
Stochastic Arithmetic Complex Number
Operators

J akub St' astny
Department of Circuit Theory

Faculty of Electrotechnical Engineering, Czech Technical University in Prague
Technicka 2, Prague 6, 16627, Czech Republic

stastnjl@feld.cvut.cz

Abstract-This work presents a simple study of
stochastic arithmetic complex number operators for ad­
dition and multiplication. Their usage is demonstrated
by design of a sum of product circuit. As the stochastic
complex number operators need more control random
streams than stochastic rational number operators, we
optimized the number of random generators used in the
real circuit. In the end our sum of product circuit contains
two LFSRs thus we analyzed the impact of the choice of
the seeds for the LFSRs on the quality of the calculated
results. By using exhaustive search over the LFSR state
space we were able to reduce the output RMSE by 34 %
in comparison to choice of the equally spaced seeds over
the LFSR state space.

Keywords-Stochastic arithmetic, LFSR, LFSR initial
state

I. INT RODUCTION

Stochastic arithmetic circuits work with numbers

represented by streams of random bits over which

all the computations are performed. In such circuits

number is represented as the mean value over a

stochastic single bit data stream instead of its binary

representation as with conventional parallel arithmetic.

This brings the following advantages:

low-cost implementation in terms of occupied silicon

area. Logic circuits calculating arithmetic operations

are simplified up to single gates performing bit-wise

logic operations over the stochastic bit streams [1].
tolerance to soft errors as a single bit flip in the

stochastic stream does not ruin the calculations; an

occasional bit flip is not statistically significant in the

long stream of bits [2].
reduced design and verification effort and more

reusable hardware compared with parallel arithmetic

datapaths [2]. This is because of the implementation of

the operators nearly does not depend on the precision

of the processed numbers and of the simplicity of

arithmetic operators design. Further, accuracy can be

traded off with computation time [1].
On the other hand, this concept has also some

disadvantages. The most important one is the low

bandwidth: increase in precision by one bit requires

exponential increase in the processing time [1].
Thanks to its advantages, stochastic arithmetic is an

interesting concept. Indeed, there are many publica­

tions available presenting lots of applications and vari­

ous building blocks - stochastic number generators [1],
[3], arithmetic operators for rational numbers [1], [4],

digital filtering [5], [6], more complicated functions
[7], [8], [9], [10], and others.

The objective of this work is to present design of

basic complex number stochastic arithmetic operators.

A demonstrational design calculating sum of products

is then implemented as Matlab model as well as in

VHDL on the RTL level on Spartan6 FPGA platform.

Since the final implementation contains two LFSR­

based random number generators, we also analyzed

the influence of the choice of the generator seed on the

precision of the calculated results. By using exhaustive

search over the LFSR state space we were able to

reduce the output RMSE by 34% in comparison to

choice of the equally spaced seeds over the LFSR state

space.

II. METHODS

A. Complex Number Representation

A complex number z = �(z) + i�(z), where

�(z), �(z) E (-V; V) is represented as stochastic

complex number (SCN) by two stochastic bit streams

(SBS) carried by two lines Wr (real part) and Wi
(imaginary part). The real and imaginary part of the

number are then represented by the probabilities Pr
and Pi that the respective line is at logic 1. Each line is

encoded using single-line bipolar representation (form

ill in [1]), �(z) = 2VPr - V,�(z) = 2VPi - V. By

SN(p) we denote an SBS where probability of logic

1 is equal to p, �(z) and �(z) denote also stochastic

number representing real and imaginary part of z.

B. Stochastic Complex Number Generation

The device used to generate stochastic numbers is

called the Stochastic Number Generator (SNG), see

Fig. 1. The SNG generating the stochastic equivalent

of an N bit number is composed of the random number

generator (RNG) and the comparator [1], [11] both of

N bits. As the RNG, Linear Feedback Shift Register

(LFSR) is widely used [1], [11], [8]. Complex number

SNG (CSNG) can be built by doubling a rational

number SNG, see Fig. l a.

