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Abstract-This work presents a simple study of 
stochastic arithmetic complex number operators for ad­
dition and multiplication. Their usage is demonstrated 
by design of a sum of product circuit. As the stochastic 
complex number operators need more control random 
streams than stochastic rational number operators, we 
optimized the number of random generators used in the 
real circuit. In the end our sum of product circuit contains 
two LFSRs thus we analyzed the impact of the choice of 
the seeds for the LFSRs on the quality of the calculated 
results. By using exhaustive search over the LFSR state 
space we were able to reduce the output RMSE by 34 % 
in comparison to choice of the equally spaced seeds over 
the LFSR state space. 
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I. INT RODUCTION 

Stochastic arithmetic circuits work with numbers 

represented by streams of random bits over which 

all the computations are performed. In such circuits 

number is represented as the mean value over a 

stochastic single bit data stream instead of its binary 

representation as with conventional parallel arithmetic. 

This brings the following advantages: 

low-cost implementation in terms of occupied silicon 

area. Logic circuits calculating arithmetic operations 

are simplified up to single gates performing bit-wise 

logic operations over the stochastic bit streams [1]. 
tolerance to soft errors as a single bit flip in the 

stochastic stream does not ruin the calculations; an 

occasional bit flip is not statistically significant in the 

long stream of bits [2]. 
reduced design and verification effort and more 

reusable hardware compared with parallel arithmetic 

datapaths [2]. This is because of the implementation of 

the operators nearly does not depend on the precision 

of the processed numbers and of the simplicity of 

arithmetic operators design. Further, accuracy can be 

traded off with computation time [1]. 
On the other hand, this concept has also some 

disadvantages. The most important one is the low 

bandwidth: increase in precision by one bit requires 

exponential increase in the processing time [1]. 
Thanks to its advantages, stochastic arithmetic is an 

interesting concept. Indeed, there are many publica­

tions available presenting lots of applications and vari­

ous building blocks - stochastic number generators [1], 
[3], arithmetic operators for rational numbers [1], [4], 

digital filtering [5], [6], more complicated functions 
[7], [8], [9], [10], and others. 

The objective of this work is to present design of 

basic complex number stochastic arithmetic operators. 

A demonstrational design calculating sum of products 

is then implemented as Matlab model as well as in 

VHDL on the RTL level on Spartan6 FPGA platform. 

Since the final implementation contains two LFSR­

based random number generators, we also analyzed 

the influence of the choice of the generator seed on the 

precision of the calculated results. By using exhaustive 

search over the LFSR state space we were able to 

reduce the output RMSE by 34% in comparison to 

choice of the equally spaced seeds over the LFSR state 

space. 

II. METHODS 

A. Complex Number Representation 

A complex number z = �(z) + i�(z), where 

�(z), �(z) E ( -V; V) is represented as stochastic 

complex number (SCN) by two stochastic bit streams 

(SBS) carried by two lines Wr (real part) and Wi 
(imaginary part). The real and imaginary part of the 

number are then represented by the probabilities Pr 
and Pi that the respective line is at logic 1. Each line is 

encoded using single-line bipolar representation (form 

ill in [1]), �(z) = 2VPr - V,�(z) = 2VPi - V. By 

SN(p) we denote an SBS where probability of logic 

1 is equal to p, �(z) and �(z) denote also stochastic 

number representing real and imaginary part of z. 

B. Stochastic Complex Number Generation 

The device used to generate stochastic numbers is 

called the Stochastic Number Generator (SNG), see 

Fig. 1. The SNG generating the stochastic equivalent 

of an N bit number is composed of the random number 

generator (RNG) and the comparator [1], [11] both of 

N bits. As the RNG, Linear Feedback Shift Register 

(LFSR) is widely used [1], [11], [8]. Complex number 

SNG (CSNG) can be built by doubling a rational 

number SNG, see Fig. l a. 

