
Fuzzy-Glitch: A Practical
Ring Oscillator Based Clock Glitch Attack

Johannes Obermaier, Robert Specht
Fraunhofer Institute AISEC

Garching b. München, Germany
{johannes.obermaier, robert.specht}@aisec.fraunhofer.de

Georg Sigl
Institute for Security in Information Technology

Technical University of Munich, Germany
sigl@tum.de

Abstract—Clock glitches are useful in hardware secu-
rity applications, where systems are tested for vulnera-
bilities emerging from fault attacks. Usually a precisely
timed and controlled glitch signal is employed. However,
this requires complex generators and deep knowledge
about the system under attack. Therefore we present a
novel approach on clock glitch fault attacks that replaces
the single precise glitch by a fuzzy glitch signal. We
propose a compact FPGA design for fuzzy clock glitch
generation, that is based on mixing two adjustable ring
oscillators of different frequencies. The combination of
these oscillators creates a glitch containing random and
high frequency signal components. We show on the basis
of a practical implementation on a Spartan-3E, that the
proposed method is able to generate the desired fuzzy
clock glitch. We verified experimentally, that the fuzzy
clock glitch succeeds in error injection on an STM32F030,
an ARM CORTEX-M0 based microcontroller. Our re-
sults demonstrate that the fuzzy glitch is an adequate
solution for fault injection.

I. INTRODUCTION

Embedded systems are employed in many applica-
tions, ranging from industrial systems over automotive
control units up to end-user devices. They contain
intellectual property, such as algorithms and code,
may be license-locked, and often include cryptographic
algorithms and secret key material. As these systems
become more powerful and hold more valuable in-
formation, it also becomes more worthwhile for a
malicious attacker to gain access to them. Thus such a
system will be subject to various attacks. In order to
establish protection and to estimate the probability of
successful attacks, tools must be developed to execute
and understand those attacks.

There are various groups of hardware attacks, one of
them are fault attacks which aim at causing erroneous
operation of the processor and provoke leakage of
critical information [1]. Clock glitches are an easy
and effective technique to induce faults into a system.
In general, a glitch can be described as a short and
normally unwanted change of the signal’s logic level.
This is depicted in Fig. 1 on the upper plot. In case of an
attack, this short clock signal is induced intentionally,
such that the device is operated at frequencies out
of specification. This will lead to timing violations
of registers and results in undefined behavior [2].
The effects can be divided into two groups, control
flow errors or data changes. The results in diversion
of control flow are, e.g. early exit from loops or
crashes [3], [4] . Data changes are especially critical for

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

S
ig

n
a

l
v
o

lt
a

g
e

Time in ns

Fig. 1. Drawing of a usual (top) and a fuzzy (bottom) clock glitch

cryptographic algorithms, like AES, because they lead
to very powerful attacks [5]. Hence, securing devices
against fault attacks is very important.

A. Related Work

Numerous implementations of clock glitch attacks
have been published that follow the same baseline for
signal generation. In all cases known to the authors, the
system generates a precisely timed glitch signal [6]–[9].
The method generates reproducible results, has proven
to be useful for an in-depth analysis, and provides
high success ratios [7], [9]. Thus there exist powerful
methods to precisely attack well-known systems and
algorithms by targeting down to a single instruction [4].

The method incorporates also some drawbacks. It
works best if the system under attack is well-known and
was analyzed beforehand—a precondition that cannot be
fulfilled in all cases. Additionally, the glitch generation
circuitry is built up around FPGA-specific hardware
like Digital Clock Managers (DCM) [6]. Their number
is limited and their capabilities depend on the specific
device and vendor, which may be a limitation for small
and simple devices. Moreover, the generated glitch is
still a fairly deterministic digital signal without much
randomness, thus a variation of the attack parameters,
e.g., glitch frequency, rise, and fall time, has to be
brought in externally. In most cases the evaluation of
all possible parameter combinations is not feasible in
reasonable time [10].

