

+a2 z
−2

=(1− p1 z
−1

)(1−p2 z
−1

)

=1−2rcos Θ z−1+r2 z−2

(6)

and their solutions

p1 /2=r e
± jΘ

=r cos Θ± jr sin Θ

=α± jβ=−
a1

2
± j√a2−

a1
2

4
∀ a2>

a1
2

4

(7)

using the identity

β2=a2−
a1

2

4
=r2−α2 . (8)

The sensitivity of P/Z-locations derives to

Δ pi=∑
k=1

2 ∂ pi
∂ak

Δak ; i=1,2

with
∂ pi
∂a1

=−
1
2

∓ j
a1

4 β
;

∂ pi
∂a2

=± j
1

2β

. (9)

Thus for a 2nd order polynomial can be stated that

 a linear error dependency for the real part,

Figure 2: Second Order Filter Roots with Binary Point at -3
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 a 1/β-dependence of the imaginary error,

 or a 1/r-dependence directly on the imaginary
axis

exists. The linear error dependence of the real part is
only determined by Δa1. This results to a lowest root
error  location,  which  is  close  to  the  unit  circle  and
close to the imaginary axis.

However, the sensitivity of the P/Z-locations with
respect  to  parameter  changes  is  less  important  for
usage  in  regulators,  but  rather  the  limit  to  the
instability, i. e. the distance to the unit circle.

Therefore, a fraction length is proposed for initial
parameter  conversion,  which  adds  at  least  another
node upward directed to the unit circle

E≥⌊log2

1
1−r

+1⌋ , (10)

i. e. the smaller the distance between roots and unit
circle,  the smaller  the parameter  quantization has to
be. This proposal is limited only to stable poles and
zeros.

Not  content  of  this  article  is  a  possible  filter
structure  transformation  and/or  filter  splitting  into
second order stages (SOS). Here it will be referred to
relevant literature, e. g. [12, 13]. 

B. Determination of Integer Signal Width and 
Fraction Length

The determination of integer signal width WLi is
very easy using the determined min/max values from
simulation results. This was already shown in section
II.A.  Simulation  results  should  be  multiplied  by  a
correction  factor  to  obtain  sufficient  margin  to  the
number range limit.

Input  and output  signals  to  the “real  world”  are
usually defined in technical systems. Restrictions can
be found from the specification. Examples are the bit
widths of A/D and D/A converters  or PWM stages.
Technical restrictions are for example limits in loads
and  moments,  pressures,  maximum  travel  ranges,
power or current consumptions.

Therefore, a significant number of internal signals
can  be  solely  described  by  the  specified  interfaces.
Other word and fraction lengths can be determined by
forward and/or back propagation. For instance in case
of separate controller terms (P, I, D) simple guidelines
can be applied:

 The output quantization and proportional gain
determine  the  input  quantization,  or  vice
versa.

 The  input  quantization  and  integrator  gain
determine the quantization of the accumulator.

 The  input  quantization  and  differential  gain
determine the sensitivity of the differentiator.

Unfortunately, not all signals can be determined by
such simple considerations.  The system optimization
shall be used for the rest of it.

C. System Optimization

The system optimization shall consist of two steps.
The  error  between  floating  point  and  fixed-point  is
determined  in  the  first  step.  The error  of  the  noise
model is derived in the second step.

The weighting function J to be minimized defines
the sum of all fraction lengths  E. The error  of both
simulations e must fit inequality constraints (IEC) and
has to lie within an error bound ε

J=min∑−E
IEC: ε≻W |e |

. (11)

The weighting matrix W can be used to prioritize
or sum the error.

1) Error Models
a) Truncation

The  truncation  model  determines  the  calculation
error  between  floating-point  and  fixed-point
representation.  However,  the  signals  can  be  quite
different at various input values due to the correlation
of the quantization error signals. Therefore the system
should be constantly stimulated for possible reduction
of these dependencies.

b) Noise Model
A noise model is used in a second step to prevent

this correlation.  The additive quantization error  n in
Figure 3 is assumed to be a statistically independent,
bias-free, uniformly distributed white noise

n∈(−q2 ,
q
2 ] ; n̄=0 ; n̄2=

q2

12
. (12)

This  simplified  model  is  independent  of  the
operational area and should achieve identical solutions
in each operating point.

The error e is defined as the standard deviation of
all relevant (output) signals.

A solution to this problem is analytically possible
for  linear  time-invariant  (LTI)  systems.  All  relevant
transfer functions must be defined, but this requires a
wide  knowledge  of  control  engineering  and  is  very
time consuming by design.  In  contrast  to  –  System
simulation needs beforehand very less amount of time,
but is time-consuming for the actual optimization.