C. Summer and Multiplier

For the rational numbers a stochastic weighted sum­

mer operator is presented in [1]. This operator can be

easily extended to complex number case by doubling it

for real and imaginary parts, see Fig. 2a. The summer

ISBN 978-80-261-0602-9, © University of West Bohemia, 2016

Fig. 1. Complex stochastic number generator; a - naive implemen­
tation, b - shared design.

) ~(~(.)) a RNG x>Y

~(z N Y

or(~(Z)) RNG x>Y

;s(z N

Fig. 2. Implementation of the complex number stochastic summer

a)~dmu15tiP~erb)' 5
~(Zl) !;S(Zl)

1 + ~(z,) 1 + !;S(z,)
~(z,) !;}(z,)

SN1(O. SNR(O.

b) ~(Zl)

~~(.)
~(z,)

!;S(Zl)
!;S(z,)

~(Zl)

~:
!;}(z,)

~(.) !;S(Zl)
~(z,)

SNR(O.

calculates Zs = 0.5Zl + 0.5z2. The range of the input
number is (-V; + V), then after summing the range of
the output is (-2V; + 2V) so we need to multiply by
0.5 to prevent overflow and thus need here two SBS:
SNR (0.5) and SN1 (0.5).

Complex number multiplication Zm = 0.5ZlZ2 is
performed using the well-known relationships

lR(zn) = 0.5lR(ZI)lR(Z2) - 0.5~(Zl)~(Z2)' (1)

~(zn) = 0.5lR(Zl)~(Z2) + 0.5~(Zl)lR(Z2)' (2)

Complex multiplier is built using two rational number
summers and four multipliers presented in [1], see
Fig. 2b. To prevent overflow at the output summers
we again have to multiply by 0.5 and need two
additional random streams SNR (0.5) and SN1 (0.5),
while the rational number stochastic multiplier does
not need any. In the summer as well as the multiplier,
the multiplexer controlling streams shall be mutually
independent of the stochastic streams at the inputs of
the summing multiplexers [11].

D. Parallel Complex Number Decoding

For conversion of the CSN back to the binary format,
two ADaptive DIgital Elements ADDlEs [1] in parallel
(one for real, one for imaginary part) can be used.
One N bit RNG is needed for both ADDlEs for their
operation.

E. Test Circuit And Number Of RNGs

A simple circuit calculating complex sum of prod­
ucts (see Figure 3),

3

f = L x[n]y[n] (3)
n=O

TABLE I
NUMBER OF RNGs FOR ALL THE DISCUSSED OPTIONS (NOP =

NOT OPTIMIZED IN THIS OPTION).

Option CNGs MULTs SUMs ADDIE
naive 16 8 6 1

yshifted 1 nop nop nop
mux RI shared nop 4 3 nop

mux levels nop 1 2 nop
mux csng nop 1 0 nop
all shared 1 0 0 nop

addie shared 1 nop nop 0

Fig. 3. Data flow diagram of the lest circuit.
8 1- - - - -"1 1 1- - - - -2: - - - -3 1

x[O]~ :: '
~II
8 :~:

Y[O]~f : :"'m:
I SN1 R I :?f I

x[1] : ®_~_y: 8

y[1] :: : SN1,R: ~ADDIE z
x[2] '(29-+--'"
y[2] :' : '" ,

8 ' +' SN ' ~ I I IR I

X[3]~:: ::':

: X : I :: :

~~ IISNIRI I

y[3] ~ ____ ~ : _~_~ ~ _____ ~
SN1,R

was implemented and its parameters analyzed. To
generate N = 8 bit random numbers LFSR with
polynomial of x8 + x6 + x5 + x4 was used.

