Logboat — A Simulation Framework Enabling
CAN Security Assessments

Sven Plaga
Fraunhofer AISEC
Garching b. Munich, Germany

Abstract—Traditionally, fieldbus networks are oper-
ated in closed environments, where all communication
nodes are assumed to be trustworthy. Therefore, the
corresponding standards do not consider any security
requirements. New technology trends, such as the upcom-
ing Internet of Things (IoT), demand an interconnection
between all components of an industrial infrastructure.
As a consequence of this, there is a need for tools enabling
security assessments and the simulation of protocol-
based security improvements. In this paper we introduce
Logboat, a flexible Python and Linux based simulation
framework for security assessments on Controller Area
Network (CAN) networks and make some architectural
and technology-selection proposals. Subsequently, the dif-
ferent modules of Logboat and their capabilities are
explained and a use case scenario is presented. The
paper concludes with an outlook on upcoming research
activities on CAN bus security where the presented
framework can be of help.

I. INTRODUCTION

As illustrated in Figure 1, present industrial automa-
tion systems are composed of several levels aligned in
a hierarchically structure.

Enterprise/
Management

Control

id

Figure 1. Traditional Automation Topology and Industry 4.0

Sensors and
Actuators

The Enterprise/Management level consists of servers
running administrative applications which are also
partially connected to office networks. These systems
have an Internet Protocol (IP) based interconnection.
IP protocols are also used to obtain data from the
underlying control layer where the shop-floor automa-
tion is controlled by specialized embedded devices like
Stored-Program-Control (SPC) units. Using a fielbus
protocol, the SPC units are connected to the lowermost
layer, where they get sensor readings and communicate
commands to the respective actuators.

Stefan Tatschner

Fraunhofer AISEC
Garching b. Munich, Germany
sven.plaga@aisec.fraunhofer.de stefan.tatschner@aisec.fraunhofer.de

Thomas Newe
Electronic and Computer Engineering
University of Limerick, Ireland
thomas.newe @ul.ie

The upcoming paradigm of ubiquitous Internet of
Things, however, requires a radical breakup of the tradi-
tional hierarchical structures, replacing them by a new
intermeshed structure. Offering new opportunities, like
shorter time-to-market or low-priced small production
quantities, the new structures will enable new business
areas. Often seen as the next industrial revolution, this
trend is also often referred to as Industry 4.0 [1].

Flattening the traditional industrial topology, there is
little space to enforce proven security paradigms like
compartmentalisation or perimeter oriented protection.
As the new applications will require direct, unhindered
access to all levels of a shop-floor, it is likely that also
low-level fieldbus nodes will be exposed to Wide Area
Networks (WANS).

Fieldbus protocols, however, have not been designed
to fulfill any security objectives. As there are no
authenticity schemes, bus nodes blindly trust every
communication peer. Furthermore, the transmissions
are not encrypted. Consequently, attackers might be
able to fake nodes, perform man-in-the-middle (MITM)
attacks or eavesdrop the communication.

Vulnerabilities are also found in the protocol stacks
of the firmware layer. Here, programmers often do not
expect to be confronted with malicious attacks, like
communication nodes exploiting missing length checks
or unhandled protocol anomalies. These might be used
by an attacker for remote code execution or Denial of
Service (DOS).

Having safety and real-time constraints as the only
relevant requirements, a broad range of commercial
off-the-shelf (COTS) diagnosis and simulation tools are
neither enabled for fieldbus security assessments nor
do they offer any cryptographic extensions.

II. SEcURITY ASSESSMENTS FOR CAN

The Controller Area Network (CAN) [2] was origi-
nally developed for applications within the automotive
domain and later on adopted for other domains, e.g.
aerospace, avionics, or industrial shop-floors. Being a
proven and widely used protocol, an upgraded version
was released in 2012 with the CAN with Flexible Data-
Rate (CAN FD) standard [3].

Considering the application areas, its importance,
and future prospects, CAN is seen as a good starting
point for researching security of established fieldbus
protocols.

As many security research publications pointed out
[4], fieldbus security assessments require a protocol-
specific set of building blocks. Ideally, these are
implemented as modules and are part of an easy to
use and open framework. By combining these blocks,
further functionality is achieved.

For an optimal framework the following building
blocks are proposed:

. Capturing: Acquire data from the bus and provide
some functionality to store it in a structured format.