B. Contributions

To overcome these issues, we propose an alternative
concept on the generation of clock signal glitches that
breaks with the commonly used approach to inject a
precisely generated glitch. Instead, we present a novel
method that generates a random, nondeterministic and
fuzzy glitch signal, as depicted in Fig. 1.

ISBN 978-80-261-0642-5, c© University of West Bohemia, 2017

Our approach aims at embedded systems, hardware
as well as software, that have not been analyzed in
detail yet, but shall be tested for susceptibility against
glitch attacks. Thus we trade in attack reproducibility
for the ability to reduce the parameter space and
allow a simpler and quicker evaluation of an attack.
Additionally, the requirements on the FPGA are lower.

Our presented contributions include:
• A novel concept to create a clock glitch signal

by combining two adjustable ring oscillators of
different frequency using a XOR gate.

• The use of a “fuzzy” random and nondeterministic
glitch signal instead of a exactly timed glitch.

• A practical implementation of the method on a
Spartan-3E FPGA platform using only standard
slice logic.

• A demonstration of a successful fuzzy clock glitch
attack on the ARM Cortex-M0 based microcon-
troller STM32F030.

C. Structure

The paper starts with a general overview in Section I.
The explanation of the technical approach and imple-
mentation follows in Section II. The paper continues
with an evaluation of the implementation in Section III.
The previously implemented system is utilized to
carry out an exemplary attack on a microcontroller in
Section IV. Finally, we sum up our results in Section V.

II. TECHNICAL APPROACH

Our design aims at achieving a random, nondetermin-
istic and fuzzy clock glitch signal. This requires three
components: A frequency source for signal generation,
a source of entropy for randomness, and means to
generate a glitch. Common oscillators target high
stability and signal quality, thus they are no viable
source for random glitches. Instead, we resort to using
ring oscillators (ROs) [11].

ROs are frequency generators that are implemented
by simply interconnecting an odd number of inverters
in a circular manner as shown in Fig. 2. This creates
an unstable combinatorial loop that leads to oscillation.
ROs are implemented using standard slice logic, thus
these oscillators do not need DCMs or other special
FPGA-specific blocks. Their frequency depends on the
length of the inverter chain, because each inverter adds
additional delay and consequently increases the signal
period.

ROs have another unique feature, they are not only
frequency generators but they also provide randomness
to the system, thus they fulfill a dual purpose. The
frequency and phase of the output signal is subjected
to jitter [12]—a property that is also used in RO-based
true random number generators [13]. This contributes

Fig. 2. A simplified ring oscillator with an odd number of inverters

RO 1

RO 2

Main clock

Glitch
select

Output
buffer

Fig. 3. Glitch insertion circuitry, output buffer, and RC load

an intrinsic variation of the glitch, thus the attack
parameters are inherently altered over time.

The third required component for the system must
provide means to generate a glitch, as a single RO
does not create such a signal by itself. If two ROs of
different frequencies f1 and f2 are combined using
a XOR gate, the resulting signal is toggled on every
edge of each RO, hence creating numerous glitches.
This corresponds to mixing the frequency of both ROs,
resulting in |f1− f2| and |f1 + f2|, a signal containing
various high and low frequency spectral components.
Harmonics contribute additional frequency components.
The output impedance and load capacitance limits the
bandwidth of the FPGA output and the resulting signal
is distorted.

The glitch is injected only for a limited amount
of time, since the system is able to switch between
the unmodified clock signal and the glitch. This is
facilitated by a multiplexer at the system’s output.

The glitch generation and injection logic is depicted
in Fig. 3. The glitch signal, that is generated by applying
the XOR operation on two RO outputs, can be selected
using the Glitch-select control input. Otherwise the
system outputs an unmodified clock signal.

A. Practical Implementation

The proposed system was implemented on a Nexys 2
board which is a Spartan-3E FPGA platform. The
basic structure, depicted in Fig. 3, was implemented
straightforward.