While the implementation of the complex arith­
metic operators is simple, they require more stochas­
tic streams than the corresponding stochastic rational
number processing. The naive implementation in Fig.
3 would need 31 RNGs, see Table I. This would need
a lot of silicon area in the final implementation. To
reduce the numbers of the RNGs we applied transfor­
mations based on Theorem 1 in [11]. First, the circuit
requires up to 16 RNGs in the CSNGs. To reduce this
number we can

1) share one RNG between real and imaginary part
of the CSNG, see Fig lb. Correlation between
real and imaginary parts will be maximal at the
CSNG output. This is not an issue until we need
to calculate e.g., lR(z)CS(z) - which is not used
in (3). We would need only 8 RNGs, then.

2) share one RNG among all CSNGs generating
xli], i = o ... 3 and the other one RNG among
all CSNGs generating y[i], i = O •.• 3. Then all
the xli] will be mutually fully correlated, the
same for all the y[i]. This does not negatively
influence results of the (3) as all multiplication
operands (x[i] x y[i], i = 0 ... 3) are not mu­
tually correlated. Afterwards we can apply on
the LFSR output the circular shift transformation
presented in [11] and share one RNG among all
CSNGs, see Fig. 4. Circular shift by 4 bits is used
since it gives the smallest correlation between
generated stochastic numbers [11]. This way we
would need only 1 RNG for all the CSNGs, see
Table I, y shifted.

Second, we need to generate up to 14 stochastic
bit streams (SBS) SN1 (0.5) and SNR (0.5) to control

x[O[

y[O[
x[1[
y[1[

Fig. 4. Test circuit after RNG optimization.

x[2[
y[2[8
x[3[

y[3[

the multiplexers in the stochastic arithmetic operator.

These bit streams shall not be correlated with the data

inputs of the multiplexers in the operators, [11]. Here

we can

1) use the same SBS to drive both SN1(a) and

SNR(a) in Fig. 2, to need only 7 SBS, Table

I, mux R1 shared.
2) use one SBS for all the operators in dashed

box 1, see Fig. 3, then a different SBS for all
operators in box 2, and one more SBS for the

adder in box 3, see Table I, mux levels. This will

reduce number of necessary SBS to 3.

3) derive all the three SBS driving boxes 1, 2, and

3 from LFSRI by selecting e.g. bits, 0, 3, and 6

of its 8 bit output; the second LFSR2 will drive

all the x CSNGs and after circular shift by 4 bits

all the y CSNGs. Both 8-bit LFSRs will be the

same with different seeds and we would need

only 2 RNGs, see Table I, mux csng.
4) derive all three streams directly from the main

LFSR driving the CSNGs, as in [11] to need only

one RNG at all, see line all shared in Table I.

MUXes will be controlled by inverted bits 0 (box

1), 3 (box 2), and 5 (box 3) of the LFSR output.

This configuration is the same as in [11] for the

edge detection circuit.

Third, we will need one more RNG for the output

ADDlEs. Here we can easily use the RNG driving the

CSNGs, see Table I, addie shared.

III. RESULTS AND DISCUSSION

The architectural options were evaluated using the

RMSE measure calculated as

RMSE=
"Nr-11 12 L...n=O Zcalcn - Zidealn

Nr
(4)

where Zcalcn is the stochastic circuit output in run n,
Zidealn is the ideal output expected from the circuit,

and Nr is the number of runs with different input x
and y data. The lower the RM S E value is, the better.

A. Number of RNGs

First, we had to evaluate all the options to reduce

the number of RNGs needed by the circuit. To do this,

we ran the following experiments.

TABLE II
RMSEs FOR THE EXPLORED ARCHITECTONICAL OPTIONS.

ADDIE RAND = IDEAL AVERAGING USED.

Option CSNG MUXes ADDIE RMSE
naive rand rand rand 1.034

y shifted LFSRI rand rand 0.211
mux R/I shared rand rand rand 1.040

mux levels rand rand rand 1.031
mux csng LFSRI LFSR2 rand 0.473
all shared LFSRI LFSRI rand 1.535

addie shared LFSRI LFSR2 LFSRI 0.500
seed LFSRI LFSR2 LFSRl 0.312

Referential experiment First, we implemented Mat­

lab model of the whole circuit. As a reference we used

naive implementation using Matlab random number

generator r and instead of LFSR, implementing all

the 31 random generators as independent ones. The

output ADDIE was emulated by the SBS mean value

calculation. To get statistically reliable data, we used

bit streams of 16384 bits and the RMSE was calculated

over Nr = 64 runs. The xli] and y[i] inputs were

different and randomly generated for each run and all

other tests used the same set of 64 x and y vectors to

get comparable results. See Table II for the achieved

RMSE.