C. Summer and Multiplier 

For the rational numbers a stochastic weighted sum­

mer operator is presented in [1]. This operator can be 

easily extended to complex number case by doubling it 

for real and imaginary parts, see Fig. 2a. The summer 
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Fig. 1. Complex stochastic number generator; a - naive implemen­
tation, b - shared design. 
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calculates Zs = 0.5Zl + 0.5z2. The range of the input 
number is (-V; + V), then after summing the range of 
the output is (-2V; + 2V) so we need to multiply by 
0.5 to prevent overflow and thus need here two SBS: 
SNR (0.5) and SN1 (0.5). 

Complex number multiplication Zm = 0.5ZlZ2 is 
performed using the well-known relationships 

lR(zn) = 0.5lR(ZI)lR(Z2) - 0.5~(Zl)~(Z2)' (1) 

~(zn) = 0.5lR(Zl)~(Z2) + 0.5~(Zl)lR(Z2)' (2) 

Complex multiplier is built using two rational number 
summers and four multipliers presented in [1], see 
Fig. 2b. To prevent overflow at the output summers 
we again have to multiply by 0.5 and need two 
additional random streams SNR (0.5) and SN1 (0.5), 
while the rational number stochastic multiplier does 
not need any. In the summer as well as the multiplier, 
the multiplexer controlling streams shall be mutually 
independent of the stochastic streams at the inputs of 
the summing multiplexers [11]. 

D. Parallel Complex Number Decoding 

For conversion of the CSN back to the binary format, 
two ADaptive DIgital Elements ADDlEs [1] in parallel 
(one for real, one for imaginary part) can be used. 
One N bit RNG is needed for both ADDlEs for their 
operation. 

E. Test Circuit And Number Of RNGs 

A simple circuit calculating complex sum of prod­
ucts (see Figure 3), 

3 

f = L x[n]y[n] (3) 
n=O 

TABLE I 
NUMBER OF RNGs FOR ALL THE DISCUSSED OPTIONS (NOP = 

NOT OPTIMIZED IN THIS OPTION). 

Option CNGs MULTs SUMs ADDIE 
naive 16 8 6 1 

yshifted 1 nop nop nop 
mux RI shared nop 4 3 nop 

mux levels nop 1 2 nop 
mux csng nop 1 0 nop 
all shared 1 0 0 nop 

addie shared 1 nop nop 0 

Fig. 3. Data flow diagram of the lest circuit. 
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was implemented and its parameters analyzed. To 
generate N = 8 bit random numbers LFSR with 
polynomial of x8 + x6 + x5 + x4 was used. 

While the implementation of the complex arith­
metic operators is simple, they require more stochas­
tic streams than the corresponding stochastic rational 
number processing. The naive implementation in Fig. 
3 would need 31 RNGs, see Table I. This would need 
a lot of silicon area in the final implementation. To 
reduce the numbers of the RNGs we applied transfor­
mations based on Theorem 1 in [11]. First, the circuit 
requires up to 16 RNGs in the CSNGs. To reduce this 
number we can 

1) share one RNG between real and imaginary part 
of the CSNG, see Fig lb. Correlation between 
real and imaginary parts will be maximal at the 
CSNG output. This is not an issue until we need 
to calculate e.g., lR(z)CS(z) - which is not used 
in (3). We would need only 8 RNGs, then. 

2) share one RNG among all CSNGs generating 
xli], i = o ... 3 and the other one RNG among 
all CSNGs generating y[i], i = O •.• 3. Then all 
the xli] will be mutually fully correlated, the 
same for all the y[i]. This does not negatively 
influence results of the (3) as all multiplication 
operands (x[i] x y[i], i = 0 ... 3) are not mu­
tually correlated. Afterwards we can apply on 
the LFSR output the circular shift transformation 
presented in [11] and share one RNG among all 
CSNGs, see Fig. 4. Circular shift by 4 bits is used 
since it gives the smallest correlation between 
generated stochastic numbers [11]. This way we 
would need only 1 RNG for all the CSNGs, see 
Table I, y shifted. 

Second, we need to generate up to 14 stochastic 
bit streams (SBS) SN1 (0.5) and SNR (0.5) to control 
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the multiplexers in the stochastic arithmetic operator. 