In contrast to this, the ROs require a reconfigurable
design. Their behavior is difficult to estimate, since it
is a free running oscillator that is not coupled to any
clock. Its frequency depends on the speed grade of the
device, the placement and routing of the inverters, and
local internal variations of the FPGA [14]. Therefore it
was necessary to develop a solution that allows more
control over the RO frequency.

The oscillation period of an RO depends on the length
of its combinatorial loop. Each inverter consumes time
during switching and the routing generates an additional
delay. Thus an increase in the number of inverters raises
the loop length and consequently the oscillation period,
thereby lowering the frequency. Hence the oscillation
frequency can be controlled by scaling the length of
the inverter chain.

The scalable RO module is depicted in Fig. 4. It
consists of sub-modules, each containing two inverters
and the corresponding demultiplexer and multiplexer.
The number of additional inverters inserted by each sub-
module is even, since this will preserve the odd parity

RO output

QD

Enable

MUX Selection Control

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Fig. 4. The adjustable RO with its demultiplexers (top) and
multiplexers (bottom), which allow adjusting the length of the inverter
chain and therefore controlling the oscillation frequency.

of the number of inverters. The MUX Selection Control
block implements a one-hot encoding, that shortens the
inverter chain by bypassing inactive inverters. Although
the demultiplexers are optional, they shut down unused
inverters, so no dangling logic exists.

The Enable input of the NAND gate allows to start
and stop the oscillation of the RO. If the Enable signal is
0, the NAND gate’s output is constantly 1, independent
from the other input, thus preventing the RO to oscillate.
When the Enable signal becomes 1, the NAND gate
becomes sensitive to the other input and implements
an inverter. This additional inverter causes the number
of inverters to become odd. That leads to instability of
the loop and hence causes oscillation.

The toggle flipflop at the output is optional. It can be
selected to further divide the output frequency by two.
The frequency can be halved by doubling the length of
the inverter chain or by adding the register. While the
first method requires excessive resources, the register
comes at low down to no additional slice usage.

This flexible RO implementation was developed, to
allow a reconfiguration of the inverter chain while
the system is operating. It enables quick adjust of
parameters without having to execute the cumbersome
synthesis process repeatedly.

The glitch circuitry is configured using a UART
interface of the FPGA. The length of each RO can
be set independently in steps of two between 3 and
255. The use of the output register can also be chosen
independently from each other.

In the glitch insertion module, the duration of the
clock glitch is configured in steps of 10 ns between
10 ns and up to several microseconds. The duration is
defined as the time span, during which the original
clock signal is replaced by the fuzzy glitch.

III. EXPERIMENTAL RESULTS

In this section the previous claims are verified. At
first, the performance of the scalable RO is measured in
terms of its frequency output and adjustability. Secondly,
the overall system is evaluated and the generated glitch
is assessed.

0

20

40

60

80

100

120

0 5 10 15 20 25 30

R
O

 o
u

tp
u

t
fr

e
q

u
e

n
c
y
 i
n

 M
H

z

RO 1
RO 2

0 5 10 15 20 25 30
0

20

40

60

80

100

120

R
O

 p
e

ri
o

d
 i
n

 n
s

Number of active inverters

← RO frequency

RO period →

Fig. 5. RO output frequency and period vs. the inverter chain length

In order to analyze the two scalable ROs, named RO 1
and RO 2, the frequency of RO 1 is measured while
RO 2 remains disabled. Afterwards the experiment is
repeated vice versa. The result is expected to show a
linear mapping of the inverter chain length onto the
period of the output signal.

The results for both ROs are depicted in Fig. 5. The
period rises approximately linearly with the number
of active inverters in the chain. The period of the
shortest configuration, an RO of three inverters, is
slightly lower than expected. This minor deviation is
attributed to the irregular structure of the first group of
inverters, which has less multiplexers/demultiplexers per
inverter, compared to the remaining circuit. Altogether,
the expectation matches the measurement and is in
accordance to the design. The design shows good
adjustability, as increasing the length by two inverters
will raise the period by 6.5 ns in average.