Sharing multiplexer control Two experiments were

ran to evaluate impact on the shared MUX control, see

Table II, mux RI/ shared and mux levels. No degrada­

tion of the RMSE is observed, here. Sharing of random

streams between real and imaginary multiplexers in

the datapath does not influence overall precision of the

circuit.

Sharing RNGs for the CSNG Experiment y shifted
was ran to check how the sharing of the RNGs be­

tween the CSNGs influences result of the stochastic

computation. While 8 bit LFSR was used as RNG

for all the CSNGs (either with or without circular

shift), multiplexers were driven by random streams

generated by Matlab rand function to be able to

directly compare results of this experiment and the

naive one. The achieved RMSE (see Table II) is better

than for the naive experiment as we use LFSR instead

of pseudorandom numbers.

Sharing LFSR between MUX and CSNGs Possi­

bility of sharing the LFSR between the MUXes and

CSNGs was evaluated, see Table II, mux csng and

all shared. All RNGs in the Matlab model are here

already implemented as LFSRs, LFSRI has seed of

10000000, LFSR2 of 111 10000. For option mux csng
better performance was achieved than with all shared
option. RMSE of all shared option is likely hampered

by the correlation between the MUX control stream

and MUX input data, a corollary of Theorem 1 in [1 1].

Due to this we chose option mux csng with two LFSRs.

Finally, we ran a simulation of the circuit with

ADDIE driven by LFSR used to drive all the CSNGs,

see Table II, addie shared. No significant degradation

of performance was observed.

Fig. 5. RMSE dependence on LFSR2 seed plotted over distance
computed from LFSR state sequence (e.g., 50 at x axis means that
the RMSE corresponds to the seed of LFSR2 which is the 50th state
of the LFSRI from its reset to 10000000).

1.8

1.6 �""""""""""""":'''''''''''''''''''''''''''''''h--''''''''''F''''''''''!!!!::::!�''''''''''.q...l-f''''''''''..........JI
1.4

1.2

0.8

0.6

0.4
50

Equally spaced choice, 0.490

B. Seeds for the LFSRs

Although two physically different LFSRs (LFSR1,

LFSR2) are used for the CSNGs and for the mul­

tiplexer control, they both use the same polynomial.

The only way how to decorrelate their outputs is by

using different seeds. Usage of the seeds to decorrelate

outputs of LFSRs is a widely known technique (e.g.,

[6], [9], [8]) and the usual approach is (e.g., [8]) to

choose equally spaced seeds over the full period of the

LFSR. Instead of this, we decided to run the exhaustive

search over the complete 8-bit LFSR state space to find

the best seed for the LFSR2.

We repeated the 64 runs of calculations with differ­

ent xli] and y[i] additional 255 times, the LFSR1 had

fixed seed of 10000000 and the other LFSR2 seed was

varied through all values from 00000001 to 11111111.

Final RMSEs are plotted in Fig. 5 sorted according to

the LFSR1 sequence.

Looking at the graph we can see that there are

even few seeds providing in the configuration with two

LFSRs worse results than if only one LFSR is used (x

position 0 in the graph - both LFSR have the same

output, also marked with the red line for all shared
option). On the other hand, there are many seeds for

which RMSE is lower than for the so far best addie
shared option (see green horizontal line in Fig. 5). The

global minimum of RMSE in Fig. 5 defines the final

seed for the LFSR2 (10111110), see Table II, seed.
In our case, choice of the equally spaced seeds for

the LFSR1 and LFSR2 would result into worse RMSE

(of 0.49) than we achieved by exhaustive search-based

setup (0.312 for seed).