. Injection: Act as a communication peer and write
data on the bus.

. Filtering: Filter the captured messages in order to
find and extract specific information.

. Protocol Dissection: Recognize, follow and dis-
sect higher level transport protocols.

« Cryptography: In order to test novel cryptographic
protocol extensions [5], cryptographic primitives
need to be available. For key-exchange operations,
asymmetric ciphers must be present as well as
symmetric ciphers for data stream encryption. To
ensure integrity and authenticity, cryptographic
signature schemes are needed to be available.

. Fuzzing: For testing the impact of malformed
datagrams, a fuzzing module provides arbitrary
datagrams. These can be used by other modules
of the framework.

. Virtualization: Besides connecting a pysical bus,
the modeling of more complex communication
scenarios requires virtualized nodes and virtual bus
segments. For the implementation of real use cases,
the virtualized nodes must be able to communicate
with nodes on a physical bus.

The evaluation of market-leading COTS CAN toolkits
found that these lack the required high degree of
flexibility for the outlined building blocks. This is due
to their proprietary character as they are often based
on Microsoft Windows. Taking the huge programming
effort into consideration, re-implementing missing base
functions of the investigated COTS tools has been
assumed to be unreasonable.

Consequently, the field of open-source software was
investigated next. The results showed that the Linux
Kernel offers a stable support for CAN and also CAN
FD. Among several kernel modules, the SocketCAN
project, initially developed as a PhD project [6], was
selected as a baseline for the desired framework. Having
SocketCAN and the reliable Linux kernel at the basis,
the framework implementation could focus on the basic
functionalities. Contrary to proprietary COTS tools,
the open-source model of the Linux kernel allows the
implementation of driver adjustments whenever needed.

For the framework, the popular Python programming
language, in its reference implementation CPython,
has been selected. Providing a huge set of default
libraries, Python enables a rapid prototyping approach.
Timing critical components, however, can be written in
C or Assembler (ASM) as an extension to the Python
interpreter.

III. Basic CONCEPT

SocketCAN is part of the Linux kernel since April 16,
2008 (Linux v2.6.25) and provides a set of open-
source CAN drivers and a networking stack. The
Linux kernel includes device drivers for all major
CAN chipsets used in various architectures and bus
types. The Application Programming Interface (API)
of SocketCAN is hardware independent, socket-based
and offers support for multiple users [7].

Figure 2 shows the architecture of the SocketCAN
kernel module. It adds a new protocol family PF_CAN
to the Linux network stack including the CAN_RAW and
CAN_BCM protocols. Additionally, it provides virtual
network devices which can be used for testing or
virtualization purposes. Since the abstraction level of
SocketCAN is high, virtual network devices can be
replaced with real CAN devices transparently.

CAN Application A CAN Application B

v 4 vt

Linux System Call Interface

A A

PF_CAN

\ \

CAN_RAW

V1

CAN_BCM

V1

CAN Core

| 4
v |

Network Device Driver

vt v ”

canl vcan0

NVvJ194200S

vt

can0

Figure 2. Architecture of the SocketCAN Stack [8]

SocketCAN integrates itself seamlessly into the Linux
networking stack and adds an abstraction layer with
a lot of functionality. Additionally, it provides a
powerful and well known socket programming interface.
Sophisticated queuing of CAN frames is handled by
the underlying network stack, which also provides an
API for device drivers and transport protocol modules.

Since the Linux kernel is implemented in C, the
SocketCAN API is only available at the C level. Due
to its basic and low level design, the C programming
language is inappropriate for a testing or evaluation
platform. The proposed solution is an abstraction layer
built on top of SocketCAN and written in the Python
programming language. The purpose of this additional
abstraction layer is wrapping the whole functionality of
SocketCAN and providing a scripting interface that
exposes SocketCAN and makes it available to the
Python ecosystem. The Python ecosystem supplies
versatile libraries and tools for scientific data analysis,
which can be adapted to use Logboat in order to dissect
CAN data.

IV. IMPLEMENTATION

Basically, Logboat is designed as a comprehensive
Python interface to SocketCAN. In order to achieve
efficient resource utilization, no complex computations
or scheduling schemes are implemented in Python. The
main goal is to design a simple but powerful pythonic
API, which is easy to understand and extendable by
well established Python libraries.