An interesting detail is the slightly increased fre-
quency of RO 2 compared to RO 1. It is common for RO
structures to exhibit frequency variation, despite they
were implemented using the same VHDL design [14].
Such a characteristic is beneficial for fuzzy glitch
generation, since the mixing of exactly matching signals
would not create a suitable glitch signal.

After the verification of the scalable ROs, the fuzzy
clock glitch signal is assessed. Therefore the ROs
are configured to a length of three and five inverters,
corresponding to 82MHz and 42MHz, respectively.
The glitch duration is set to 100 ns. The original clock
frequency is 8MHz by default. An oscilloscope is
attached to the FPGA output, the glitch is triggered,
and recorded.

Fig. 6 shows the resulting signal. As long as the glitch
signal is not active, the original 8MHz clock remains

0

1

2

3

0 100 200 300 400 500 600 700

C
lo

c
k
 s

ig
n

a
l
in

 V

Time in ns

Fig. 6. A fuzzy glitch with a duration of 100 ns

Fig. 7. Attack setup for the validation of the fuzzy glitch method

unaltered. Upon the trigger event at about 280 ns, the
clock is replaced by the fuzzy glitch signal for about
100 ns. As expected, the signal is highly distorted, since
the FPGA board cannot drive this high frequency signal
sufficiently well. The signal has no regular shape, does
not fully span between 0V and 3.3V, and has mainly
analogue characteristics. Upon repeating the experiment,
the glitch will be different, since the internal state of
each RO diverges over time.

IV. EXEMPLARY ATTACK ON CORTEX-M0
The effectiveness of the implemented clock glitch

setup was proven in practice. We set up a sample
embedded system using a microcontroller. Subsequently
the system’s reaction on clock glitches was investigated,
while the attack parameters were varied.

A. Experimental Setup

The experimental setup is shown in Fig. 7. The
Spartan-3E FPGA board, which generates the clock
glitch signal, is on the right-hand side. The glitch
parameters are configured using the FPGA’s UART
interface. The clock signal and glitch is transmitted to
the system under attack, using the red/black twisted
pair of wires in the center of the image.

The STM32F0 Discovery evaluation board, placed
on the left-hand side, resembles a simple embedded
system that is under attack. It contains an STM32F030
microcontroller that incorporates an ARM Cortex-M0
CPU. The effects of the glitch attack on the micro-
controller can be examined using the microcontroller’s
UART interface (UART-M).

The microcontroller is configured to use an external
8MHz clock source, controlled by the FPGA. The
PLL is not enabled, thus the external clock drives the
Cortex-M0 CPU directly.

B. The Code under Attack

Usually, an embedded system performs several tasks
in quick succession, but this impedes a thorough
analysis of the glitch effects. The external visibility
of errors, caused by the glitch, highly depends on
the currently executed instructions and tasks. As a
consequence, results would be hard to interpret and
will be impossible to reproduce reliably.

Therefore a special implementation was tailored in
order to overcome these issues. The code contains
selected instructions, that are comprised in an infinite
loop. The infinite-loop ensures, that the processor
is executing the code of interest whenever a glitch
arrives. The body of the loop includes instructions
for computations, comparisons and branches—basic
building blocks of common control flow statements like
loops and conditional expressions. The firmware was
implemented in such a way that a severe erroneous
execution of any instruction of the loop will have
a recognizable effect. This part of the firmware was
manually implemented using assembly language [15]
in order to maintain full control over the generated
instructions. The corresponding ARM thumb assembly
code is shown in Listing 1.