Figure 3. Simplified Model of Quantization Error
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IV. EXAMPLE

The  applicability  of  the  evolutionary  system
optimization shall be investigated by an example of a
cascaded  position  control  for  an  electromechanical
system  shown  in  Figure  4.  Cascade  structures  are
usually  used  for  motor  control  in  industrial
applications, e. g. in machine tools. The special PI-P-
PI cascade  is  employed  to track  a ramp function w
without  position  slack,  used  for  rotational  high
precision continuous raster scanning. The unknown bit
widths  are  marked  in  thick  and  known  signals  in
dashed  lines.  The  EA  has  to  determine  the
accumulator fraction length of the position and current
regulator and of the approximate derivative block as
well as the fraction length of the speed signal.

Known signals are:

 the PWM input of signed 11 bit,

 the encoder bit width of 21 bit,

 and the A/D current signal of signed 16 bit

which induce the same related lengths on set signal w,
position  control  input,  approximate  derivative  input,
speed control output and current control input.

The  simulation  is  based  on  double  precision.
Corresponding floor blocks for truncation or uniform
noise  blocks  are  integrated  to  induce  the  related
quantization noise in each step. Additionally, the time
is monitored in order to respond to singularities during
the simulation.  It  is  not  task of  the  optimization to
define the word length and quantize the parameters.

The inequality constraint only includes the position
error  in  the  quasi-static  simulation  area  without
weighting. The following limits are set:

Truncation model: max | e |≤1LSB

Noise model: std e≤1 /3 LSB

Both models are not coupled to each other in order
to make the results comparable.

A. Results

Each  simulation  lasted  approximately  about
20 seconds on an Intel Core™ Duo processor T2400
(2 MB  Cache,  1.83 GHz,  667 MHz  FSB).  A  few
hundred of them were used for optimization.

The EA with inequality constraints (11) has shown
to be inefficient for system optimization. Instead, the

constraints were added as additive penalty terms into
the fitness function

J=min∑−E+k1IEC+k2 ERR where

IEC={∑ f (W e):W |e |≽ε}
ERR={1:Simulation failed}

. (13)

Factor k1 adds the inequality constraints and k2 a non-
successful simulation.

The optimization results are shown in Table 1 and
Figure 5. It can be seen that the values for both models
lie in similar ranges.

TABLE 1: OPTIMIZATION RESULTS

Truncation Noise

Fitness 5 2

Inequality
Constraints

1 0.28665
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Position 9 6

Speed ― ―

Current 1 2

Differentiator 0 0

-E Speed signal [bit] -5 -6

A  cross  comparison  of  the  results  is  shown  in
Table 2. It turns out that the result of the noise model
does  not  reach  the  desired  fitness  in  the  truncation
model.  The proposed  linear  combination of  the  two
error  models  prevents  a  unilateral  solution  –  Both
models  must  fulfill  their  respective  inequality
constraints.

TABLE 2: CROSS COMPARISON OPTIMIZATION RESULTS

Model Fitness Inequality
Constraints

Noise result into
truncation

3002 3

Truncation result
into noise model

5 0.22981

The  gotten  optimization  result  of  the  velocity
signal is very interesting. It shows a large quantization
interval  of  32 LSB,  but  one  would  only  expect  a
fraction length of E ≤ 1 for the velocity controller P-
part of 0.635 by back-propagation.

Figure 4. Example
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Unfortunately  both  models  show  dependencies
within  different  operating  points.  This  has  been
confirmed by further simulations. The reason for this
could not be finally clarified, possibly due to the short
simulation time or simulation step size. Therefore, the
simulation should cover different operating points as
much as possible and extend for a longer simulation
time.

The search space of the optimization without the
position controller is shown in Figure 6. It can be seen,
that the search area is indeed non-convex.

V. SUMMARY

The  potential  of  the  proposed  algorithm  was
verified by an example. It turned out that good results
could  be  achieved  within  relatively  few  simulation
steps.  For  this  purpose,  the  fitness  function  with
inequality  constraints  was  transformed  to  a  fitness
with  additive  penalty  terms.  A  generic,  on  floating
point numbers based EA framework had been used for
the  tests.  Significantly  faster  convergence  could  be
achieved with a custom algorithm on integer numbers.
Simulation  results  should  be  kept  in  a  ring  buffer,
since simulations were performed several  times with
the same parameters.

The broad applicability of the algorithm to various
problems  of  fixed-point  transformation  as  well  as
providing a fully automated solution for the end user is
subject of further research.
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Figure 5. Simulation Results

Figure 6. Search Space (Best Fit=blue; Worst Fit=red)
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