These bit streams shall not be correlated with the data 

inputs of the multiplexers in the operators, [11]. Here 

we can 

1)  use the same SBS to drive both SN1(a) and 

SNR(a) in Fig. 2, to need only 7 SBS, Table 

I, mux R1 shared. 
2) use one SBS for all the operators in dashed 

box 1, see Fig. 3, then a different SBS for all 
operators in box 2, and one more SBS for the 

adder in box 3, see Table I, mux levels. This will 

reduce number of necessary SBS to 3. 

3) derive all the three SBS driving boxes 1, 2, and 

3 from LFSRI by selecting e.g. bits, 0, 3, and 6 

of its 8 bit output; the second LFSR2 will drive 

all the x CSNGs and after circular shift by 4 bits 

all the y CSNGs. Both 8-bit LFSRs will be the 

same with different seeds and we would need 

only 2 RNGs, see Table I, mux csng. 
4) derive all three streams directly from the main 

LFSR driving the CSNGs, as in [11] to need only 

one RNG at all, see line all shared in Table I. 

MUXes will be controlled by inverted bits 0 (box 

1), 3 (box 2), and 5 (box 3) of the LFSR output. 

This configuration is the same as in [11] for the 

edge detection circuit. 

Third, we will need one more RNG for the output 

ADDlEs. Here we can easily use the RNG driving the 

CSNGs, see Table I, addie shared. 

III. RESULTS AND DISCUSSION 

The architectural options were evaluated using the 

RMSE measure calculated as 

RMSE= 
"Nr-11 12 L...n=O Zcalcn - Zidealn 

Nr 
(4) 

where Zcalcn is the stochastic circuit output in run n, 
Zidealn is the ideal output expected from the circuit, 

and Nr is the number of runs with different input x 
and y data. The lower the RM S E value is, the better. 

A. Number of RNGs 

First, we had to evaluate all the options to reduce 

the number of RNGs needed by the circuit. To do this, 

we ran the following experiments. 

TABLE II 
RMSEs FOR THE EXPLORED ARCHITECTONICAL OPTIONS. 

ADDIE RAND = IDEAL AVERAGING USED. 

Option CSNG MUXes ADDIE RMSE 
naive rand rand rand 1.034 

y shifted LFSRI rand rand 0.211 
mux R/I shared rand rand rand 1.040 

mux levels rand rand rand 1.031 
mux csng LFSRI LFSR2 rand 0.473 
all shared LFSRI LFSRI rand 1.535 

addie shared LFSRI LFSR2 LFSRI 0.500 
seed LFSRI LFSR2 LFSRl 0.312 

Referential experiment First, we implemented Mat­

lab model of the whole circuit. As a reference we used 

naive implementation using Matlab random number 

generator r and instead of LFSR, implementing all 

the 31 random generators as independent ones. The 

output ADDIE was emulated by the SBS mean value 

calculation. To get statistically reliable data, we used 

bit streams of 16384 bits and the RMSE was calculated 

over Nr = 64 runs. The xli] and y[i] inputs were 

different and randomly generated for each run and all 

other tests used the same set of 64 x and y vectors to 

get comparable results. See Table II for the achieved 

RMSE. 

Sharing multiplexer control Two experiments were 

ran to evaluate impact on the shared MUX control, see 

Table II, mux RI/ shared and mux levels. No degrada­

tion of the RMSE is observed, here. Sharing of random 

streams between real and imaginary multiplexers in 

the datapath does not influence overall precision of the 

circuit. 

Sharing RNGs for the CSNG Experiment y shifted 
was ran to check how the sharing of the RNGs be­

tween the CSNGs influences result of the stochastic 

computation. While 8 bit LFSR was used as RNG 

for all the CSNGs (either with or without circular 

shift), multiplexers were driven by random streams 

generated by Matlab rand function to be able to 

directly compare results of this experiment and the 

naive one. The achieved RMSE (see Table II) is better 

than for the naive experiment as we use LFSR instead 

of pseudorandom numbers. 