Listing 1. Excerpt from the microcontroller code under attack
movs r0 , #0 x01 ; r0 = 0 x01
mov r10 , r0 ; r10 = 0 x01
l oop1 :

movs r5 , #0 x00 ; r5 = 0 x00
add r5 , r10 ; r5 += 0 x01
add r5 , r10 ; r5 += 0 x01
add r5 , r10 ; . . .
add r5 , r10
add r5 , r10
add r5 , r10
add r5 , r10
add r5 , r10
add r5 , r10 ; . . .
add r5 , r10 ; r5 += 0 x01
cmp r5 , #0x0A ; r5 == 0x0A?

beq l oop1 ; i f t r u e , go to loop1

At first, the registers r0 and r10 are set to 0x01.
Inside the loop, r5 is reset to 0x00 in order to have a
well-defined initial state. The following ten instructions
are identical. Each one increments the register r5 by
r10, thus r5 is incremented by 0x01. After these ten
instructions were executed, r5 obviously equals ten.
This is verified in the next step, where r5 is compared
to 0x0A. If both values are equal, the branch-if-
equal (beq) instruction will jump back to the beginning
of the loop, to the label “loop1”. This represents an
infinite loop, since r5 will always equal ten after it has
been incremented ten times.

The loop has a very high transparency for incorrect
instruction execution due to glitches. For example, if
the register r5 is not correctly reset to 0x00 or if one
incrementation is missed or executed twice, the final
value will not equal 0x0A. The subsequent compare
will fail, the branch will not be executed and thus the
control flow is diverted out of the infinite loop. Similar
effects may happen, if the compare itself fails or if the
branch is mislead.

C. Firmware Behavior and Design

The microcontroller requires an extended firmware,
that allows a deep analysis of the glitch effects on the
infinite loop. The implemented firmware is depicted in
Fig. 8.

Busy

infinite loop

Start

Select external

clock source

Nopslide

Dump registersDump stack

Fault

Dump registers "Alive?"

"ALIVE!"

Wait for RESET

Clock

glitch

No

response

Fig. 8. The microcontroller firmware under attack including possible
glitch-induced faults

After the first few practical tests, the different
possible outcomes of the glitch became visible. They
can be grouped into four categories:

1) Success: The infinite loop is left and code
following the loop is executed.

2) Hardfault: A fault occurs and the system jumps
into the corresponding fault handler.

3) No effect: No visible effect on the system, the
system continues execution unaffectedly.

4) Crash: The system crashes and the CPU stops
the execution of code.

In the success case, the system leaves the loop and
drops into the nopslide that is placed directly after the
infinite loop. A nopslide is a large region of code
containing tens of subsequent NOP (no operation)
instructions. Such a structure is necessary to correctly
catch the perturbed control flow, even if multiple
instructions are skipped on exiting the loop. After the
nopslide, the microcontroller dumps its registers using
the microcontroller’s UART interface.

In the hardfault case, the glitch has caused the
system to jump into the fault handler or an interrupt
handler. These cases are caught by employing a default-
handler, redirecting each such event to the dumping
function. Upon a fault or interrupt, this function is
called and creates a register dump. Additionally, a stack
dump is extracted, showing the triggering instruction
and gives additional information.

In the success and hardfault case, the microcontroller
automatically sends a status dump upon exiting the
infinite loop. If no status message was sent by the
microcontroller, it was either unaffected by the glitch
and is still running correctly (no effect) or it has
crashed and ceased operation (crash). Both cases can
be identified by sending an “Alive?” query packet to
the microcontroller and looking for a reply.

In the no effect case, the microcontroller was
unaffected by the glitch and continues operation. Thus
it will respond to the “Alive?” packet and prove, that
it is still fully functional.

In the crash case, where the system has ceased
operation, no response will be generated for an “Alive?”
packet. This shows, that the system is in the “lockup”
state, where the processor has fully stopped code
execution and requires a hard reset.

D. Evaluation and Results

The clock glitch attack was executed on the em-
bedded system and the effects were analyzed. The
attack was configured to use ROs with a length of
three and five inverters, the same setting as shown in
Section III. The duration of glitch insertion was varied,
starting with 20 ns. It was then increased in steps of
20 ns up to a maximum time of 800 ns, totaling in
40 different settings for duration. For each of the 40
settings, we repeated the glitch attack 800 times and
analyzed the result after each repetition. One glitch
attack corresponds to replacing the 8MHz clock with
the clock glitch signal for the specified duration.