A. High Level Description

The Linux kernel deals with CAN frames in a high
level manner. SocketCAN processes CAN packets as
special data types that include a particular CAN Identi-
fier (ID) and the payload data. Low level components,
e.g. routing or packet scheduling, are processed by
the SocketCAN kernel module. Further CAN protocol
parts, such as calculating Cyclic Redundancy Checks
(CRCs) or responding with acknowledgement bits, are
entirely handled by the underlying CAN device.

Figure 3 outlines the architecture of Logboat. The
Python interpreter runs as a userspace process and com-
piles the Python code of a Logboat based application
transparently into bytecode. Subsequently, the generated
bytecode is interpreted by CPython in an evaluation
loop.

Application | Fuzzer | | Crypto || Sniffer |

Python Code | Logboat library |
Userspace | CPython |
Kernelspace | SocketCAN |

Figure 3. Architecture of Logboat; located above SocketCAN

Since the Python reference implementation CPython
is written in C, it is is able to fully utilize the Linux
System Call Interface (SCI). A system call is a
controlled entry point into the Linux kernel which
allows a particular process to request that the kernel
executes some action on the process’s behalf. To
make use of a certain system call from a high level
programming language, the Python data structures have
to be converted to the corresponding C data types.
These data types are represented by special Python
bytestrings which are dependent on the used Central
Processing Unit (CPU) architecture.

B. Python Classes

Logboat adds an object oriented abstraction layer
on top of the SocketCAN data structures. Figure 4
shows three Python classes which are mainly used to
communicate with the CAN bus through the Logboat
software stack:

. Bus: Represents a bus connection and provides
methods to communicate with the CAN bus.

- Message: A high level representation of a CAN
message that includes methods to serialize itself
into a bytestring.

- Filter: Optional receive filters which are used
to apply further configuration to the particular
connection in order to reduce ressource allocation.

Classes | Filter | | Message | | Bus
Logboat | Serialization

CPython | Communication via Socket
SocketCAN | Packet Scheduling, ...

Figure 4. Packet Flow within the Logboat Stack

Sending CAN frames involves several different steps.
First, an appropriate Message object with the desired
CAN ID and payload has to be allocated. Second, in
order to establish a connection a Bus object must be
instantiated. The Bus object interacts with the SCI by
creating an appropriate CAN_RAW socket, applying sev-
eral socket options and optional receive filters. Finally,
the Message is passed to the Bus object that executes
the send(2) system call. Any further steps are then
handled by the software stack and the operating system
automatically.

Passing Messages to Bus objects forwards them to
subjacent layers of the software stack. The Logboat
library serializes the Message objects into bytestrings.
They are written to the socket created by the Bus class.
Finally, the operating system’s network stack schedules
the packets appropriately and forwards them to the
CAN device. Receiving CAN messages requires the
execution of the steps described above in reverse by
replacing the send(2) with the recv(2) system call.

Additionally, Logboat applications can be triggered
by certain events in response to CAN messages. This
feature is provided by the underlying SocketCAN
module by the so called CAN_BCM protocol (see Figure 2).
CAN_BCM sockets transmit data to userspace, depending
on configured events, like flipping a bit in a received
message.

V. UseE CASE SCENARIO

An example application for Logboat is discussed
in the remainder of this section. The presented use
case is a penetration test scenario, where an electronic
Device under Test (DUT) is attacked on its different
system layers. By attacking hardware, software and
communication subsystems, vulnerabilities are detected
and investigated.

Unresolved, these can be found and exploited by
attackers to escalate their privileges, gain unauthorized
access or extract critical data. Therefore, penetration
tests are important for manufacturers who want a
security-level analysis of their product but also users
could be interested in the results.

Figure 5 shows Logboat as part of a gray box
testbed, where the manufacturer of the DUT provided
some background information on the CAN messages,
speeding up the overall test procedure. The setup

{ Attacker Restbus Simulation

Logboat enabled
Nodes

usB /l\ uUsB l|\ Device under Test
V (DUT)
o @ AN (@] | cAN|
CAN to USB A A
\'/ Interface \ll \'I
CAN Bus

Figure 5. Logboat Penetration Test Scenario

consists of two nodes running Logboat and the DUT
itself.

The first Logboat node implements the simulation of
messages of physically non-present CAN nodes. Having
these messages present on the bus is required for the
DUT to operate in its normal state. The simulation
is implemented using event triggered CAN_BCM sockets
which are accessed through the Logboat framework.