In addition to this experiment we repeated all the

255 runs also for different set of 64 x and y vectors

to see if the curve in Fig. 5 is data-dependent. Here,

obtained RMSE over distance curve was very similar

to the one in the Figure thus the shape of the curve is

given by the LFSR2 seed itself.

IV. CONCLUSIONS

We presented design of complex number stochastic

operators as a simple extension of already used ra­

tional number operators. Complex number-processing

circuits require more RNGs than rational number ones

due to need to add in the multiplier and process

real and imaginary channels, we thus reduced the

number of RNGs using Theorem 1 from the [11]. After

optimizations solution utilizing 2 LFSRs was chosen

since it achieves three times better performance than

circuit with only one LFSR (RMSE of 0.500 vs 1.535).

An analysis aimed to find the best value of the

seed for the LFSR2 by exhaustive search was done.

The dependency of the output RMSE on the distance

between seeds of LFSRl and LFSR2 in terms ofLFSR

sequence is not monotonic; by choosing the seed for

the LFSR2 as the global minimum of the RMSE we

were able to further reduce the output RMSE from

0.473 to 0.312 (by 34%). Exhaustive search approach

also outperformed commonly used choice of equally

spaced seeds by 36% (RMSE of 0.49 vs the final one

of 0.312).

Finally, the testing circuit was implemented in

VHDL language on the RTL level according to Fig. 4

and verified against its Matlab model. The design was

implemented into xc6slx25-3 Xilinx Spartan 6 FPGA

occupying 160 flip-flops, 160 LUTs, with operating

frequency of 133 MHz (no pipelining was applied).

REFERENCES

[1] B. Gaines, "Stochastic computing systems," in Advances in
Information Systems Science (J. Tou, ed.), Advances in Infor­
mation Systems Science, pp. 37-172, Springer US, 1969.

[2] A. Alaghi and J. P. Hayes, "Survey of stochastic computing,"
ACM Trans. Embed. Com put. Syst., vol. 12, pp. 92:1-92:19,
May 2013.

[3] P. Jeavons, D. Cohen, and J. Shawe-Taylor, "Generating bi­
nary sequences for stochastic computing," Information Theory,
IEEE Transactions on, vol. 40, pp. 716-720, May 1994.

[4] P. Gupta and R. Kumaresan, "Binary multiplication with pn
sequences;' Acoustics, Speech and Signal Processing, IEEE
Transactions on, vol. 36, pp. 603-606, Apr 1988.

[5] Y. Liu and K. Parhi, "Lattice fir digital filter architectures
using stochastic computing;' in Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International Conference on,
pp. 1027-1031, April 2015.

[6] Y.-N. Chang and K. Parhi, "Architectures for digital filters
using stochastic computing," in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on,
pp. 2697-2701, May 2013.

[7] P. Li, D. J. Lilja, W. Qian, M. D. Riedel, and K. Bazargan,
"Logical computation on stochastic bit streams with lin­
ear finite-state machines;' IEEE Transactions on Computers"
vol. 63, no. 6, pp. 1473 - 1486, June 2014.

[8] S. L. T. Marin, J. M. Q. Reboul, and L. G. Franquelo, "Digital
stochastic realization of complex analog controllers;' IEEE
Transactions on Industrial Electronics, vol. 49, pp. 1101-1109,
Oct 2002.

[9] P. Li and D. J. Lilja, "Using stochastic computing to im­
plement digital image processing algorithms," in Computer
Design (ICCD), 2011 IEEE 29th International Conference on,
pp. 154-161, Oct 2011.

[10] B. Brown and H. Card, "Stochastic neural computation. i.
computational elements;' Computers, IEEE Transactions on,
vol. 50, pp. 891-905, Sep 2001.

[11] H. Ichihara, S. Ishii, D. Sunarnori, T. Iwagaki, and T. Inoue,
"Compact and accurate stochastic circuits with shared random
number sources;' in Computer Design (ICCD), 2014 32nd
IEEE International Conference on, pp. 361-366, Oct 2014.