The register and stack dumps show very different
effects of the clock glitch. In most cases, the register
r5 was affected, as the loop primarily operates on
this register. It occurs, that the incrementation of r5
fails and the register is set to a number less than
ten, e.g., 0x06. Thus some instructions were skipped
or the incrementation failed. Also the opposite was
observed, where r5 was over-increased, e.g. to 0x14 or
0x0C. This may have been caused by a skipped reset
of r5, by multiple execution of a single instruction,
or by miscalculation. In some cases, the r5 register
contents were inconclusive, e.g., 0x08000606 or
0x00800000. This is a hint on a major malfunction
of the CPU that destroyed the register contents.

There were cases, where r5 equaled ten, but nev-
ertheless, the system left the loop. An analysis of
the status register shows, that the compare instruction
erroneously reported r5 being different from ten. This
incorrect result is given to the following branch-if-equal
instruction, the branch is not taken, and the loop is left.

The branch instruction has also failed in some
occasions. Despite r5 equals ten and the status register
shows, that the compare of r5 with ten returned a
positive result, the branch is not taken.

The nopslide after the infinite loop has proven to
be useful. The code was instrumented and it became
visible that the glitch sometimes also causes the first few
instruction of the nopslide to be executed incorrectly.
Nevertheless, the analysis of these cases was still
successful, since an error in nopslide execution does
not cause any effect.

In very few cases, around 10% in average, the
glitch causes a hard fault. The occurrence of any other
interrupts was not observed. The stack and especially
the return pointer was examined in this case. It became
evident, that there is no certain instruction that causes
the hard fault during a glitch. Instead, it happens
randomly. The reason for the hard fault is unknown but
can be speculated. One possibility may be an access to
an invalid memory address, caused by a corruption of
the program counter which holds the currently executed
memory address. Another explanation is an error during
instruction fetch, where an invalid instruction is given
to the processor.

The glitch can also cause a crash of the system.
This was observed in less then 5% up to 45% in all
cases, highly depending on the glitch duration. A lockup

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

P
ro

b
a
b
ili

ty
 i
n
 p

e
rc

e
n
t

Glitch duration in nanoseconds

Success
Hardfault
No effect

Crash

Fig. 9. Glitch-caused effects for different glitch durations

occurs, if the system is overstressed by the glitch, such
that it ceases operation. Too many data was destroyed,
what leads to an unrecoverable malfunction.

E. Statistical Evaluation

A plot of glitch effectiveness vs. length is depicted
in Fig. 9. The data is based on 800 measurements per
glitch duration.

The plot shows, that for very short glitch durations,
there is no effect on the system in about 80%. Upon
increasing the glitch duration the ratio of unsuccessful
attempts begins to decline quickly. At 200 ns duration,
the glitch causes an effect in 90% of the cases.

As the glitch duration approaches 180 ns, the prob-
ability for success rises quickly. The optimal region
for glitch duration spans from 180 ns up to 310 ns,
where success is achieved in about 75% of the attacks
while maintaining little crash probability. This region
of optimal glitch effectiveness is highlighted in Fig. 9.
If the glitch duration is further increased, the success
ratio begins to decline again.

The probability for a system crash increases approx-
imately linearly from 12% at 300 ns to up to 45%
at around 800 ns. This increase takes place on cost
of the success ratio, thus operating in this region is
not advised. The crashes are attributed to an increased
number of multiple errors due to the longer glitch,
which effectively leads to a crash of the system.

The probability for a hard fault stays below 15%
in most of the cases and has minor relevance for the
attack.

The plot shows, that despite the glitch is generated
by a random process, its effect on the microcontroller
is still under control and can be modified by varying
the glitch duration. The results of the measurement
are conclusive and match the expectation. Neither very
short nor excessively long fuzzy glitch durations are
optimal. The region of optimal glitch effectiveness spans
between 180 ns up to 310 ns.