The second Logboat node represents the attacker
who has gained access to the bus. In this configuration,
Logboat is used for eavesdropping and the injection of
falsified CAN messages. Evaluating the DUT’s reaction
to undefined frames, Logboat makes use of fuzzing
engines like boofuzz [9].

Testing a DUT without the need of assembling a
complete orginal CAN infrastructure, is one benefit of
Logboat. Another one is the flexibility of the Logboat
framework also enabling the creation of complex attack
scenarios.

VI. OuTtLook

The Logboat framework has reached a stable de-
velopment state. A future use case scenario is a
comprehensive research on cryptographic CAN bus
security schemes.

In the current use case scenarios, real-time constrains
were not considered. As real-time requirements cannot
be ruled out for future applications, another considered
enhancement is the usage of kernel based real-time
extensions by the Logboat framework. Here, the
Real-Time Linux (RTL) project introduced by the
Linux Foundation in October 2015 [10] seems to be a
promising approach.

Logboat is layered on top of the Linux kernel
and tightly coupled to its network stack. Therefore,
it is expected that a RTL enabled system will re-
ceive increased CAN performance and responsiveness.
Thanks to the flexible layered Logboat architecture, low
implementation and integration efforts are expected.

VII. CoNCcLUSION

The presented paper started motivating the need
for security assessments for well established fieldbus
protocols. Subsequently, the requirements for a CAN
fieldbus security assessment framework have been
proposed. Aligned on these initial requirements, an
open-source based architecture and implementation of

the proposed framework has been presented. The paper
concludes with a practical use-case scenario and an
outlook on possible further development objectives and
enhancements.

VIII. ProJecT FUNDING

The work on Logboat is part of the German na-
tional security reference project IUNO (http://www.
iuno-projekt.de). The project is funded by the Federal
Ministry of Education and Research (BMBF) and aims
to provide building-blocks for security in the emerging
field of Industry 4.0.

REFERENCES

[1] R. Drath and A. Horch, “Industrie 4.0: hit or
hype”, in IEEE Industrial Electronics Magazine,
June 2014.

[2] CAN Specification. [Online]. Available: http:
//www.bosch-semiconductors.de/media/ubk _
semiconductors/pdf_1/canliteratur/can2spec.pdf
(visited on 03/18/2016).

[31 CAN FD Specification. [Online]. Available:
https://web.archive.org/web/20130929023243/
http://www.bosch - semiconductors.de/media/
pdf_1/canliteratur/can_fd_spec.pdf (visited on
03/18/2016).

[4] K. Koscher, A. Czeskis, F. Roesner, S. Patel, et
al., “Experimental security analysis of a modern
automobile”, in IEEE Symposium on Security
and Privacy, Oakland, California, USA, 2010.

[5] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin,
et al., “Hardware engines for bus encryption: a
survey of existing techniques”, in IEEE Computer
Society, Munich, Germany, 2005.

[6] O. Hartkopp, “Programmierschnittstellen fiir
eingebettete Netzwerke in Mehrbenutzerbetrieb-
ssystemen am Beispiel des Controller Area Net-
work”, PhD thesis, 2011. [Online]. Available:
http://edoc.bibliothek . uni- halle.de/servlets/
MCRFileNodeServlet / HALCoRe _ derivate _
00004667/Dissertation-Hartkopp-Onlineversion.
pdf (visited on 03/23/2016).

[7] O. Hartkopp, W. Grandegger, et al., Readme file
for the controller area network protocol family
(aka socketcan), 2007. [Online]. Available:
https://www.kernel . org/doc/Documentation/
networking/can.txt (visited on 03/07/2015).

[8] M. Kleine-Budde, “Socketcan - the official can
api of the linux kernel”, in IEEE International
Conference of Communications, Algonquin Col-
lege, Canada, 2012.

[91 J. Pereyda, The Boofuzz Engine. [Online].

Available: https://github.com/jtpereyda/boofuzz

(visited on 03/15/2016).

T. L. Foundation. (Oct. 5, 2015). Project to

advance real-time linux, [Online]. Available:

http://www.linuxfoundation.org/news- media/
announcements / 2015/ 10 / linux - foundation -
announces - project - advance - real - time - linux

(visited on 03/14/2016).

[10]