Sharing LFSR between MUX and CSNGs Possi­

bility of sharing the LFSR between the MUXes and 

CSNGs was evaluated, see Table II, mux csng and 

all shared. All RNGs in the Matlab model are here 

already implemented as LFSRs, LFSRI has seed of 

10000000, LFSR2 of 111 10000. For option mux csng 
better performance was achieved than with all shared 
option. RMSE of all shared option is likely hampered 

by the correlation between the MUX control stream 

and MUX input data, a corollary of Theorem 1 in [1 1]. 

Due to this we chose option mux csng with two LFSRs. 

Finally, we ran a simulation of the circuit with 

ADDIE driven by LFSR used to drive all the CSNGs, 

see Table II, addie shared. No significant degradation 

of performance was observed. 



Fig. 5. RMSE dependence on LFSR2 seed plotted over distance 
computed from LFSR state sequence (e.g., 50 at x axis means that 
the RMSE corresponds to the seed of LFSR2 which is the 50th state 
of the LFSRI from its reset to 10000000). 
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B. Seeds for the LFSRs 

Although two physically different LFSRs (LFSR1, 

LFSR2) are used for the CSNGs and for the mul­

tiplexer control, they both use the same polynomial. 

The only way how to decorrelate their outputs is by 

using different seeds. Usage of the seeds to decorrelate 

outputs of LFSRs is a widely known technique (e.g., 

[6], [9], [8]) and the usual approach is (e.g., [8]) to 

choose equally spaced seeds over the full period of the 

LFSR. Instead of this, we decided to run the exhaustive 

search over the complete 8-bit LFSR state space to find 

the best seed for the LFSR2. 

We repeated the 64 runs of calculations with differ­

ent xli] and y[i] additional 255 times, the LFSR1 had 

fixed seed of 10000000 and the other LFSR2 seed was 

varied through all values from 00000001 to 11111111. 

Final RMSEs are plotted in Fig. 5 sorted according to 

the LFSR1 sequence. 

Looking at the graph we can see that there are 

even few seeds providing in the configuration with two 

LFSRs worse results than if only one LFSR is used (x 

position 0 in the graph - both LFSR have the same 

output, also marked with the red line for all shared 
option). On the other hand, there are many seeds for 

which RMSE is lower than for the so far best addie 
shared option (see green horizontal line in Fig. 5). The 

global minimum of RMSE in Fig. 5 defines the final 

seed for the LFSR2 (10111110), see Table II, seed. 
In our case, choice of the equally spaced seeds for 

the LFSR1 and LFSR2 would result into worse RMSE 

(of 0.49) than we achieved by exhaustive search-based 

setup (0.312 for seed). 

In addition to this experiment we repeated all the 

255 runs also for different set of 64 x and y vectors 

to see if the curve in Fig. 5 is data-dependent. Here, 

obtained RMSE over distance curve was very similar 

to the one in the Figure thus the shape of the curve is 

given by the LFSR2 seed itself. 

IV. CONCLUSIONS 

We presented design of complex number stochastic 

operators as a simple extension of already used ra­

tional number operators. Complex number-processing 

circuits require more RNGs than rational number ones 

due to need to add in the multiplier and process 

real and imaginary channels, we thus reduced the 

number of RNGs using Theorem 1 from the [11]. After 

optimizations solution utilizing 2 LFSRs was chosen 

since it achieves three times better performance than 

circuit with only one LFSR (RMSE of 0.500 vs 1.535). 

An analysis aimed to find the best value of the 

seed for the LFSR2 by exhaustive search was done. 

The dependency of the output RMSE on the distance 

between seeds of LFSRl and LFSR2 in terms ofLFSR 

sequence is not monotonic; by choosing the seed for 

the LFSR2 as the global minimum of the RMSE we 

were able to further reduce the output RMSE from 

0.473 to 0.312 (by 34%). Exhaustive search approach 

also outperformed commonly used choice of equally 

spaced seeds by 36% (RMSE of 0.49 vs the final one 

of 0.312). 

Finally, the testing circuit was implemented in 

VHDL language on the RTL level according to Fig. 4 

and verified against its Matlab model. The design was 

implemented into xc6slx25-3 Xilinx Spartan 6 FPGA 

occupying 160 flip-flops, 160 LUTs, with operating 

frequency of 133 MHz (no pipelining was applied). 
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