V. CONCLUSION

In this work we presented the novel class of fuzzy
clock signal glitches. They are created by mixing the
signals of two free-running adjustable ring oscillators

which contribute randomness to the attack. We demon-
strated successfully, that the proposed design can be
implemented on an FPGA in practice. An experiment
was set up, where an STM32F030, an ARM Cortex-
M0 based microcontroller, was successfully attacked
using fuzzy clock glitches generated by our design. The
attack’s effects were analyzed in detail by employing a
custom micrcontroller firmware. The results show, that
our system reaches up to 75% glitch effectiveness in the
optimal case and remains over 50% over a wide range
of parameters, depending on the glitch duration. All in
all, these results prove, that this alternative approach
on clock glitch attacks is feasible and valid.

ACKNOWLEDGMENT

The authors would like to thank Robert Hesselbarth
for providing the RO VHDL primitive and Qiyi Li for
supporting the practical implementation.

REFERENCES

[1] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault
analysis of the advanced encryption standard using a single
fault,” in IFIP International Workshop on Information Security
Theory and Practices. Springer, 2011, pp. 224–233.

[2] M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and
A. Tria, “When clocks fail: On critical paths and clock faults,”
in International Conference on Smart Card Research and
Advanced Applications. Springer, 2010, pp. 182–193.

[3] H. Choukri and M. Tunstall, “Round reduction using faults,”
FDTC, vol. 5, pp. 13–24, 2005.

[4] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An in-depth and
black-box characterization of the effects of clock glitches on
8-bit mcus,” in Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2011 Workshop on. IEEE, 2011, pp. 105–114.

[5] D. Saha, D. Mukhopadhyay, and D. Roychowdhury, “A diagonal
fault attack on the advanced encryption standard.”

[6] M. Matsubayashi, A. Satoh, and J. Ishii, “Clock glitch generator
on sakura-g for fault injection attack against a cryptographic
circuit,” in Consumer Electronics, 2016 IEEE 5th Global
Conference on. IEEE, 2016, pp. 1–4.

[7] T. Korak and M. Hoefler, “On the effects of clock and
power supply tampering on two microcontroller platforms,”
in Fault Diagnosis and Tolerance in Cryptography (FDTC),
2014 Workshop on. IEEE, 2014, pp. 8–17.

[8] T. Korak, M. Hutter, B. Ege, and L. Batina, “Clock glitch
attacks in the presence of heating,” in Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2014 Workshop on. IEEE,
2014, pp. 104–114.

[9] S. Endo, T. Sugawara, N. Homma, T. Aoki, and A. Satoh,
“An on-chip glitchy-clock generator for testing fault injection
attacks,” Journal of Cryptographic Engineering, vol. 1, no. 4,
p. 265, 2011. [Online]. Available: http://dx.doi.org/10.1007/
s13389-011-0022-y

[10] S. Picek, L. Batina, P. Buzing, and D. Jakobovic, Fault
Injection with a New Flavor: Memetic Algorithms Make a
Difference. Cham: Springer International Publishing, 2015,
pp. 159–173. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-21476-4 11

[11] E. Eilley, “Ring oscillator,” Jan. 2 1990, uS Patent
4,891,609. [Online]. Available: https://www.google.com/patents/
US4891609

[12] A. A. Abidi, “Phase noise and jitter in cmos ring oscillators,”
IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1803–
1816, 2006.

[13] V. Fischer, F. Bernard, N. Bochard, and M. Varchola, “Enhanc-
ing security of ring oscillator-based trng implemented in fpga,”
in Field Programmable Logic and Applications, 2008. FPL
2008. International Conference on. IEEE, 2008, pp. 245–250.

[14] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large
scale characterization of ro-puf,” in Hardware-Oriented Security
and Trust (HOST), 2010 IEEE International Symposium on.
IEEE, 2010, pp. 94–99.

[15] STMicroelectronics, “Stm32f0xxx cortex-m0 programming
manual,” Apr. 4 2012. [Online]. Available: https://www.st.com/
resource/en/programming manual/dm00051352.pdf

